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Abstract

Background: Mathematical models exist that quantify the effect of temperature on poikilotherm growth rate. One family of
such models assumes a single rate-limiting ‘master reaction’ using terms describing the temperature-dependent
denaturation of the reaction’s enzyme. We consider whether such a model can describe growth in each domain of life.

Methodology/Principal Findings: A new model based on this assumption and using a hierarchical Bayesian approach fits
simultaneously 95 data sets for temperature-related growth rates of diverse microorganisms from all three domains of life,
Bacteria, Archaea and Eukarya. Remarkably, the model produces credible estimates of fundamental thermodynamic
parameters describing protein thermal stability predicted over 20 years ago.

Conclusions/Significance: The analysis lends support to the concept of universal thermodynamic limits to microbial growth
rate dictated by protein thermal stability that in turn govern biological rates. This suggests that the thermal stability of
proteins is a unifying property in the evolution and adaptation of life on earth. The fundamental nature of this conclusion
has importance for many fields of study including microbiology, protein chemistry, thermal biology, and ecological theory
including, for example, the influence of the vast microbial biomass and activity in the biosphere that is poorly described in
current climate models.
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Introduction

Temperature governs the rate of chemical reactions including

those controlling the development and decline of life on earth from

individual cells to complex populations. This has been so across

geological time and will continue to be so as the world faces

unprecedented uncertainty reflected in popular, political and

scientific debate about the impact of temperature on the

biosphere. Models to describe the effect of temperature on

biological systems reliably are becoming increasingly important.

One such family of models [1–2] assumes a single rate-limiting,

enzyme-catalyzed ‘master reaction’ using an Arrhenius form

modified by terms that describe the temperature-dependent

denaturation of that enzyme. Earlier [3] we presented such a

model that specifically describes the Gibbs free-energy change

upon folding/unfolding of the putative master enzyme as a

function of temperature and individually fitted it to 35 bacterial

strains, but the approach required three parameters to be held

fixed (T�H , T�S , and DS�). Here we begin with the same assumption

but use a Bayesian hierarchical modeling approach to analyze

simultaneously 95 data sets from all three domains of life, Bacteria,

Archaea and Eukarya [4], and, with only minimal constraints,

estimate all thermodynamic parameters, some of which were

previously only accessible by experiment. Importantly, the model

implies that the temperature-related growth rate of all poikilo-

therm life behaves as if controlled by a single-enzyme system and

the growth range is constrained by the denaturation of that

enzyme.

Methods

Data
The data comprise standardized growth rates (or rates of

metabolism in some cases) of 95 strains from 19 Bacteria, 19

Archaea, and 13 unicellular Eukarya species (Table S1). Here we

use the yeasts to represent the domain Eukarya. The data were

obtained by an ad hoc process, but are sufficiently diverse in origin

and species to enable us to test the thermodynamic model’s

validity for physiologically different organisms and included

observations at temperatures below and above the maximum

growth rate. They include psychrophiles (e.g. Gelidibacter sp.),

psychrotrophs (e.g. Shewanella gelidimarina), mesophiles (e.g. Escherichia

coli), thermophiles (e.g. Streptococcus thermophilus), acidophiles (e.g.

Ferroplasma acidiphilum), halophiles (e.g. Haloarcula vallismortis) and

haloalkaliphiles (e.g. Natronococcus occultus).

Model Structure
Our model (equations 1–2) assumes that the growth rate is

governed by a single enzymic rate-controlling reaction system that

is limiting under all conditions. The quantity F is the growth rate

given the temperature and the values of the parameters. The

numerator is essentially an Arrhenius model that describes the rate
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of the putative enzyme-catalyzed rate-controlling reaction (RCR)

as a function of temperature while the denominator (equation 2)

models the change in expected rate due to the effects of

temperature on the conformation and activity of the putative

enzyme catalyzing that reaction and is essentially the reciprocal of

the probability, as a function of temperature, that the enzyme is in

a catalytically active conformation.

F~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T exp c{DH

{
A

.
RT

� �
D

vuut
ð1Þ

where:

D~1z

exp {n
DH�{TDS�zDCp T{T�H

� �
{T log T

�
T�S

� �� 	
RT


 �� 
ð2Þ

In the model R is the gas constant (8.314 J/K mol); c is a

scaling constant; DH
{
A the enthalpy of activation (J/mol) of the

rate limiting reaction; T is the temperature (K); DCp is the heat

capacity change (J/K mol-amino acid-residue) upon denaturation

of the RCR; n is the number of amino acid residues in the RCR;

DH� (J/mol-amino acid-residue) is the enthalpy change at T�H ,

the convergence temperature for enthalpy (K) of protein

unfolding; and DS� (J/K mol-amino-acid-residue) is the entropy

change at T�S , the convergence temperature for entropy (K) for

protein unfolding. We derive two further quantities. One is the

average number of non-polar hydrogen atoms per amino acid

residue [5]: Nch~ DCpz46
� ��

30 1{1:54n{0:268
� 	� �

. The DCp is

associated with the energy required to reorganise the water

molecules surrounding the protein [6] and increases with the

non-polar accessible area of the molecule [7], as measured by

Nch. The other is the temperature at which D in equation 2

reaches a minimum and at which denaturation is minimized [3]:

Tmes~T�H{DH�
�
DCpwhich provides an index of temperature

adaptation of the organism. While the temperature of maximum

growth could be used as an index, Tmes is a more natural choice

since it is the temperature at which the enzymic rate-controlling

reaction system has evolved to be maximally active. At higher

temperatures the growth rate may increase, but enzymic activity

declines.

We allow four parameters to have values specific to each strain

j~ 1,2, . . . 95ð Þ: cj , DH
{
Aj, nj , and DCpj

. We assume the strain

parameters to be Gaussian distributed with means specific to their

domains: Bacteria, Archaea, or Eukarya. The remaining param-

eters (DH�, DS�, T�H , and T�S ) have values common to all strains

and are thought not to depend on the individual biochemistry of

each strain, but describe protein thermal stability limits [8–10]. In

earlier analyses (data not shown) when data sets were grouped

according to domain, estimates of the four thermodynamic

constants related to protein stability were not significantly different

between data sets and subsequently these were assumed to be

universal, having the same values across all domains. This

assumption is not disproven by the results and is supported by

their narrow credible intervals. The common and domain

parameters are each assigned a uniform prior with limits informed

by the biochemistry literature. We assume that the square root of

the observed growth rate has a Gaussian distribution with a mean

given by the modeled value, F , and with an unknown precision

(reciprocal variance).

Implementation
We use a Bayesian approach to allow for uncertainty in

measurement and parameters to be incorporated in a natural way

through the appropriate prior specification. We assign truncated

normal priors to the strain parameters in which the means are

specific to the domain of each, hj*N hd jð Þ, exp thð Þ
� �

, in which

d jð Þ is the domain (Bacteria, Archaea, Eukarya) for strain j. The

exp thð Þ is the strain precision and models the variation between

the strain parameters about the domain parameters, hd jð Þ. The

domain means and the th are assigned uniform priors with limits

informed by the biochemistry literature with the exception of c
which is assigned a vague prior. The common parameters are each

assigned a uniform prior with limits informed by the biochemistry

literature. Finally, the observational precision is assigned a gamma

distribution, t*C 0:001,0:001ð Þ. Prior specifications are docu-

mented in Table S2. Inference is obtained in the form of posterior

means and variances using Markov Chain Monte Carlo (MCMC)

simulation [11]. We choose to update the parameters of each

strain as a block using Haario updates [12]. We also use Haario

updates [12] for each set of domain parameters and the strain

parameter precisions. We use separate Metropolis-Hastings [13]

updates for each of the common parameters but to ensure rapid

mixing we also use a Metropolis-coupled MCMC approach [14]

based on 60 chains. During each iteration we randomly select a

pair of chains i,jð Þ and swap their common parameters as a block

with probability min 1,pi h jð Þ
� �

pj h ið Þ
� �.

pi h ið Þ
� �

pj h jð Þ
� �n o

,

keeping other parameters unchanged. The model is run for

600,000 iterations and the last 50% of iterations are retained for

further analysis. We summarize parameters using posterior block

means, standard deviations, and 95% highest posterior density

intervals (HPDI). A 95% HPDI is the shortest interval that

contains a parameter with 95% probability. We determine the

most likely ordering of the parameters in terms of their posterior

probabilities by calculating the mean number of MCMC iterations

for which each alternative arises.

Results

We obtain good fits for the growth curves of all strains as shown

in Figure 1, and in more detail in Figures S1, S2, S3, S4, S5, S6.

We summarize the strain parameters in Table S1 and Figure 2,

common parameters in Table 1, and domain parameters in

Table 2. Some strains appear outlying since they are below the

2.5th or above the 97.5th quantiles; e.g. ignoring domain, strains 46,

48, 67, 88, 90, 95 for DH
{
A, strains 33–35, 48, 49, 68 for DCp,

strains 2–4, 49, 61, 68 for n, and strains 33–35, 48, 49, 68 for Nch.

We show the fitted curves for all strains together in Figure 3 in

which most of the strains with outlying parameters also have

maxima that are either much lower than other strains (e.g. strains

20, 33, 35), or much higher (e.g. strains 48, 49, 68). This is also

shown by the values of Tmes for the strains 33, 35, 20, which are

lower than other strains (Figure 2). Some outliers may be

explained when it is realized that those strains are at the extremes

of thermal adaptation, such as strain 46, a thermophile, strain 48,

a thermoacidophile, or strain 61, a psychrophile. In Figure 2, the

strains 3, 19, 20, 33–35, appear to be outliers for Tmes; this is likely

due to a lack of data in the lower temperature region, which also

resulted in their wider credible intervals. Other variations in the

data presented in Figure 2 are explicable after careful examination

of Figures 1, 3, 4, and S1, S2, S3, S4, S5, S6.

On the right side axis of Figure 2 are shown the estimated

posterior distributions of the parameters for each domain. The

parameters DH
{
A, DCp, Tmes and Nch are largest in Archaea and

least in Eukarya. By calculating the mean number of MCMC

Universality of Thermodynamic Constants
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iterations in which each alternative ordering arises we obtain the

most probable ordering for DH
{
A: P(A.B.E) = 1.00; for DCp:

P(A.B.E) = 0.67; for Nch: P(A.B.E) = 0.99; for Tmes: P

(A.B.E) = 0.67. This is partly a result of the selection of strains

used in this study because, apart from DH
{
A , those parameters

reflect the thermal stability of the RCR. The Eukarya strains

included in this analysis are predominantly mesophilic, the

Bacteria include more psychrophilic or psychrotrophic strains

than the Archaea strains used, and the latter datasets include more

thermophilic strains than the Bacteria, which included only two

mildly thermophilic species, S. thermophilus and Acidimicrobium

ferrooxidans, the former represented by multiple datasets (37–46).

The remaining parameter, n, is largest in Eukarya, intermediate

in Bacteria, and least in Archaea: P(E.B.A) = 0.98. Complete

genome sequences give mean protein lengths of 449 for Eukarya,

330 for Bacteria, and 270 for Archaea [15]. With the most general

assumptions our model is able to obtain the same ordering

(Table 2).

For those species represented by at least three datasets we

calculated the percentage deviation for the strain parameters

(Table S3): n (37.5%), DH
{
A (23.6%), Nch (5.7%), DCp (1.9%), Tmes

(0.5%). While the large variability for some parameters may be

expected, the very low value for others such as DCp and Tmes are

of considerable interest. This can also be seen in Figure 2 where

we use vertical shading to delimit species. The DCp and Tmes

appear almost species-specific, as is, to a lesser extent, Nch. The

parameter Tmes is mathematically related to DCp and so shares its

low variability.

The 95% HPDI for the domain level DCp for Bacteria (61.9,

63.7) and Eukarya (61.7, 63.7) are contained within the range

expected for mesophiles, 36.6–76.2 [16], and the posterior domain

95% HPDI for Archaea (67.6,70.3) is contained within the range

for thermophiles: 56.7–118 [16]. The Archaea result is expected

since the strains used in this study are mostly thermophiles.

Estimates of DH
{
A from microorganism growth [1,17–23] have a

very wide range, 34,601–110,000, which contains our 95% HPDI

for Bacteria (64,887, 70,312) and Archaea (74,777, 86,453), but

that for Eukarya is lower (23,395, 32,857). The low values for

Eukarya stand in contrast to the domain ordering of Tmes, as the

yeasts used here are predominantly mesophilic and, in the absence

of a domain effect, would be expected to have activation energies

intermediate between the bacterial and archaeal strains used here.

The relatively low activation energies for Eukarya appear to

suggest a genuine effect. They are very comparable to other

estimates of activation energy for Saccharomyces bayanus var. uvarum

[24] and conceivably may relate specifically to yeast species used in

wine production, rather than to the Eukarya as a whole.

The quantity P~1=D, the probability that the enzyme is in its

native (catalytically active) state [3], is shown in Figure 4 for each

strain. Some strains have narrower curves indicating a more

limited range of temperatures within which the protein is in the

native state, but others are ‘‘flat-topped’’ indicating a more

extensive range. As can be seen from the extrapolated curves the

optimal stability region is fully observed for most strains. The squat

curves exhibited by the strains that do not reach maximum

probability suggest that those strains were not grown under

optimal conditions.

As shown in Table 1, the 95% HPDI for T�H and T�S do not

overlap, emphasizing that their values are not identical. Equiva-

lently, the 95% HPDI for their difference, (216, 213), does not

include zero. In fact, they are quite close to the values suggested by

others [8–10], 373 K and 385 K, respectively, and which are

contained within their 95% HPDI.

Discussion

Whereas previous work [3] individually analyzed 35 Bacteria

strains and held 3 parameters fixed (T�H , T�S , and DS�) we were,

with only minimal constraints, able to analyze all 95 Archaea,

Bacteria, and Eukarya strains to provide estimates of all strain,

domain and common parameters simultaneously, and obtain

reasonable estimates of thermodynamic parameters previously

estimated decades ago by experiment [9–10]. The model

successfully described the growth of unicellular organisms in all

domains of life. We were able to do this by utilizing the MCMC

methods to greatly simplify the computation involved with a

Bayesian framework, and a hierarchical model that permits those

parameters that are less well informed to ‘borrow strength’ from

elsewhere in the model and so improve estimation.

While it is possible that the reaction system is more complex and

only appears equivalent to a single rate-controlling system, single

enzymes have been shown to be growth rate-controlling [25–26].

Figure 1. Observed and predicted growth rates by strain. Observed square root growth rate data are shown as circles and are standardized by
dividing by the maximum for each strain. Fitted curves are shown as lines. Strain numbering is given in Table S1. Bacterial strains are shown as green
circles, archaeal strains as blue squares, and eukaryote strains as red diamonds.
doi:10.1371/journal.pone.0032003.g001
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The model results lend support to the ‘master reaction’ model in

which an enzyme-catalyzed reaction limits growth rate at all

temperatures. The model indicates that, all other things being

equal, thermodynamic properties of protein hydration govern

biological rates and these are consistent in all forms of unicellular

life. In turn this suggests that the thermal stability of proteins is a

fundamental property in the evolution and adaptation of life on

earth and has importance for many fields of study including

microbiology, protein chemistry, thermal biology, and ecological

theory, including, for example, the influence of the vast microbial

biomass and activity in the biosphere that is poorly described in

current climate models [27].

Figure 2. Posterior statistics for selected parameters. Posterior means and 95% HPDI are shown for DH
{
A , DCp, n, Nch, and Tmes. Bacterial

strains are shown as circles, archaeal strains as squares, and eukaryote strains as diamonds. Posterior domain distributions are shown on the right
margin. For both symbols and marginal distributions domains are colored green for Bacteria, blue for Archaea, and red for Eukarya. The strains are
arranged so that those belonging to the same species are grouped contiguously. We show this by vertical gray and white shading that indicate when
the strain species change; for example, strains 6—18 are all E. coli.
doi:10.1371/journal.pone.0032003.g002

Table 1. Posterior mean common parameter estimates.

Parameter Mean (95% HPDI)

Enthalpy change (J/mol-amino acid-residue), DH� 4970(4705, 5218)

Entropy change (J/K mol-amino-acid-residue), DS� 17.2 (16.3, 18.0)

Convergence temperature for enthalpy (K), T�H 375.6 (371.4, 379.5)

Convergence temperature for entropy (K), T�S 390.2 (384.7, 395.2)

doi:10.1371/journal.pone.0032003.t001

Universality of Thermodynamic Constants
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Since this is only the debut of this model we anticipate further

developments and extensions. Our results appear consistent with

the assumption that growth is controlled by a single rate-limiting,

enzyme-catalyzed ‘master reaction’ using an Arrhenius form

modified by terms that describe the temperature-dependent

denaturation of that enzyme. While there may be other ex-

planations for our results, candidates for a single-enzyme rate-

controlling mechanism common to all life can be conjectured.

There may be processes that occur in parallel leading up to cell

division, but it is also plausible that there is a single process

dictated by a single enzyme (or other bio-catalyst) that could still

be rate-limiting. There are various candidate biosynthetic

processes common to all cells. Alternatively, anabolism or

biosynthesis could be limited by the rate of energy generation

e.g, via respiration. Regardless of whether there is a single rate-

limiting, enzyme-catalyzed ‘master reaction’, or rate limiting

process/pathway, there remains the possibility that some model

parameters are more consequential at some temperatures than

others. Whether the activation energy dominates the suboptimal

range while denaturation is more important in the super optimal

range is a topic for further investigation.

While we chose to adopt a model structure that recognises the

three domains of life [4], the need for differentiation into three

domain parameter sets remains to be explicitly considered. In the

current study this was complicated by the availability of data. In

particular, our data sets were not balanced in that they had

Figure 3. Fitted curves for growth rate by strain. Shown are the mean predicted growth curves plotted on a vertical log scale against the
reciprocal of temperature. The colored portions indicate the observed temperature ranges for each strain, and the dashed portions are extrapolations
outside these ranges. The curves are labeled with strain codes and domain. The domains are colored green for Bacteria, blue for Archaea, red for
Eukarya.
doi:10.1371/journal.pone.0032003.g003

Table 2. Posterior mean parameter domain estimates with 95% HPDI.

Bacteria Archaea Eukarya

Enthalpy of activation (J/mol), DH
{
A

67549 (64887, 70312) 80799 (74777, 86453) 28292 (23395, 32857)

Heat capacity change (J/K mol-amino acid-residue), DCp 62.9 (61.9, 63.7) 68.9 (67.6, 70.3) 62.6 (61.7, 63.7)

Number of amino acid residues, n 259.2 (232.9, 282.6) 211.8 (179.6, 252.8) 316.4 (290.8, 339.5)

Average number of non-polar hydrogen atoms per amino acid residue, Nch 5.56 (5.49, 5.64) 6.06 (5.92, 6.25) 5.40 (5.32, 5.47)

doi:10.1371/journal.pone.0032003.t002
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disproportionate representation of thermal adaptation groups

(mesophiles, thermophiles, and so on). Further work is needed to

examine whether an alternative, and perhaps simpler, domain

parameter structure may be as effective. In addition, there is a

need to consider if there are systematic differences of thermody-

namic parameters between thermal adaptation groups, either

within or between domains.

The results of our current model indicate that the activation

energy of the putative ‘master reaction’ varies among strains and

probably among species. This is in contradiction to the ‘Metabolic

Theory of Ecology’ (MTE) [28–29] which describes metabolism in

terms of an Arrhenius temperature dependence and assumes the

same activation energy for all organisms. Other recent work also

supports the idea that activation energy is not invariant [30–31] or

interprets the variation of activation energy as being the result of

protein denaturation [32], as in this study.

We only considered the temperature dependent growth of

unicellular poikilothermic organisms, but it may be possible to

apply the model directly to simple multicellular organisms or the

growth of anatomical structures [33]. For larger organisms an

allometric power function of body mass could be used, analogous

to that also assumed in the MTE [28–29,34], whilst also remaining

cognizant that the exponent in the function may not be the same

for all forms of life [35]. While the current model well described

temperature-dependent growth across the entire biokinetic range,

practical application in environmental science is likely to require

further extension to allow for additional factors such as nutrient

and water availability and other environmental stressors. The

extension to multicellularity and other environmental variables

would broaden the model to a much wider ecological context.

These would appear to be necessary steps before examining

applications, e.g. in climate change, oceanography and soil carbon

studies.

Many of these areas will have significant impact on aspirations

of an improved human condition, especially for currently

disadvantaged populations, balanced with the goal of maintaining

biological diversity and activity in the long term. It has not escaped

our attention that our work immediately suggests the possibility of

temperature adaptation models applicable to wide ranging forms

of life and life systems.

Supporting Information

Figure S1 Detailed fits for strains 1–16. Shown are the

observed growth rate data using symbols and fitted curves for

strains 1–16. Observed data are shown as green circles. All are

strains of Bacteria. The fitted curves are calculated using the mean

posterior parameter estimates and extend beyond the observed

temperature range by 62.5u.
(TIF)

Figure 4. The probability of an enzyme being in its native state. Shown is the mean curve for each strain. The colored portions indicate the
observed temperature ranges for each strain, and the dashed portions are extrapolations outside these ranges in order to show their shapes. The
curves are labeled with strain codes and domain. The domains are colored green for Bacteria, blue for Archaea, red for Eukarya.
doi:10.1371/journal.pone.0032003.g004
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Figure S2 Detailed fits for strains 17–32. Shown are the

observed growth rate data using symbols and fitted curves for

strain 17–32. Observed data are shown as green circles. All are

strains of Bacteria. The fitted curves are calculated using the mean

posterior parameter estimates and extend beyond the observed

temperature range by 62.5u.
(TIF)

Figure S3 Detailed fits for strains 33–48. Shown are the

observed growth rate data using symbols and fitted curves for

strain 33–48. Observed data are shown as green circles for strains

of Bacteria and blue squares for strains of Archaea. The fitted

curves are calculated using the mean posterior parameter

estimates and extend beyond the observed temperature range by

62.5u.
(TIF)

Figure S4 Detailed fits for strains 49–64. Shown are the

observed growth rate data using symbols and fitted curves for

strain 49–64. Observed data are shown as blue squares for strains

of Archaea. The fitted curves are calculated using the mean

posterior parameter estimates and extend beyond the observed

temperature range by 62.5u.
(TIF)

Figure S5 Detailed fits for strains 65–80. Shown are the

observed growth rate data using symbols and fitted curves for

strain 65–80. Observed data are shown as blue squares for strains

of Archaea and red diamonds for strains of Eukarya. The fitted

curves are calculated using the mean posterior parameter

estimates and extend beyond the observed temperature range by

62.5u.
(TIF)

Figure S6 Detailed fits for strains 81–95. Shown are the

observed growth rate data using symbols and fitted curves for

strain 81–95. Observed data are shown as red diamonds. All are

strains of Eukarya. The fitted curves are calculated using the mean

posterior parameter estimates and extend beyond the observed

temperature range by 62.5u.
(TIF)

Table S1 Estimates for the strain parameters. Shown are

the posterior means and subscripted standard deviations for each

strain.

(DOC)

Table S2 Priors for strain and domain parameters.

(DOC)

Table S3 Domain parameter percent deviation by
species. Shown are the maximum and minimum of the strain

posterior means for each species, their difference, mid point, and

percent deviation.

(DOC)
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F.N. Arroyo-López, J.M. Guillamón, G. Salazar, A. Querol and E. Barrio

for the use of their yeast data. We thank Erwin Galinski for valuable

discussions, and Prof. Stanley Brul and Prof. Holger Meinke for their

feedback.

Author Contributions

Analyzed the data: RC. Designed the Bayesian model: RC. Wrote the first

and final drafts: RC. Contributed thermodynamic knowledge: JO TR DR.

Developed the previous thermodynamic model: JO TR DR. Proposed a

Bayesian approach: JO. Contributed tables: DR. Critical input, interpre-

tation and literature: TM. Provided priors: TR.

References

1. Johnson FH, Lewin I (1946) The growth rate of E. coli in relation to temperature,

quinine and coenzyme. J Cell Physiol 28: 47–75.

2. Murphy KP, Privalov PL, Gill SJ (1990) Common features of protein unfolding

and dissolution of hydrophobic compounds. Science 247: 557–561.

3. Ratkowsky DA, Olley J, Ross T (2005) Unifying temperature effects on the

growth rate of bacteria and the stability of globular proteins. J Theor Biol 233:

351–362.

4. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of

organisms: proposal for the domains Archaea, Bacteria, and Eucarya. P Natl

Acad Sci USA 87: 4576–4579.

5. Graziano G, Catanzano F, Barone G (1998) Prediction of the heat capacity change

on thermal denaturation of globular proteins. Thermochim Acta 321: 23–31.

6. Graziano G (2008) Is there a relationship between protein thermal stability

and the denaturation heat capacity change? J Therm Anal Calorim 93:

429–438.

7. Graziano G, Barone G (1996) Group additivity analysis of the heat capacity

changes associated with the dissolution into water of different organic

compounds. J Am Chem Soc 118: 1831–1835.

8. Makhatadze GI, Privalov PL (1993) Contribution of hydration to protein-folding

thermodynamics: I. The enthalpy of hydration. J Mol Biol 232: 639–659.

9. Privalov PL, Gill SJ (1988) Stability of protein structure and hydrophobic

interaction. Adv Protein Chem 39: 191–234.

10. Privalov PL, Makhatadze GI (1993) Contribution of hydration to protein-folding

thermodynamics: II. The entropy and Gibbs energy of hydration. J Mol Biol

232: 660–679.

11. Brooks SP (1998) Markov chain Monte Carlo method and its application.

Statistician 47: 69–100.

12. Haario H, Saksman E, Tamminen J (2001) An adaptive Metropolis algorithm.

Bernoulli 7: 223–242.

13. Chib S, Greenberg E (1995) Understanding the Metropolis-Hastings algorithm.

J Am Stat Assoc 49: 327–335.

14. Gilks WR, Roberts GO (1996) Strategies for improving MCMC. In: Gilks WR,

Richardson S, Spiegelhalter DJ, eds. Markov Chain Monte Carlo in Practice.

Boca Raton: Chapman & Hall/CRC. pp 89–114.

15. Zhang J (2000) Protein-length distributions for the three domains of life. Trends

Genet 16: 107–109.

16. McCrary BS, Edmondson SP, Shriver JW (1996) Hyperthermophile protein

folding thermodynamics: differential scanning calorimetry and chemical

denaturation of Sac7d. J Mol Biol 264: 784–805.

17. Billing E (1974) The effect of temperature on the growth of the fireblight

pathogen, Erwinia amylovora. J Appl Microbiol 37: 643–648.

18. Coultate TP, Sundaram TK (1975) Energetics of Bacillus stearothermophilus

growth: molar growth yield and temperature effects on growth efficiency.

J Bacteriol 121: 55–64.

19. Hanu FJ, Morita RY (1962) Significance of temperature characteristic of growth.

J Bacteriol 95: 736–737.

20. Mennett RH, Nakayama TOM (1971) Influence of temperature on substrate

and energy conversion in Pseudomonas fluorescens. Appl Environ Microb 22:

772–776.

21. Ng H, Ingraham JL, Marr AG (1962) Damage and derepression in Escherichia coli

resulting from growth at low temperatures. J Bacteriol 84: 331–339.

22. Price PB, Sowers T (2004) Temperature dependence of metabolic rates for

microbial growth, maintenance, and survival. P Natl Acad Sci USA 101:

4631–4636.

23. Shaw MK (1967) Effect of abrupt temperature shift on the growth of mesophilic

and psychrophilic yeasts. J Bacteriol 93: 1332–1336.

24. Serra A, Strehaiano P, Taillandier P (2005) Influence of temperature and pH on

Saccharomyces bayanus var. uvarum growth; impact of a wine yeast interspecific

hybridization on these parameters. Int J Food Microbiol 104: 257–265.

25. Ron EZ, Alajem S, Biran D, Grossman N (1990) Adaptation of Escherichia coli to

elevated temperatures: the metA gene product is a heat shock protein. Anton

Leeuw Int G 58: 169–174.

26. Gur E, Biran D, Gazit E, Ron EZ (2002) In vivo aggregation of a single enzyme

limits growth of Escherichia coli at elevated temperatures. Mol Microbiol 46:

1391–1397.

27. Anonymous Carbon Cycling and Biosequestration: Report from the March

2008 Workshop, DOE/SC-108 (http://genomicscience.energy.gov/carboncycle/

report/). U.S. Department of Energy Office of Science. Accessed 2011 Jul 8.

Universality of Thermodynamic Constants

PLoS ONE | www.plosone.org 7 February 2012 | Volume 7 | Issue 2 | e32003



28. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size

and temperature on metabolic rate. Science 293: 2248–2251.
29. Gillooly JF, Charnov EL, West GB, Savage VM, Brown JH (2002) Effects of size

and temperature on development time. Nature 417: 70–73.

30. Clarke A, Fraser KPP (2004) Whey does metabolism scale with temperature?
Funct Ecol 18: 243–251.

31. Knies JL, Kingsolver JG (2010) Erroneous Arrhenius: Modified Arrhenius model
best explains the temperature dependence of ectotherm fitness. Am Nat 176:

227–233.

32. Dell AI, Pawar S, Savage VM (2011) Systematic variation in the temperature
dependence of physiological and ecological traits. P Natl Acad Sci USA 108:

10591–10596.
33. McMeekin TA, Olley JN, Ross T, Ratkowsky DA Predictive Microbiology:

Theory and Application: Research Studies Press Ltd.
34. Savage VM, Gillooly JF, Brown JH, West GB, Charnov EL (2004) Effects of

body size and temperature on population growth. Am Nat 163: 429–441.

35. Isaac NJB, Carbone C (2010) Why are metabolic scaling exponents so
controversial? Quantifying variance and testing hypotheses. Ecol Lett 13:

728–735.
36. Ingraham JL (1958) Growth of psychrophilic bacteria. J Bacteriol 76: 75–80.

37. Raison JK (1973) The Influence of temperature-induced phase changes on the

kinetics of respiratory and other membrane-associated enzyme systems.
J Bioenerg Biomembr 4: 285–309.

38. Raison JK (1973) Temperature-induced phase changes in membrane lipids and

their influence in metabolic regulation. Rate Control of Biological Processes,
No 27: Symposium of the Society for Experimental Biology: Cambridge

University Press. pp 485–512.
39. Ragone R (2004) Phenomenological similarities between protein denaturation

and small-molecule dissolution: Insights into the mechanism driving the thermal

resistance of globular proteins. Proteins 54: 323–332.
40. Franks F, ed. Description and Classification of Proteins. CliftonNew Jersey: The

Humana Press Inc. xix+561 p.
41. Honda S, Yamasaki K, Sawada Y, Morii H (2004) 10 Residue folded peptide

designed by segment statistics. Structure 12: 1507–1518.
42. Kimball J (2006) Proteins. Available: http://users.rcn.com/jkimball.ma.ultranet/

BiologyPages/P/Proteins.html. Accessed 2010 April 6.

43. Liu L, Yang C, Guo Q-X (2000) A study on the enthalpy–entropy compensation
in protein unfolding. Biophys Chem 84: 239–251.

44. Jiang X, Farid H, Pistor E, Farid RS (2000) A new approach to the design of
uniquely folded thermally stable proteins. Protein Sci 9: 403–416.

Universality of Thermodynamic Constants

PLoS ONE | www.plosone.org 8 February 2012 | Volume 7 | Issue 2 | e32003


