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Abstract

Historically, studies concerning bat flight have focused primarily on the wings. By analyzing high-speed video taken on 48
individuals of five species of vespertilionid bats, we show that the capacity to flap the tail-membrane (uropatagium) in order
to generate thrust and lift during takeoffs and minimal-speed flight (,1 m s21) was largely underestimated. Indeed, bats
flapped the tail-membrane by extensive dorso-ventral fanning motions covering as much as 135 degrees of arc consistent
with thrust generation by air displacement. The degree of dorsal extension of the tail-membrane, and thus the potential
amount of thrust generated during platform launches, was significantly correlated with body mass (P = 0.02). Adduction of
the hind limbs during upstrokes collapsed the tail-membrane thereby reducing its surface area and minimizing negative lift
forces. Abduction of the hind limbs during the downstroke fully expanded the tail-membrane as it was swept ventrally. The
flapping kinematics of the tail-membrane is thus consistent with expectations for an airfoil. Timing offsets between the
wings and tail-membrane during downstrokes was as much as 50%, suggesting that the tail-membrane was providing
thrust and perhaps lift when the wings were retracting through the upstoke phase of the wing-beat cycle. The extent to
which the tail-membrane was used during takeoffs differed significantly among four vespertilionid species (P = 0.01) and
aligned with predictions derived from bat ecomorphology. The extensive fanning motion of the tail membrane by
vespertilionid bats has not been reported for other flying vertebrates.
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Introduction

The evolution of flight in mammals occurred more than 50

million years ago and led to today’s diversity of bats that compose

nearly 24% of all living mammalian species [1]. The dawn of bat

flight was evolutionarily independent from events that gave rise to

birds and pterosaurs, the only other groups of vertebrates known

to have evolved flight. Accordingly, the form and function of bat

wings differ considerably from birds and pterosaurs and the

unique nature of bat flight has stimulated much interest in habitat

use and foraging ecology of various species [2]. Although studies of

flight using wind tunnels have been pervasive, increasingly

research has focused on free-flight kinematics in bats which may

deliver a more realistic interpretation of how bats use their wings

in nature [3–10].

Undoubtedly, the nearly singular emphasis on the wings (hand-

+ arm-wings) of bats as the major adaptive character for flight is

warranted and expected. However, such focused research has

somewhat diverted investigations of other potentially important

attributes and dimensions of flight. For example, an aspect of bat

flight not adequately investigated is the use of the tail-membrane

(uropatagium) as a contributor to flight performance. Although

some insectivorous bats are known for using their tail-membrane

to catch insects in flight and also in some elements of flight control

[11–12], the extent to which bats invest their tail-membrane to

augment flight performance has rarely been considered. Two

investigators [10,13,14] have speculated that the tail-membrane

may produce lift during flight and one [10] has noted slight

upward and downward motions of the tail-membrane in

synchrony with the wingbeat cycle during wind tunnel flights in

the brown long-eared bat (Plecotus auritus, Vespertilionidae).

Herein we provide the first evidence that vespertilionid bats are

capable of extensively flapping their tail-membrane in coordina-

tion with the wings and offer a testable model wherein the

mechanics and kinematics of the tail-membrane are consistent

with expectations for the production of thrust and lift. We

hypothesize that the tail-membrane in vespertilionid bats has a

significant role in providing thrust and lift during takeoff events at

very low flight speeds (,1 m s21) particularly at moments when

the wings offer minimal contributions to flight. We predict that the

tail-membrane motions will be consistent with expectations

surrounding maximizing positive force production and minimizing

production of negative lift forces. We also predict that the degree

(extent) of tail-membrane flapping will be correlated with the body

mass of individuals of similar wing dimensions because greater

thrust is required to lift greater mass from a stationary position.

We tested our hypothesis and predictions by filming individuals

from five species of vespertilionid bats launching from a horizontal

platform expected induce significant flight stress during takeoff.
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Results

Bats captured and filmed
We filmed 95 individuals of five species of vespertilionid bats as

they launched from a horizontal platform after being held

stationary by hand. From these, 48 videos met the criteria for

analysis (minimal pitch, roll, and yaw during takeoff, ability to

track wing tip, wrist, and tail-membrane tip motions throughout

beat cycles, as well as smooth, unfettered takeoffs from start-

points). Numbers of videos used per bat species were: 12 long-

eared myotis, M. evotis; 14 little brown myotis, M. lucifugus; 7

fringed myotis, M. thysanodes; 4 Townsend’s big-eared bats,

Corynorhinus townsendii, and 11 pallid bats, Antrozous pallidus. All

myotis species and Townsend’s big-eared bats were wild-caught

and filmed in the field. Pallid bats were filmed at the University of

Wyoming, Laramie, USA, where a free-flying, captive colony is

held.

Takeoff sequencing
The push-off kinematics and mechanics of horizontal takeoffs

have been described for the ground-dwelling common vampire bat

(Phylostomidae: Desmodus rotundus) and, although push-off mechan-

ics was not described in a study of the dog-faced fruit bat

(Pteropodidae: Cynopterus brachyotis), calculation of power produc-

tion by the wings during horizontal takeoffs were made [15,16].

For vespertilionid bats used in our study, horizontal takeoffs

involved a similar push-off to that described for D. rotundus,

wherein the wrist and thumb acted as the primary launch points.

However, whereas D. rotundus launched with a head-up body

posture, vespertilionid bats typically rocked forward onto their

wrists, resulting in a head-down posture with the body-axis tilted at

times 30–45 degrees below the horizontal (Figure 1A). Subsequent

rotation of the body to a horizontal plane occurred quickly within

the first wing and tail-membrane beat cycles. In some cases,

however, myotis bats did launch with a head-up posture similar to

D. rotundus, but this was relatively rare (n = 3). Curiously, the pallid

bat (Antrozous pallidus), a ground foraging species, did typically

launch itself with a head-up posture similar to D. rotundus, or used a

level body-axis orientation. Townsend’s big-eared bat (C. town-

sendii, N = 4) used a very steep ascent during takeoff nearing 60u to

the horizontal before leveling off in flight (Figure 1B), whereas

myotis species typically showed a less dramatic ascent angle

(,30u). The pallid bat (A. pallidus, N = 11) also at times used a very

steep angle of ascent with one individual launching at an angle of

69u.

Complex orchestration of tail-membrane flapping
mechanics

By filming bats head-on as they launched from the horizontal

platform, we revealed that the tail-membrane complex (hind

limbs, tail, and tail-membrane) undergoes intricate and coordi-

nated motions, as do the wings, to minimize downward forces

during the upstroke and maximize air-displacement throughout

the downstroke (Figure 1A, Videos S1 and S2). By adducting the

Figure 1. Orchestrating a tail-membrane flap. A) 1–2. Fringed myotis (Myotis thysanodes) illustrating adduction of its rear limbs to collapse the
tail-membrane during the upstroke. 3–4. Abduction of the hind-limbs at the top of the upstroke occurs in preparation for the tail-membrane
downstroke, thereby maximizing surface area and air displacement leading to rearward thrust. 5. Collapsing of the tail-membrane at the bottom of
the downstroke in preparation for the next upstroke. B) Sequence drawings illustrating motion and timing between wings and tail-membrane
motions during initial phase of a platform takeoff by Townsend’s big-eared bat (Corynorhinus townsendii).
doi:10.1371/journal.pone.0032074.g001
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rear appendages during the upstroke, individuals fully collapsed

the tail-membrane, thereby minimizing its area and downward air

pressure across the surface (Figure 1A, panels 1 and 2). When the

tail-membrane reached the top of the upstroke (Figure 1A, panel

2), the legs were abducted to fully extend the tail-membrane

(Figures 1A, panel 3) as it was swept through the downstroke.

Fanning motion of the tail-membrane (Figure 1A, panels 3 and 4;

Figure 1B, Video S3) would displace air perpendicular to the

sweeping motion thereby generating thrust in a rearward direction

[17]. The first tail-membrane cycle ended with adduction of the

legs at the bottom of the downstroke in preparation for the next

upstroke (Fig. 1A, panel 5).

Another important component of the tail-membrane in flight

was the ability to alter stroke timing (exemplified in Figure 1A,

panel 4), wherein the timing of the tail-membrane downstroke

lagged behind the downstroke of the wings by nearly 50%.

Lagging the downstroke of the tail-membrane behind that of the

wings may serve to provide timely lift and thrust during takeoffs at

very slow flight speeds (,1 m s21) [18,19]. Although the formation

of closed-loop ring vortices have been shown to contribute to lift

during the upstroke in wind tunnel flight speeds between

5.060.1 m s21and 6.760.4 m s21 in C. brachyotis [20], tests done

on the greater horseshoe bat (Rhinolophidae: Rhinolophus ferrume-

quinum) and the long-eared bat (Vespertilionidae: Plecotus auritus)

flying at speeds below 3 m s21, showed ‘little to no useful lift’

produced by the wings during the upstroke phase [18,19]. In

addition, at speeds below 3 m s21 in the nectar-feeding bat

(Phyllostomidae: Glossophaga soricina), unstable air flow dynamics

result in unfavorable (negative) thrust and lift production during

the upstroke. However, there was some indication that at the top

of the upstroke, inverting the camber of the hand-wing tips by

supination potentially produced some thrust [19]. Integrating our

data for vespertilionid bats, extensive investment of fanning

motions of the tail-membrane during very slow flight from

horizontal launch to cruising speed indicates supportive thrust

and/or lift generation.

Degrees of synchrony between wings and tail-membrane
motions

Temporal offset patterns, particularly between downstroke

timings of the wings and the tail-membrane were quite typical

among the species tested. Upon takeoff, both wings moved

through the upstroke in tandem to their top positions. However,

there was clear variation of synchronized motions between the

wings and tail-membrane during initial downstrokes among

individuals and the degree of synchrony varied even across wing

cycles within the same launch event. Commonly, but not always,

the first downstrokes initiated an offset timing (we term these

‘oscillation offsets’) between wings and the tail-membrane. In most

cases, the opening downstroke asynchrony was driven by a time-

lag in downward motion of the tail-membrane relative to the

downward motion of the wings leading to variation in cycling

times. For the little brown bat (M. lucifugus, N = 14) the mean wing

and tail-membrane overall cycle times (top of upstroke through

bottom of downstroke to top of upstroke) were not significantly

different ( �XXwing = 0.07 seconds, �XXtail-membrane = 0.069 seconds; T-

value = 1.33, P = 0.89). However, standard deviations of the tail-

membrane cycles were twice those measured for the wings

(SDwings = 0.0079, SDtail-membrane = 0.017) indicating greater rela-

tive variability in spatio-temporal use of the tail-membrane.

At slowest cycling speeds, the tail-membrane was flapped at only

72% of the wing cycle speed (wing-minimal-cycle-time = 0.084 -

seconds, tail-membrane-minimal-cycle-time = 0.117 seconds),

whereas during the fastest cycle speeds, the tail-membrane flap

was 39% faster than the fastest wing cycling speed (wing-maximal-

cycling-speed = 0.054 seconds, tail-membrane-maximal-cycling-

speed = 0.033 seconds). Thus, the tail-membrane was employed

over a wider range of cycling speeds than observed for the wings

and in most cases an individual’s kinematic integration of the tail-

membrane appeared dampened (reduced fanning motion) as they

accelerated during takeoff. As mentioned, relative cycle timings

between the wings and tail-membrane did vary among wing-beats

within an individual takeoff event. For example, in the little brown

Figure 2. Stroke initiation offsets. Stroke offsets between the left wing and tail-membrane are illustrated by plotting the digitized motions of the
left wrist (blue line) and tip of the tail (red line) for the little brown myotis (Myotis lucifugus) through three wingbeat cycles. In this example, the
individual used intitiation offsets of the upstroke and downstroke timings in order to produce asynchronous flapping between the wings and the tail-
membrane. Black lines indicate degree of divergence in timing of downstroke motions (oscillation offsets).
doi:10.1371/journal.pone.0032074.g002
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bat (M. lucifugus)(Figure 2), integration of the tail-membrane and

wings varied across the first three wing-beat cycles and in this case,

most oscillation offsets occurred in wing-beat cycles two and three.

For the fringed myotis (M. thysanodes), similar degrees of oscillation

offset occurred across all five wing-beat cycles with similar

intensity (Figure 3).

There were also two main ways in which bats produced

oscillation offsets between wings and the tail-membrane. Most

commonly, lagging the downstroke of the tail-membrane relative

to the wings was achieved by what we term ‘stroke-initiation-

offsets’ wherein the tail-membrane was held at its top position as

the bat initiated its wing downstrokes (Figure 2). However, once

the tail-membrane downstroke was initiated, the cycle speed was

very similar to that of the wings. A second method involved what

we term ‘stroke-tempo-offsets’ wherein the initiation of the

downstroke of the wings and tail-membrane were synchronized,

however, the tail-membrane and wings were cycling at different

tempos (Figure 3).

Performance at takeoff and very slow flight speeds
Wing performance in bats at very slow flight speeds differs from

performance at higher flight speeds [18,19] and analysis of trailing

vortices indicate that the lift and thrust generated during the

wing’s upstroke are minimal at very slow flight speeds (1–3 m s21)

[17]. Although we currently do not have data on the amount of

thrust produced by the tail-membrane during horizontal takeoffs

at very slow flight speeds (,1 m s21), the offset oscillations

produced by delayed initiation or slower relative downstroke speed

and the high level of tail-membrane fanning effort (Video S4)

would logically indicate that the tail-membrane is providing an

important contribution to takeoff acceleration.

Analysis of digitized tracings (Figure 4) of the left wingtip path

and tail-tip path for little brown myotis (Myotis lucifugus) showed

variation of stroke planes as related to takeoff trajectories. An

individual with a relatively steep takeoff trajectory for this species

(Figure 4A, 34u to the horizontal) displayed a shallow wing stroke

plane relative to the body plane (b= +62.5u) and the tail-

membrane stroke plane exhibited a relatively moderate degree

of fanning motion (dorsal tail-membrane extension, h= 60u,
ventral tail-membrane flexion, h9 = 249u with 109u total sweep

degrees). An intermediate takeoff angle of 24u to the horizontal

(Figure 4B) by another individual produced a wing stroke plane (b)

of 62u, and a degree of dorsal tail-membrane extension and ventral

flexion angles (h) of +65.3u and (h9) of 257u respectively, resulting

in 122.5u of total tail-membrane fanning motion. An individual

with a takeoff angle horizontal to the platform (Figure 4C, 0u)
displayed a wing stroke plane angle (b) of 68u and the least degree

of tail-membrane fanning motion (h= +41u , h9 = 231u, total tail-

membrane sweep was 72u).
The average extent of dorsal tail-membrane extension mea-

sured as degrees above the horizontal axis of the body in 14 male

little brown myotis (M. lucifugus) was 48.5u (range 32.7u–49.2u,
SD = 8.3u). Extent of dorsal tail-membrane motion above the

body-axis as logN-logN plotted against body mass (g) showed a

significantly positive correlation (Figure 5, R2 = 0.33, R = 0.59,

P = 0.02). Total degrees of arc regarding tail-membrane fanning

motions in M. lucifugus ranged from 72.5u to 134.9u and these data

did not significantly correlate with body mass (R2 = 0.13,

R = 0.368, P = 0.30). Thus it appears that dorsal extension of the

tail-membrane is a primary way in which vespertilionid bats

increase thrust support during horizontal platform takeoffs.

There was also a change in the relationship between upstroke

versus downstroke oscillation offsets between wings and tail-

membrane motions in relation to body mass in M. lucifugus

(Figure 6A). At lower body mass, upstroke offsets between the

wings and tail-membrane were greater than observed in

downstroke offsets. However, when mass was greater than 6.8 g,

downstroke offsets became more pronounced than upstroke

offsets. Regression analysis (Figure 6B) showed the switchover in

offset timings between upstrokes and downstrokes of the wings and

Figure 3. Stroke tempo offsets. Stroke tempo offsets between left wing and tail-membrane as illustrated by plots of the digitized motions of the
wrist (blue line) and tail tip (red line) for the fringed myotis (Myotis thysanodes) across wingbeat cycles one through five. In this example, the
individual showed little to no stroke intiation offsets, but instead used differential flap rates between the wings and tail-membrane to afford
asynchrony of motion. The angles of the red and the blue arrows indicate oscillation offsets via stroke tempo.
doi:10.1371/journal.pone.0032074.g003
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the tail-membrane relative to body mass. Although neither

regression line is significant due to high variation (upstroke:

R2 = 0.33, R = 0.57, P = 0.08; downstroke: R2 = 0.09, R = 0.29,

P = 0.41), the consistent switchover pattern underscores a potential

change in kinematics depending on the body mass of an

individual, an area of future research.

Species-specific patterns of tail-membrane employment
We calculated the degrees of tail-stroke fanning sweeps for 44

individuals of the four vespertilionid species with the highest

sample sizes and that varied in wing loading, flight ecology, and

ecomorphology (Figure 7). The average extent to which the tail-

membrane was used during horizontal takeoffs was greatest for M.

lucifugus, known to be an aerial-pursuit forager in open habitats

and having the highest comparative wing loading of the group we

tested. The ground foraging pallid bat (A. pallidus) has the lowest

wing-loading of the group and showed the least use of the tail-

membrane during takeoffs. However, because this species hunts

large terrestrial prey such as scorpions, ground beetles, and

centipedes, the use of the tail-membrane may be prompted more

when launching from the ground with a prey item in its mouth

large enough to significantly increase wing loading. The two other

myotis species analyzed showed intermediate use of the tail-

membrane between these two extremes. Post hoc Tukey-Kramer

Multiple-Comparison Test (Table 1) denoted significant differenc-

es between M. lucifugus and the two species with lowest wing

loadings (A. pallidus and long-eared myotis, M. evotis); whereas the

fringed myotis (M. thysanodes) that has intermediate wing loading

and is adapted for aerial-pursuit of insects in cluttered habitats,

used its tail-membrane in an intermediate fashion that was not

significantly different from either M. lucifugus and M. evotis

(DF = 35, Critical Value = 3.814, Alpha = 0.05, Table 1).

Discussion

Herein we report on extensive use of the tail-membrane as a

potentially important mechanical contributor to flight mechanics

in bats during very slow take-off flights from a horizontal platform.

The way and the extent to which the tail-membrane in

vespertilionid bats is used have not been observed in any other

Figure 4. Takeoff trajectory and wing versus tail-membrane motions. Digitized tracings of left wing tip (blue) and tail tip (red) for three
takeoff trajectories observed in little brown myotis (Myotis lucifugus). Angle of flight trajectories are represented by tilt of each cylinder. Data are
provided below each cylinder indicating least degree of left wing stroke angle to body plane (b) and maximal tail-membrane stroke angles above the
body plane (h= +angle) and below the body plane (h9 = 2angle) for each individual adjusted to the horizontal for comparison. Hinge indicates a
pivot-point presumably at the sacral/caudal vertebral joint. Body plane is indicated by the dotted arrow and U = velocity.
doi:10.1371/journal.pone.0032074.g004
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flying vertebrate. We show that the tail-membrane can be

incorporated in an extensive, complex, and flexible manner

(Video S5) as a tail-wing that can be called upon to produce

rearward thrust at slower flight speeds. Offsets in timing by lagging

the downstroke of the tail-membrane behind the wings appears to

result in rearward thrust during moments of the wing upstroke

when minimal lift is being produced [18,19]. The full importance

and adaptive nature of this form of flight will require further

investigation such as interactions between wings and tail-

membrane vortices, but herein we supply the foundation of

adaptive and controlled use of the tail-membrane in vespertilionid

bats, the extent to which had not been previously documented or

calibrated. Evidence indicates that the tail-membrane is used in

well-coordinated flight mechanics and shows plasticity by

individuals in its use depending upon immediate needs for flight

support. In addition, use of the tail-membrane during horizontal

takeoffs matches predictions based on wing-loading and ecomor-

phology of insectivorous bats. We term this mode of flight, ‘Tail-

Assisted-Flight-Thrust’ (TAFT) that is initiated by fanning motions

of the tail-membrane in producing rearward thrust.

Figure 5. Tail-membrane extension relative to body mass. Model two regression analysis showed a significantly positive relationship between
(LogN) dorsal extension of the tail-membrane above the body plane and (LogN) mass (g) of individual little brown myotis (M. lucifugus), indicating
that degree of dorsal extension of the tail-membrane is mechanically adjusted relative to mass to be lifted.
doi:10.1371/journal.pone.0032074.g005

Figure 6. Change in oscillation offsets relative to body mass A. Histogram showing extent of oscillation offsets between the left wing and tail
tip during the upstroke (blue bars) and downstroke (red bars) for the little brown myotis (M. lucifugus), plotted against individuals that varied in body
mass. B. Regression plot of the offset data shows the switch-over point of regression lines where downstroke offsets (red line) become more
pronounced than upstroke offsets (blue line) in relation to body mass. Although neither regression line is statistically significant due to high variation
in the sample, the consistent trend towards greater offsets occuring during downstrokes as body mass increases suggests meaningful shifting of
kinematics with mass.
doi:10.1371/journal.pone.0032074.g006
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Hypothetical model for contributions of the tail-
membrane during takeoff flight

Comparative motions of the tail-membrane between the long-

eared myotis (Vespertilionidae: Myotis evotis) and the short-tailed

fruit bat (Phyllostomidae: Carollia perspicillata) allowed for insightful

comparisons during horizontal takeoffs (Figure 8). We filmed five

short-tailed fruit bats multiple times and none showed dorsal

extension of the hind-limbs or caudal vertebrae during horizontal

launches as was clearly evident in vespertilionid bats. In C.

perspicillata, there were some lateral and medial motions of the

hind-limbs, but this pattern was inconsistent and in some

individuals was not evident. There is some evidence using a

simplified bat model based on the long-eared bat, Plecotus auritus

[11], that positioning the tail-membrane during wind tunnel flights

at speeds near 6 m s-1 significantly influences flight control. Thus

for C. perspicillata, leg motions observed during takeoff launches in

some individuals may be to adjust the camber of the wings.

Use of the tail-membrane in vespertilionid bats in many ways

mimics the fanning motions of the flukes in swimming mammals

like dolphins [21,22,23,24] and, in particular, the manatee

[20,25]. Paddle-formed tails in fish and manatees have low

aspect-ratios, function around a single hinge (similarly to a

rounded, paddle-formed human hand fan), and are efficient in

producing forward thrust at low-speeds [17,25]. The motion of the

bat’s tail-membrane mimics this fanning motion, however, unlike

that observed in aquatic and semi-aquatic animals, the bat’s tail-

membrane is unfolded only during the downstroke. The fact that

bats fold up the tail-membrane during the upstroke phase

apparently to reduce negative lift forces and expand it during

the downstroke phase to apparently accentuate rearward air

displacement agrees with expected airfoil kinematics . In addition,

tail-membrane fanning motions in bats are controlled by three

pivot points, the hip-joints and the sacro-caudal joint of the tail

that must be coordinated, and this differs from the single, central-

axis control of the flukes in dolphins and manatees [21,23,25].

That the tail-membrane displaces air in a direction that would

produce rearward thrust is consistent with the physics of fanning

motion [17](Figure 9) and it is difficult to conceive of alternative

reasons that vespertilionid bats would place so much effort in tail-

membrane fanning if the resulting contribution was not significant.

Our video of C. perspicillata shows that this species typically flapped

directly off the horizontal platform rather than performing a push-

off as observed in the vespertilionid bats and C. perspicillata showed

no evidence of attempted tail-mebrane flapping.

In vespertilionid bats, as the tip of the tail moves along a

sinusoidal path through each stroke cycle, the position of the tail-

membrane changes relative to that sinusoidal path. This why we

predict that the downstroke provides a thrust-force similar to that

Figure 7. Use of the tail-membrane across species. Integration of ecomorphology with use of the tail-membrane showed significant
differences among species (P = 0.01) most broadly separated ecomorpholgically. Mean tail-stroke values (degrees of arc across the body-axis) were
highest for the little brown myotis (MYLU) that has the highest wing loading and a preference for open-aerial flight as compared to the other three
species. The ground foraging pallid bat (Antrozous pallidus, ANPA) has the lowest wing loading of the group and had the shortest tail sweep on
average. Post-hoc pair-wise comparisons showed that MYLU was signficantly different from the long-eared myotis (M. evotis, MYEV) and ANPA,
whereas the fringed myotis (M. thysanodes, MYTH) was not significantly different from any other species . ** = significant difference at the P = 0.01.
Connecting lines show which groups were signficant different. See Table 1 for details.
doi:10.1371/journal.pone.0032074.g007

Table 1. Post hoc Tukey-Kramer Multiple-Comparison Test
showed significant differences (DF = 35, Critical Value = 3.814,
Alpha = 0.05) among vespertilionid species in degree of tail-
membrane sweep during takeoff from a horizontal platform.

Group Count Mean Significantly Different Groups

MYLU 14 118.90 ANPA, MYEV

MYEV 12 96.82 MYLU

MYTH 7 103.83 NONE

ANPA 11 92.39 MYLU

MYLU = Myotis lucifugus, MYEV = M. evotis, MYTH = M. thysanodes,
ANPA = Antrozous pallidus.
doi:10.1371/journal.pone.0032074.t001
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produced by a dolphin’s or manatee’s tail during slow-speed

swimming or even a simple hand-fan when waved for cooling. We

calculated both angle of attack (a= angle of tail-membrane axis

relative to sinusoidal path) and pitch angle (a9 = angle between

tail-membrane axis and translational movement of the animal)

through one cycle. Attack angles by position were as follows: 0

(top): 171u, 1: 146u, 2: 126u, 3: 105u, 4: 98u, 5: 94u, 6 (bottom): 90u.
Pitch angles by position were as follows: 0: 73u, 1: 60u, 2: 90u, 3:

106u, 4: 119u, 5: 119u, 6: 128u. Greatest thrust production from

fanning would hypothetically be produced when the tail-

membrane is moved through position 1–4 as pitch angle passes

through 90u with an angle of attack of 126u. Unlike the wings, the

tail-membrane would predictably perform fanning uniformly

along its span, thereby generating much greater propulsive force

than lift [17].

Curiously, relative to maximal total degrees of tail-membrane

sweep, M. lucifugus (134.9u of arc) used about a 40% greater tail-

sweep than observed in female bottle-nosed dolphins (54u of arc)

[21,22,23,24]. Of course, because of the largely different densities

of water versus air, the efficiency of these motions will vary greatly

between these two groups.

Use of the tail by birds during takeoff flight
Use of the tail during flight by birds is also understudied.

However, during takeoff in pigeons (Columba livia), the majority of

tail muscles underwent ‘conspicuous changes in the timing of

activity,’ whereas the wing muscles retained the same pattern

(mono- or biphasic) of activity in all flight modes (takeoff, slow level

flapping flight, and landing) [26]. These data point to a decoupling

of neuromuscular control patterns between the wings and tail

flight surfaces. Although the tail did not undergo dramatic

oscillations during any modes of flight in pigeons, the associated

muscles showed changes in activity timing and intensity not

exhibited in the standardized temporal activation of the forewing

musculature [26]. Pigeons used the tail to minimize drag in order

to help themselves accelerate during takeoff in which the tail stroke

plane was tilted steeply downward supporting the authors

hypothesis that this position would push air rearward to help

accelerate the bird forward. The tail stroke plane in pigeons was

tilted upward during landing implying that an upward-tilted stroke

plane pushes more air forward to slow the bird down [27].

Consequently the tail in birds appears to have a stabilizing role

and the use of the caudal musculature during takeoff appears to be

used in fixing tail positions that reduced drag [27], as opposed to

Figure 8. Comparative takeoff dynamics. Using comparable still images between species (upper, long-eared myotis, Myotis evotis; lower, short-
tailed fruit bat, Carollia perspicillata) we show how the long-eared myotis used extensive dorsal extension of tail-membrane to initiate rearward thrust
production, whereas the short-tailed fruit bat did not.
doi:10.1371/journal.pone.0032074.g008

Figure 9. Angle of attack of the tail-membrane during fanning
motion. Graphic illustrating how the tail-membrane produces
foreward thrust during a platform takeoff. The tip of the tail moves
along a sinusoidal path through each stroke cycle represented by the
curved black-line. Blue lines indicate the position of the tail-membrane
relative to the sinusoidal path. The upstroke of the folded tail-
membrane would likely be aerodynamically passive, whereas the
downstroke provides a thrust force realtive to pitch angle and angle
of attack. Numbers indicate tail-membrane position from top to bottom
for a single downstroke. T = Thrust, L = Lift, D = Drag. Inset diagram
illustrates how angle of attack and pitch angle were calculated for each
tail-membrane position during the downstroke. A path tangent was
drawn for each point position of the tail tip. a is the angle of attack of
the tail-membrane relative to path (here illustrated for position 4 of the
downstroke).
doi:10.1371/journal.pone.0032074.g009
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what we are observing in vepsertilionid bats where tail fanning

motions are consistent in generating rearward flight thrust.

Is the use of the tail membrane in bats novel?
We argue that the use of TAFT locmotion by incorporating

fanning of the tail-membrane to produce rearward thrust, thereby

acting as a tail-wing in bats, represents a novel form of vertebrate

flight that mimics thrust production produced by tail motions in

some aquatic organisms. Although some of the hind limb motions

we observed in vespertilionid bats may act to adjust camber of the

wings, the extent to which they use the tail-membrane far exceeds

what would be required for that task. Our comparison of

horizontal takeoff between the short-tailed fruit bat (C. perspicillata)

that has only a partial tail-membrane and our vespertilionid

species underscores how extensively the latter uses the tail-

membrane for generating rearward thrust during takeoff. In

addition, contraction and expansion of the tail-membrane during

the stroke cycles clearly conform to predicted power-stroke

kinematics.

In vespertilionid bats, only the tail-sweep involving dorsal

extension of the hind-wing correlated with body mass and thus it

appears that dorsal component of the sweep is primarily used to

produce rearward thrust. Curiously, all individuals filmed swept

the tail-membrane through the ventral flexion component below

the body-axis regardless of how much dorsal extension of the tail

was used. Thus, it appears that there may be a duel-function of the

tail-wing motion relative to its position above and below the body

axis. Similar to birds, there appears to be an effort during

horizontal takeoffs to either minimize drag when the tail-

membrane is moved below the body axis or perhaps bats are

using the ventral component of tail-membrane sweep to enhance

lift [11] by curving the flight surface to increase wind-speed across

the dorsum relative to airflow across the ventrum (Figure 10). This

effect would be simiar to an airplane putting down its flaps during

takeoff to generate the lift necessary during slow flight speed.

Indeed, we have just begun to uncover the myriad ways in

which the tail-membrane may be employed to facilitate navigation

of complex terrains and habitats as well as horizontal launches

from rock-crevices, buildings, and ground roosts. As is, the tail-

membrane kinematics used during platform takeoff is variable

among individuals within species, showing high plasiticity in its

phasing and integration with the wings. Further, the ease by which

individuals use the tail-wing indicates a well-integrated kinematic

orchestration among the four limbs, tail vertebrae, and tail-

membrane of vespertilionid bats. As with birds [26], there appears

be a neurological decoupling of muscle control between the wings

and tail-membrane in bats, but this will require EMG data to

confirm. That the extensive use of the tail-membrane corroborates

aspects of flight morphology such as wing loading and aspect ratio

and ecomorpholgical predictions, shows an evolutionary under-

pinning for use of a tail-wing for thrust and lift production. Future

investigations into this phenomenon should include species of bats

from other families as well as investigations into the interactions of

vortices produced by the wings and tail-membrane and under

what ecomorpholgical parameters the tail-wing is employed.

Analysis of the skeletal elements that support fanning motion of

the tail-wing will greatly further understanding of the complex

nature of tail-membrane adaptations for flight in bats as well as the

evolution of flight and species diversity. As with all analyses of

flight kinematics, interpretations of, and explanations for potential

force production and its effects on flight dynamics requires

considerable caution. Herein we put forth our interpretation of

how the tail-membrane appears to be used as a supportive tail-

wing to produce thrust and lift during takeoff flight from a

horizontal platform. Much more sophisticated analyses will be

required to test this model.

Lastly, casual observations of high-speed videos provided by

other researchers of individuals from other families of bats

engaged in skimming water to drink and in nearly vertical flight

into caves show clear evidence of TAFT locomotion. Although not

yet quantified, we anticipate that most species of bats with full tail

Figure 10. Illustration of hypothetical model of how thrust and lift may be generated. Using the tail-membrane fanning motions (black
arrow indicates direction of travel) of a long-eared myotis (Myotis evotis), we illustrate a hypothetical duel-use of the tail-wing wherein dorsal
extension and downstoke above the body plane delivers thrust, whereas ventral flexion generates thrust and also lift when held in a curved position
below the body axis. This positioning would be analogous to an airplane extending its flaps to increase air-speed above a flight surface.
doi:10.1371/journal.pone.0032074.g010
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membranes, regardless of taxonomic affiliation, use TAFT

locomotion and there may be some affiliation with TAFT in the

evolutionary origin of flight in mammals.

Materials and Methods

Ethics statement
All animal handling protocols were approved by the University

of Northern Colorado Institution Animal Care and Use

Committee (IACUC protocol number 0505) and field work was

carried out under Colorado Division of Wildlife Permit #
11TR897 and a Boulder County Parks and Open Space research

permit. All procedures for the handling of bats informed by these

permits were followed.

Animal captures
We used a mist net to capture free-flying bats at a water source

located in Boulder County, Colorado. A single mist net was

erected in a known flight path. Once individuals were captured

and removed, they were placed in cloth sacks to await processing.

Each individual was identified to species, sex, reproductive

condition and relative age. In addition, for the little brown myotis

(Myotis lucifugus), we wrapped each individual in a nylon mesh cloth

and weighed them to the nearest 0.01 g using a pan-scale (Acculab

PP-201, 60.02; Colombia, MD, USA).

High-speed videography
We filmed individuals launching from the tailgate of a pickup

truck on which a wooden plank was laid for traction. For

positional information, we made a back-drop that consisted of

1 m61 m paper grid divided into 9610 cm squares. We saturated

the filming area using six high-intensity halogen lamps providing

1,800 watts of light. As bats were released, we filmed them from a

lateral position to the anticipated flight path using a single high-

speed video camera [22,23,24] Casio Exilim EX-F1 Digital

Camera, (Casio, Inc., Montrose, CA, USA) set at 300 frames

per second from a distance of 1 m or 2 m. In some cases,

individuals were filmed flying head-on into the camera or from

behind, flying away from the camera. These methods were

replicated using a wooden plank placed on a table for filming

individuals from a captive colony of pallid bats, Antrozous pallidus,

held at the University of Wyoming, Laramie, USA. The pallid bats

were housed in a free-flight room approximately 6610 m in size

and thus were able to maintain their flight skills and abilities.

Bats were not marked because the film resolution was more

than adequate to digitize motions of the wing-tip, wrist, and tail-tip

throughout the takeoff events without markers and thus minimized

potential impacts to wild-caught and released individuals. Markers

were placed on landmarks during digitizing analyses through each

video frame using analysis software provided by the Tyson

Hedrick Research Laboratory at the University of North Carolina,

Chapel Hill, USA [28]. Motion angles for the tail-membrane in

relation to body plane were calculated using MaxTrax software

provided by Innovision Systems (Columbiaville, MI, USA). Body

axis was defined and marked as a line between two points, one

placed at the nose-tip (as the head is held in-line with the body axis

during takeoff flight) and the other placed at the point where tail-

membrane connects to the body midline.

Parallax error due to roll and yaw motions of individuals during

takeoffs can produce digitizing inaccuracies difficult to correct

from a single camera angle. To correct for this, we analyzed film

from individuals that showed takeoffs nearing 90 degrees to the

camera and had minimal body-axis rotations. If some roll and yaw

was evident we made slight adjustment to point placement visually

during digitizing by placing markers in positions that allowed for

corrections and expected consistency of smooth curvilinear

motions of the points through time. We are confident that any

parallax errors within our data had minimal, if any, effect on the

outcome of our results. We used the body-axis plane of each

individual as a reference point to measure sweep angles of the tail-

membrane during fanning motions. To produce oscillation graphs

for wrist and tail-tip motions in relation to each other as

individuals ascended and accelerated from their takeoff points,

the motion of the bat’s body plane was taken into account, and

positional information was adjusted if the body-axis moved when

either the wing or tail-membrane were held stationary.

Supporting Information

Video S1 Head-on view of a fringed myotis (Myotis
thysanodes) using the tail-membrane during takeoff and
slow flight. Note collapsing of the tail-membrane on the

upstroke and expansion during the downstroke.

(MPEG)

Video S2 Rear-view of a fringed myotis (Myotis thysa-
nodes) using the tail-membrane during takeoff and slow
flight with extensive use of tail-membrane flapping
during seven wing-beat cycles.

(MPEG)

Video S3 Rear-view of a Townsend’s big-eared bat
(Corynorhinus townsendii) during takeoff. Note the

fanning motion of the tail membrane during acceleration and

steep climbing.

(MPEG)

Video S4 Lateral view of a little brown myotis (M.
lucifugus) using the tail-membrane during take-off and
slow flight. Although this video was not analyzable due to

parallax concerns, it illustrates a view of tail-wing use from various

angles.

(MPEG)

Video S5 Lateral view of a long-eared myotis (Myotis
evotis) using the tail-membrane during takeoff and slow
flight showing a nearly 906 tail extension during the first
upstroke cycle of the hind-wing.

(MPEG)
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