
Pairing Mechanism for the High-TC Superconductivity:
Symmetries and Thermodynamic Properties
Radosław Szczęśniak*
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Abstract

The pairing mechanism for the high-TC superconductors based on the electron-phonon (EPH) and electron-electron-
phonon (EEPH) interactions has been presented. On the fold mean-field level, it has been proven, that the obtained s-wave
model supplements the predictions based on the BCS van Hove scenario. In particular: (i) For strong EEPH coupling and
TvTC the energy gap (Dtot) is very weak temperature dependent; up to the critical temperature Dtot extends into the
anomalous normal state to the Nernst temperature. (ii) The model explains well the experimental dependence of the ratio
R1:2D

0ð Þ
tot=kBTC on doping for the reported superconductors in the terms of the few fundamental parameters. In the

presented paper, the properties of the d-wave superconducting state in the two-dimensional system have been also
studied. The obtained results, like for s-wave, have shown the energy gap amplitude crossover from the BCS to non-BCS
behavior, as the value of the EEPH potential increases. However, for TwTC the energy gap amplitude extends into the
anomalous normal state to the pseudogap temperature. Finally, it has been presented that the anisotropic model explains
the dependence of the ratio R1 on doping for the considered superconductors.
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Introduction

In the study, we present the microscopic theory of the high-TC

superconductivity [1], [2]. The organization of the paper is as

follows:

In Section II (subsection 1) we call for the pairing mechanism.

First of all, we discuss the main experimental and theoretical

results. Next, on the basis of the presented analysis, we give the

postulates, which determine the microscopic model for the high-

TC superconductors in the second quantization form.

In Section II (subsection 2), by using the unitary transformation,

we deduce from the initial Hamiltonian the simple mean-field

model. In the framework of the toy model (only the s-wave state), we

discuss the properties of the energy gap in the superconducting and

Nernst region; the numerical predictions are supplemented by the

analytical approach. Next, for selected high-TC superconductors,

we calculate the fundamental parameters of the model and compare

the obtained theoretical results with the experimental data.

In Section II (subsection 3) we study the theromodynamic

properties of the d-wave superconducting state in the two-

dimensional system. We test the anisotropic model for the

considered high-TC superconductors.

Finally, in Section III we summarize the results.

Results

The Pairing Mechanism
The real cuprates are three-dimensional. However, their

physical properties are strongly anisotropic. On the basis of very

small coherence length in the c direction (smaller than the

interplane distance) one can suppose that the CuO2 electrons play

the special role in the physics of the high-TC superconductors [3].

Unfortunately, the pairing mechanism for the planar problem

remains highly controversial and many different hypotheses are

suggested. In the literature two fundamental directions in search

for the pairing mechanism have been crystallized. The first

approach is based on the single-band Hubbard model, its

extensions or related models e.g. t{J model [4], [5], [6], [7],

[8], [9], [10], [11], [12]; the second approach emphasizes the

relevance of the electron-phonon interaction [13], [14], [15].

Why is the Hubbard model so much studied? First of all, some

analysis suggest that the one-band Hubbard model reproduces

well the spectra of the more complicated three-band Hamiltonian

for electrons in the copper oxide planes (the Emery model) [3],

[5], [6]. For example, by using the finite cluster method,

Hybertsen et al. have shown that the one-band Hubbard model

with the small next-nearest-neighbor integral t
0

should have the

following parameters: t~430 meV, t
0
~{70 meV and UH~5:4

eV [16]. Secondly, for the half-filled electron band and large on-

site Coulomb interaction, the Hubbard model reduces to the

Heisenbeg model, which describes well the spin dynamics of the

underdoped high-TC superconductors [3]. On the basis of the

quoted facts some authors suppose, that the strong electronic

correlations modeled by the Hubbard model can alone induce

the superconducting state in the cuprates. Unfortunately, the

studies carried out by several groups have shown that the

Hubbard model gives no obvious evidence for superconductivity

with the large critical temperature [17], [18], [19], [20]. On the
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other hand, there is the strong tendency for superconductivity in

the attractive Hubbard model for the same value of the on-site

Coulomb interaction. Finally, we noticed that probably also the

three-band Hubbard model and the t{J model do not

superconduct at temperatures characteristic for the cuprates

[3], [21].

The relevance of phonons to the pairing mechanism in the

high-TC superconductivity also constitutes a complicated prob-

lem. On the one hand there exist many experimental observa-

tions which have been taken as evidence for the electron-phonon

interaction in the cuprates. For example: the strong isotope effects

on TC in the underdoped superconductors [22], the phonon

renormalization in the Raman measurements [23], the phonon-

related features of I{V characteristics obtained by using the

tunnelling experiments [24], [25], [26] and the dependence of the

penetration depth on the substitution O16 by O18 [27], [28].

Especially important results come from the ARPES measure-

ments which give the evidence on the low-energy kink in the

quasiparticle spectrum around the phonon energy both for the

nodal and antinodal points [29], [30]; also the ARPES isotope

effect in Re Sð Þ has been observed [31]. On the other hand the

first principles calculations support the view that the conventional

electron-phonon coupling is small [32]. For example, Bohnen et

al. have predicted that the electron-phonon coupling constant for

YBa2Cu3O7{y is equal to 0.27; so the strong Hubbard

correlations should completely suppress the phonon-mediated

superconductivity [33].

After summarizing the mentioned experimental and theoretical

results, one can conclude that: (i) the cuprates belong to the

strongly correlated systems but probably these correlations in the

superconductivity domain are beyond the Hubbard or related

approaches, since in these models the pairing correlations are too

small, (ii) in the cuprates the conventional electron-phonon

interaction is small but according to the experimental data one

can suppose that the phonons play the important role in the

pairing mechanism.

In order to solve the problem of high temperature supercon-

ductivity we present and examine the following scenario:

N(i) In the superconductivity domain of the cuprates the

fundamental role is played by the electrons on the CuO2 planes.

N(ii) In the cuprates exists the conventional electron-phonon

interaction, which has not to be strong.

N(iii) In the cuprates exist strong electronic correlations, but the

electron-electron scattering in the superconductivity domain is

inseparably connected with the absorption or emission of

vibrational quanta.

In the simplest case the first and second postulate coincides with

the phonon-van-Hove-scenario for high-TC superconductors [34],

[35]. The third postulate states that the effective electronic

correlations in the superconductivity domain are connected with

the three-body process: the electron-electron-phonon interaction.

In Fig. 1 we show in detail the diagrammatic representation of this

interaction. We notice that the EEPH coupling has a significant

property which distinguish it from the Hubbard interaction; it does

not destroy the classical phonon-mediated pairing correlations.

Additionally, one should pay attention to the fact, that the first

postulate has also the essential significance for the third postulate.

Namely, for the two-dimensional case (the van Hove singularity at

the Fermi level), the EEPH coupling has significantly strong

influence on the physical properties of the system (see next

subsection).

Below, we consider the Hamiltonian that describes the

postulated coupling of the correlated electrons to phonons in the

second quantization form:

H:H 0ð ÞzH 1ð ÞzH 2ð Þ: ð1Þ

Figure 1. The graphical representation of the electron-elec-
tron-phonon coupling. The electron states are represented by the
straight lines, while the phonon state by the curly line. The vertex is
denoted by the black dot and its strength is given by g

2ð Þ
k , k

0 q,lð Þ. In
Fig. 1 (A) the electrons emit the phonon during the scattering; in Fig. 1
(B) the electrons absorb the phonon.
doi:10.1371/journal.pone.0031873.g001

Model of the High-TC Superconductivity
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The first term represents the non-interacting electrons and

phonons:

H 0ð Þ:
X

k s

ekc
{
k sck sz

X
q

vq b{q bq, ð2Þ

where ek:ek{m; ek and m denotes the electron band energy and

the chemical potential respectively. For the two-dimensional

square lattice and the nearest-neighbor hopping integral t, we

have: ek~{tc kð Þ, where c kð Þ:2 cos kxð Þz cos ky

� �� �
. The

symbol vq stands for the energy of phonons. The interaction

terms are given by:

H 1ð Þ:
X

kqs

g
1ð Þ

k qð Þc{k zqsck swq, ð3Þ

and

H 2ð Þ:
X
kk’ql s

g
2ð Þ

k,k’ q,lð Þc{k{ l sck sc
{
k’z l z q{sck’{swq, ð4Þ

where wq:b{{q zbq. The matrix elements g
1ð Þ

k qð Þ describe the

electron-phonon interaction [36], [37] and the symbol g
2ð Þ

k , k q,lð Þ
determines the strength of the electron-electron-phonon coupling.

Since the Hamiltonian is the hermitian operator, we have:

g
? 1ð Þ
k qð Þ~g

1ð Þ
kz q {qð Þ and g

? 2ð Þ
k , k’ q,lð Þ~g

2ð Þ
k’zlzq , k{l {q,lzqð Þ.

The Fold Mean-field Theory
From the mathematical point of view, the Hamiltonian (1)

belongs to the class of so-called dynamic Hubbard models. These

Hamiltonians describe modulation of the Hubbard on-site

repulsion by the boson degree of freedom and were studied in

detail by J.E. Hirch, F. Marsiglio and R. Teshima in the papers

[38], [39], [40].

In the simplest case (UH~0), the dynamic Hubbard Hamilto-

nian describes the Holstein-like electron-boson interaction, where

the coupling constant increases with the electron occupation. This

model, however interesting, is inappropriate in the description of

the high-TC superconductivity. In the more elaborate scheme, the

properties of the dynamic Hubbard model, can be studied by using

the generalized Lang-Firsov transformation: H
0
~eSHe{S , where

the generator S has the form:

S:
P

j g bj{b
{
j

� �
nj:znj;{nj:nj;
� �

and njs is the number

operator for the site j and the spin s. Next, the obtained effective

Hamiltonian should be analyzed in the framework of the

Eliashberg-like approximation [40], [41], [42], [43], [44], [45];

the central result is that the critical temperature increases with

retardation.

We notice that the form of the Hamiltonan (1) suggests using the

Eliashberg approach in order to analyse the physical properties of

the considered system [42], [43], [44], [45]. This method is

appropriate, because one can retain simultaneously the electron

and phonon degrees of freedom. The detailed calculations in the

framework of the Eliashberg approach the reader can to trace in:

[46], [47], [48], [49], [50], [51], [52], [53], [54], [55].

Additionally, in the framework of the Eliashberg formalism, the

formally exact expression for the self-energy matrix is easy to

determine. The analysis of the above issue is presented in

Appendix S1, where we have shown that: (i) in the case of the

absence of the lattice distortion, the first-order contribution to the

self-energy is equal to zero, (ii) the electron-phonon coupling is

directly increased by the electron-electron-phonon interaction, (iii)

the form of the second-order contributions to the matrix self-

energy is very complicated. Unfortunately, this fact hampers

considerably the detailed calculations on the Eliashberg level.

In the case of the presented paper, we have eliminated the

phonon operators only from the EEFH term. The obtained

Hamiltonian is next added to the BCS operator [56], [57]. As

discussed in the following subsubsections, presented approximate

description represents a generalization of the BCS van Hove

scenario [35].

The unitary transformation. In order to eliminate the

phonon degrees of freedom in the Hamiltonian (4) we use the

Fröhlich-type unitary transformation:

H ’:e{iS H 0ð ÞzH 2ð Þ
� �

eiS, ð5Þ

where the operator S denotes the generator:

S:
X

q

Sq: ð6Þ

In our case: Sq:cqbqzc{qb{q, where.

cq:
X
k k’l s

W k,k’,l,qð Þc{k{lsck sc
{
k’z lzq{sck’{s: ð7Þ

The expression (5) can be rewritten in the approximate form:

H ’^H 0ð Þz i½H 0ð Þ,S�{zH 2ð Þ
� �

zi
i

2
H 0ð Þ,S
h i

{
zH 2ð Þ

� 	
,S


 �
{

,

ð8Þ

where the square brackets ,½ �{ denote the commutator. To

eliminate the second term in Eq. (8) we assume that the generator

fulfills the relation: i½H 0ð Þ,S�{zH 2ð Þ~0, hence:

W k,k’,l,qð Þ~
ig

2ð Þ
k , k’ q,lð Þ

ek{ l {ekzek’z lz q {ek’{vq
: ð9Þ

Next, we can reduce the Hamiltonian H ’ to the following

expression:

Heff :v0phjH ’j0phw^
X
k s

ekc
{
k sck sz

X
k k’q l s

Uk , k’

q,lð Þc{k{l sck sc
{
k’z lz q{s

ck’{sc
{
{ k’{ l{q sc{k’sc

{
{kz l{sc{ k{s,

ð10Þ

where the phonon vacuum state is given by DOphw. The pairing

potential Uk , k’ q,lð Þ is of the form:

Uk , k’ q,lð Þ^ v0Dg 2ð ÞD2

ek{ek{l zek’{ek’z lzq

� �2
{v2

0

: ð11Þ

We assume additionally that: g
2ð Þ

k , k’ q,lð Þ^g 2ð Þ and vq^v0; the

symbol v0 denotes the characteristic phonon frequency. On the

Model of the High-TC Superconductivity
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basis of the expression (10) we conclude that the EEPH interaction

can be replaced by the effective four electron-electron (4EE)

scattering event; the diagrammatic representation of this interac-

tion is shown in Fig. 2. From the Eq. (11) it is clear that the

effective potential is attractive if: Dek{ek{ l zek’{ek’z lz q Dvv0.

In the subsection, we consider the simplest case, when the

attractive part of the 4EE potential can be written as:

U
vð Þ

k , k’ q,lð Þ?{
U

24N3
, ð12Þ

for DekDvv0. We have used the factor
1

24
, because the potential

energy term represents the interaction between every four of

particles counted once.

By using the fold mean-field (MF) approximation the Hamilto-

nian (10) takes the form (see also Appendix S2):

HMF
eff ~

X
k s

ek c
{
k sck s

{
U

12

Xv0

k s

DDsD2 Dsc
{
k{sc

{
{ k szD?sc{k sck{s

� �
:

ð13Þ

The symbol
Pv0

k denotes the sum over the states when the 4EE

potential is attractive;

Ds:
1

N

Xv0

k
vc{ k sck{sw

The toy model. The thermodynamic parameters of the high-

TC superconductors can have essentially different properties in

comparison with the low-TC materials. From this reason, the

analysis of the results obtained in the framework of the simplest

approach is important, because these predictions facilitate the

interpretation of the fundamental experimental data.

Taking into account the operator (13) we can write the total

Hamiltonian in the form:

HMF:
X
k s

ekc
{
k sck s

{ Vz
U

6
DDD2

� 	Xv0

k

Dc
{
k:c

{
{k;zD?c{ k;ck:

� �
,

ð14Þ

where we have omitted the chemical potential and D:D;. In Eq.

(14), the symbol V represents the BCS pairing potential obtained

from the Hamiltonian (3).

Now, we establish the energy scales in the presented model. The

nearest-neighbor hopping integral t is of the order of (200–400)

meV [58], [59], [60], [61]. We notice that in the numerical model

calculations we take t as an energy unit. From the ab initio

calculations arises the fact that V[ 0,2tð Þ [33]. In order to

determine qualitatively the possible values of U, we note, that the

simple BCS pairing potential is obtained from the expression:

v0Dg 1ð ÞD2

ek{ekzq

� �2
{v2

0

?{
V

2N
, ð15Þ

where the characteristic phonon frequency v0 is of the order of

Debye frequency (vD*0:3t); the electron-phonon coefficient g 1ð Þ

has nearly the same value [62]. Next, we assume that the largest

energy in the high-TC superconductors, of order (5–10) eV, is the

electron-electron-phonon potential; in the other words g 2ð Þ is

comparable with the Coulomb repulsion in the one-band

Hubbard model. Hence, g 2ð Þ=g 1ð Þ*102. Then, by using Eqs.

(11), (12) and (15) we can calculate the ratio U=V . The result

shows that U/V is proportional to 10 g 2ð Þ=g 1ð Þ� �2
. Due to this

reason U=V can be considerably larger than g 2ð Þ=g 1ð Þ.
From the mathematical point of view, the value of U is not as

much important as the value of the mean-field potential

(UMF:
U

6
DDD2). It is easy to see that, in contrast to the BCS

pairing potential, UMF is D-dependent (the fundamental feature of

the presented model). So, the potential UMF depends on the

temperature, V and U. If we set V and U the mean-field potential

reaches the maximum value for T~0 K: U
0ð Þ

MF: UMF½ �T~0~
U

6
DD 0ð ÞD2, where the symbol DD 0ð ÞD denotes the amplitude of the

anomalous thermal average for T~0 K. In the case of the

analyzed superconductors, we have U
0ð Þ

MF

h i
max

^3t (see also next

subsubsection).

By using the Hamiltonian (14) we calculate the anomalous

Green function:

vvck:Dc{ k;ww~{

Vz
U

6
DDD2

� 	
D

v2{E2
k

, ð16Þ

where Ek:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

kz Vz
U

6
DDD2

� 	2

DDD2
s

. The obtained propagator

is more complicated than the BCS Green function; peculiarly, we

draw the readers’ attention to the very intricate structure of the

energy gap. Additionally, we notice that all omitted terms in

anomalous Green function (in particular the terms linear with

reference to D in the pairing potential) are unimportant since they

are at most of
1

N
order (see Appendix S3). The fundamental

equation can be found in the form:

Figure 2. The four-body scattering event contributing to the
interaction part of the Hamiltonian (10). The oval connecting the
electron’s lines is an illustration of Uk , k’ q,lð Þ which denotes the
effective potential.
doi:10.1371/journal.pone.0031873.g002
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1~ Vz
U

6
DDD2

� 	
1

N

Xv0

k

1

2Ek

tanh
bEk

2
: ð17Þ

In order to calculate the thermodynamic properties we transform

the momentum summation over an energy integration in Eq. (17).

We notice that, in the case of three-dimensional system, where the

electron density of states near the Fermi energy is constant, the

mean-field 4EE interaction can be neglected because the value of

U
0ð Þ

MF is very small. The situation changes dramatically for the two-

dimensional system, where U
0ð Þ

MF can be even greater than V.

Then:

1~Vtot

ðv0

0

der eð Þ
tanh

b

2
E

� 	
E

, ð18Þ

where: E:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2zD2

tot

q
, Dtot:VtotDDD and Vtot:Vz

U

6
DDD2. In the

case of the square lattice the density of states is given by [63], [64],

[65], [66], [67], [68], [69], [70], [71], [72], [73]:

r eð Þ~b1 ln D
e

b2

D, ð19Þ

where b1~{0:04687t{1 and b2~21:17796t.

In Figs. 3 and 4 we show the numerical solutions of Eq. (18) for

increasing values of U
0ð Þ

MF . Analysis of the presented results allows

one to state that only for U
0ð Þ

MF ƒU
0ð Þ

C (where U
0ð Þ

C is some

characteristic value) the gap equation has one solution. Above U
0ð Þ

C

at TC open the two new branches of the energy gap.

We notice that in the framework of the obtained mean-field

model the 4EE interaction does not influence on the value of TC ;

so, the critical temperature can be calculated by using the

expression [63], [64]:

kBTC~ab2e
{ 1

l1 , ð20Þ

where

1

l1
: ln2 2að Þz ln2 v0

b2

� 	
{

2

Vb1
{2


 �1
2
, ð21Þ

and a:2ec=p^1:13 (c is the Euler constant). In this case the

isotope coefficient is small and can be calculated from:

a~
l1

2
ln

v0

b2

� 	
.

Returning to the central line of the thought, it can be easily

seen, that for both regions of U
0ð Þ

MF the values of Dtot strongly

increase when U
0ð Þ

MF increases. For U
0ð Þ

MFwU
0ð Þ

C the evolution of the

gap parameter with the temperature is sharply different from the

classical BCS prediction (see Fig. 4 ). In particular for 0vTvTC ,

the superconducting gap is very weak temperature dependent; this

anomalous behavior is frequently observed in the cuprates [74],

[75] The another important results are presented for

TCvTvT��, where T�� denotes the highest value of the

temperature for which the non-zero solution of the gap equation

exists. In this case we have two branches. In order to find out, for

which of these solutions the thermodynamic potential is lower, the

numerical calculations have been made. The detailed analysis of

this complicated issue is presented in the Appendix S4 (see also

Fig. S1). As an example, in Fig. 5 we show the dependence of the

difference of the thermodynamic potential between the non-zero

gap state and the normal state (DVVU ) on the temperature. The

obtained result proves, that the physical solution represents the

higher branch; whereas the lower branch corresponds to the

unstable state.

Next, the temperature T�� should be interpreted on the

experimental background.

First, we notice that the complicated mathematical structure of

the order parameter (in general, it is the complex function)

imposes two conditions on the existence of the superconducting

state: (i) the amplitude of the order parameter has to differ from

zero and (ii) the superconducting state has to exhibit the long-

range phase coherence.

The essential pointer, how should be interpreted the

temperature T��, is connected with the experiments based on

the Nernst effect [8], [76]. Namely, the Nernst signal above TC

strongly suggests that the superconductivity vanishes at TC

because the long-range phase coherence is destroyed by the

thermally created vortices. Additionally, the experimental data

have shown that the amplitude of the order parameter extends

into the ‘‘normal’’ state to the temperature TNE (the Nernst

temperature). We notice that TNE is considerably much lower

than the pseudogap temperature (T�). On the basis of presented

experimental facts and the obtained theoretical results we assume

that T��~TNE .

Before the comparison between the experimental data and the

theoretical results obtained in the framework of toy model, we

supplement the analytical approach. First, we notice that for T~0
the integral equation (18) reduces to the algebraic equation:

D
0ð Þ

tot~2v0e
{ 1

l2 , ð22Þ

where the symbol D
0ð Þ

tot denotes the gap parameter at zero

temperature and

1

l2
: ln

v0

b2

� 	
z ln2 v0

b2

� 	
{

2

Vtotb1
{

p2

6


 �1
2

: ð23Þ

Figure 3. The dependence of Dtot on the temperature for

U
0ð Þ

MFƒU
0ð Þ

C ~0:2343t. We assume V~1t and v0~0:3t.
doi:10.1371/journal.pone.0031873.g003
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By using the equation (22) and expression (20) one can easily

calculate the ratio: R1:
2D

0ð Þ
tot

kBTC

. In the classical BCS theory R1 is

the universal constant of the model and R1½ �BCS~3:53. In the case

of the BCS van Hove scenario R1 depends on the model

parameters, however slightly ( R1½ �max*4). The results obtained in

the framework of the toy model are shown in Fig. 6. We see that

R1 is always bigger than in the BCS van Hove scenario and for

sufficiently big values of U
0ð Þ

MF the ratio R1 achieves the physically

acceptable values.

Next, we consider the low-value behavior of the energy gap

(Dtot=kBTCvv1). In this case, the equation (18) should be

rewritten in the form:

1~
2Vtot

b

Xz?

m~{?

ðv0

0

der eð Þ 1

v2
mze2zD2

tot

: ð24Þ

The kernel of the Eq. (24) may be expanded in powers of Dtot:

Figure 4. The dependence of Dtot on the temperature for U
0ð Þ

MFwU
0ð Þ

C . We assume V~1t and v0~0:3t. The vertical line indicates a position of
the critical temperature. For TwTC the solid line represents the higher branch, whereas the perforated line corresponds to the lower branch.
doi:10.1371/journal.pone.0031873.g004

Figure 5. The dependence of DVVU on the temperature

for U
0ð Þ

MF~1:2370t. We assume V~1t and v0~0:3t. The vertical line
indicates the position of the critical temperature. The solid line for
0vTvTC represents the result for the superconducting solution; the
solid line for TCvTvT�� corresponds to the higher branch. The
perforated line represents the thermodynamic potential for the lower
branch. We notice that DVVU for the lower branch has the jump at TC .
This behavior is connected with the inversion of the solutions of Eq. (18)
in the considered region viz., for V1 and U1 higher than V2 and U2 we
have Dtot V1,U1ð ÞvDtot V2,U2ð Þ.
doi:10.1371/journal.pone.0031873.g005

Figure 6. The dependence of the ratio R1 on U
0ð Þ

MF for different
values of V . We assume v0~0:3t. We notice that the ratio R1 is
plotted for different maximal values of U

0ð Þ
MF , since this quantity is also

strong dependent on V.
doi:10.1371/journal.pone.0031873.g006
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1

v2
mze2zD2

tot

^
1

v2
mze2

{
D2

tot

v2
mze2

� �2
: ð25Þ

Next, we assume v0?z?, since v0wwkBTC . By using the

lengthy but straightforward calculation we can transform the right-

hand side of Eq. (24) into the algebraic form:

1~b1Vtot p1 Tð Þ{p2 Tð ÞD2
tot

� �
, ð26Þ

where

p1 Tð Þ: ln
2kBT

b2

� 	
ln

av0

kBT

� 	
z

1

2
ln2 v0

2kBT

� 	
{1, ð27Þ

and

p2 Tð Þ: 1

pkBT

� 	2
7f 3ð Þ

8
ln

pkBT

b2e

� 	
zq 3ð Þ


 �
: ð28Þ

The symbol f denotes the Riemann zeta function, q is defined by:

q zð Þ:
Pz?

j~1 2jz1ð Þ{z
ln 2jz1ð Þ. If we omit the terms higher as

DDD4 in Eq. (26), the expression for the anomalous thermal average

takes the form:

DD +ð ÞD^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 Tð Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 Tð Þzr2 Tð Þr3 Tð Þ
q
 �

r{1
2 Tð Þ

s
, ð29Þ

where:

r1 Tð Þ: 1

6
Up1 Tð Þ{V3p2 Tð Þ, ð30Þ

r2 Tð Þ: 2

3
UV 2p2 Tð Þ, ð31Þ

and

r3 Tð Þ:2 p1 Tð ÞV{
1

b1


 �
: ð32Þ

We would like to point out that the expression (29) can be used

only in the framework of the generalized mean-field model where

U=0; in the case of the BCS van Hove scenario the formula (29)

generates the indeterminate form.

In Fig. 7 we illustrate the temperature dependence of the gap

parameter close to TC for different values of U
0ð Þ

MF . In particular,

we have shown the results obtained by using Eqs. (18) and (29); for

comparison we calculate also the gap parameter in the BCS van

Hove scenario. One can see that the approximate formula (29)

very well reconstructs the exact numerical results both for the

small and large values of U
0ð Þ

MF ; we strongly notice that for

U
0ð Þ

MF wU
0ð Þ

C exists only the unstable state.

Figure 7. The dependence of Dtot on the temperature close to the transition temperature for the small and large values of U
0ð Þ

MF . We
assume V~1t and v0~0:3t. The empty circles correspond to the exact numerical calculations (Eq. (18) ). The solid line represents the calculation of
Dtot by using the formula (29). The crosses are obtained in the BCS van Hove scenario.
doi:10.1371/journal.pone.0031873.g007

Model of the High-TC Superconductivity

PLoS ONE | www.plosone.org 7 April 2012 | Volume 7 | Issue 4 | e31873



The toy model and the experimental results. The

knowledge of the experimental values of TC , T�� and other

parameters (t and v0) enables the calculation of V and U
0ð Þ

MF for the

real materials. In particular, the value of V is obtained by using the

expression (20). Next, the potential U
0ð Þ

MF is determined from Eq.

(18). We notice that, in principle, the quantities V and U
0ð Þ

MF can be

determined for the underdoped, optimally doped or overdoped

samples; one can even take under consideration the influence of

the disorder on V and U
0ð Þ

MF . This is possible, since the strength of

the presented approach lies in fact that the physical state of the

high-TC materials in the superconductivity domain is well

reproduced by the values of TC and T��. In general, the doping

dependence can be calculated in the framework of the Eliashberg

formalism. The initial study of this complicated issue has been

presented in the paper [66].

In the subsubsection (for selected superconductors), on the basis

of V and U
0ð Þ

MF , we calculate the dependence of the ratio R1 on the

hole density or on the doping; we consider also the influence of the

disorder on R1. We compare the theoretical predictions with the

experimental results (if the experimental data is known). In one

case we plot openly the dependence of the energy gap on the

temperature, since the right experimental data has existed in the

literature.

In particular, we take under consideration following families of

the high-TC materials:

YBa2Cu3O7{y (YBCO) - for selected values of the hole density

(p - (holes/Cu)),

YBa2Cu3O7{y (YBCO) - the disorder induced by electron

irradiation, which results in the creation of point defects such as

Cu and O vacancies in the CuO2 planes,

YBa2 Cu1{xZnxð Þ3O7{y (Zn-YBCO) - the in-plane disorder

caused by zinc,

Y1{xPrxBa2Cu3O7{y (Pr-YBCO) - the out-of-plane disorder

caused by praseodymium,

NdBa2(Cu1{xNix)3O7{y (Ni-NdBCO) - for selected values of x

and y.

Next, we consider Bi2Sr2CaCu2O8zy (Bi2212) - for selected

values of the hole density, and Bi2Sr2Ca2Cu3O10zy (Bi2223) - for

the optimally doped case (OP).

Finally, Pr2{xCexCuO4{y (PCCO) - the example of electron-

doped cuprate.

The experimental data and the obtained theoretical results are

collected in the Table 1. Mathematically, the range of the Nernst

region can be characterized by the quantity:

D��: T��{TCð Þ=TC . On the basis of experiments, we conclude

that the Nernst region strongly expands if the hole density

decreases; this is clear to see for YBCO and Bi2212, where

D��½ �max~7:08 and D��½ �max~1:18 respectively; also for under-

doped Ni-NdBCO, where D��½ �max~3. In the case of the disorder

which is induced in YBCO, the value of D�� considerably increases

if the electron irradiation is used or yttrium is substituted by

praseodymium; the disorder caused by zinc weakly influences on

the value of D��. In the presented analysis we consider also the

electron-doped cuprate system PCCO for which D�� increases if

doping decreases (from optimally to underdoped region). In

overdoped region of PCCO the value of D�� can not be

determined, since TC and T�� are experimentally indistinguish-

able.

Now, we consider the obtained values of V and U
0ð Þ

MF . We notice

that for real materials both V and U
0ð Þ

MF are significant and the

following principle is in effect: if D�� is smaller than *0:6 we have

VwU
0ð Þ

MF , in the opposite case VvU
0ð Þ

MF ; the especially high values

of U
0ð Þ

MF can be observed in the strongly underdoped regime.

By using the input parameters presented in Table 1 we compare

the calculated theoretical values of the ratio R1 with the

experimental data.

In Fig. 8 we show the ratio R1 as a function of the hole density

for YBCO. The numerical results are denoted by the solid line

with the open circles; the experimental data by the black filled

symbols (see also Appendix S5 and the Table S1). It can be seen

that, from slightly underdoped to overdoped crystals the presented

model correctly predicts the values of R1 (taking under

consideration the several approximations which have already

been mentioned previously). For p[ 0:07,0:135ð Þ the theoretical

values of the ratio R1 are probably lower than the experimental

data. However, the increasing of R1 with decreasing of the hole

concentration is qualitatively correctly predicted. In the case of the

strongly underdoped crystals (pv0:07) the toy model suggests very

high values of the ratio R1 which have to be experimentally

checked. In the inset in Fig. 8 there is presented the open

dependence of the critical temperature on the hole density with

help of which the values of p for YBCO have been calculated [77].

In Figs. 9 (A)–(C) for YBCO we presented the influence of the

disorder on the value of the ratio R1. In Fig. 9 (A), the dependence

of R1 on TC for the disorder induced by electron irradiation is

shown. The two values of the hole concentration are considered:

p~0:098 and p~0:157. In both cases the growing disorder, which

is being manifested by the lowering values of TC , causes very

distinct increase of the ratio R1. It is possible to observe the similar

effect for the case, when the out-of-plane disorder is caused by

praseodymium (Fig. 9 (B)). However, the in-plane disorder which

is induced by zinc in principle doesn’t affect the value of the

parameter R1; see Fig. 9 (C). In Figs. 9 (A)–(C) we have shown only

the theoretical predictions, since the experimental data not yet

exist.

The dependence of the ratio R1 on the hole density for Bi2212

is presented in Fig. 10. Similarly as for YBCO, the theoretical

results are denoted by the solid line with the open circles and the

experimental data by the filled and half-filled symbols (Appendix

S5 and the Table S2). Additionally, the region between the dotted

lines represents the possible experimental values obtained by using

the empirical formula [78]:

R1 pð Þ~ 15+1ð Þ{ 38+5ð Þp: ð33Þ

We can notice that relation (33) represents the linear least-

squares fit to the experimental data and it is valid for

0:12vpv0:24. On the basis of the presented results we conclude,

that the toy model, in a wide range of the p values, very correctly

reproduces the experimental data. It is possible to have reservation

only for very low values of p, where some experimental data

suggested extremely high values of the ratio R1. The inset in Fig. 10

presents the dependence of the energy gap on the temperature for

Bi2212 with TC~67 K. In particular, the region between the solid

lines corresponds to the possible theoretical values of Dtot. Let us

notice that theoretical results were set with the experimentally

accuracy of T�� (see also the Table 1 ). In the inset we also show

the experimental data obtained by A. Kanigel, et al. [79]. It is easy

to see that the agreement between theoretical and experimental

results is excellent.

However, for Bi2223 and Ni-NdBCO superconductors the

values of t and v0 are unknown and we take t and v0 for Bi2212

and YBCO respectively, it is possible to receive good estimating of

the real values of R1. In the case of Bi2223 we have R1~8:01. On

the basis of the results presented in Appendix S5 and the Table S3

we see that our theoretical value is very close to the experimental
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data. For Ni-NdBCO the situation is more complicated. If we

consider Ni-NdBCO superconductor with y = 0 the experimental

error for T�� is too big, so it is impossible exactly determine R1.

However, if we take the mean values of TC and T�� the theoretical

results indicate that the ratio R1 has the values 7.97, 10.20, 11.78

respectively for x = 0, x = 0.03 and x = 0.06. We notice that the

experimental value of R1 for x = 0 is equal to 7.3 (see Appendix S5

and the Table S4). For the case y = 0.2 the experimental data are

much more accurate and we have R1 equal to 10:98z1:69
{1:65 and

32:90z21:43
{10:68 for x = 0 and x = 0.03 respectively. On the basis of

Table 1. The quantities d��, V and U
0ð Þ

MF calculated by using the mean values of TC and T��.

Material Type t Ref. v0 Ref. TC T�� Ref. d�� V U
0ð Þ

MF

meV meV K K t t

YBCO p~0:062 250 [59] 75 [33] 18.6 150.2 [121] 7.08 0.838 2.847

p~0:079 45 128.3 1.85 1.148 2.045

p~0:107 60.5 91.8 0.52 1.297 1.171

p~0:116 64.1 84.9 0.32 1.330 0.969

p~0:120 66.5 87.4 0.31 1.352 0.974

p~0:138 80.6 104.4 0.30 1.475 1.062

p~0:150 90 105 0.17 1.554 0.898

p~0:176 92 107 [76] 0.16 1.571 0.903

YBCOe p~0:098 250 [59] 75 [33] 57 85 [122] 0.49 1.265 1.104

p~0:098 45.1 83.1 0.84 1.150 1.288

p~0:098 24.2 75 2.10 0.915 1.564

p~0:157 92.6 103 0.11 1.576 0.796

p~0:157 79.5 97.1 0.22 1.465 0.930

p~0:157 48.6 82.5 0.70 1.184 1.213

Zn-YBCO x~0:000 250 [59] 75 [33] 90 104+5 [123] 0.16 1.554 0.876

x~0:005 84 96+5 0.14 1.504 0.813

x~0:010 79 87+5 0.10 1.461 0.700

x~0:020 67 75+5 0.12 1.356 0.674

Pr-YBCO x~0:0 250 [59] 75 [33] 89.7 104:8+5 [124] 0.17 1.552 0.899

x~0:1 83.8 99:9+5 0.19 1.502 0.908

x~0:2 68.2 95+5 0.39 1.367 1.096

x~0:3 50.2 84:8+5 0.69 1.200 1.226

x~0:4 40.7 79:9+5 0.96 1.104 1.313

Ni-NdBCO x = 0.00,y = 0.0 250 – 75 – 95 115+20a [125] 0.21 1.596 1.021

x = 0.03,y = 0.0 59+4 80+20a 0.36 1.283 0.966

x = 0.06,y = 0.0 45+5 65+20a 0.44 1.148 0.940

x = 0.00,y = 0.2 53+3:5 75+5 0.42 1.227 0.981

x = 0.03,y = 0.2 20+7 80+10 3.00 0.858 1.737

Bi2212 p~0:087 350 [126],[127], 80 [29],[30], 50 108:9+5 [76],[128]. 1.18 1.117 1.508

p~0:118 [129] [31],[130], 77.9 130:3+10 0.67 1.347 1.442

p~0:160 [131]. 90.6 125:4+5 0.38 1.444 1.184

p~0:202 76.9 105:5+5 0.37 1.339 1.050

p~0:219 64.9 85:5+10 0.32 1.243 0.888

Bi2223 OP 350 – 80 – 109 135 [76] 0.24 1.580 1.077

PCCO x~0:13 380 [60],[61], 33 [132],[133]. 12+1 18+1 [134] 0.50 0.795 0.715

x~0:14 [135],[136]. 19:5+1 23+1 0.18 0.947 0.529

x~0:15 20+1 22+1 – 0.956 0.174

x~0:17 13+1 13:5+1 – 0.817 0.002

x~0:19 6:5+1 7+1 – 0.654 *0b

For YBCO the hole density p is estimated from the relation presented in [77]; for Bi2212 from the empirical formula TC pð Þ=TC,max~1{82:6 p{0:16ð Þ2 [120]. For the
superconductors Ni-NdBCO and Bi2223 the values of t and v0 are unknown. In this case, we take t and v0 for YBCO and Bi2212 respectively.
aThe high value of the experimental error.
bThe value found based on R1½ �exp .
doi:10.1371/journal.pone.0031873.t001
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above results we see that the last value of the ratio R1 can be

extraordinary big (this result should be checked experimentally).

The general phase diagram of the high-TC superconductors

presents the global symmetry between the hole- and electron-

doped materials [80]. First of all, in both cases, the antiferromag-

netic phase has the similar Neel temperature (however for

electron-doped cuprates, the antiferromagnetic phase is broader).

Secondly, the superconducting phase for the hole- and electron-

doped materials appears closely to antiferromagnetic phase, with

the similar value of the optimal doping (x*0:16). The distinct

symmetry of the phase diagram strongly supports the view that the

hole- and electron-doped superconductors should have an

identical pairing mechanism. For that reason, the analysis of R1

for the selected electron-doped superconductor in the framework

of toy model is very important.

In Fig. 11 we show the dependence of the ratio R1 on doping for

PCCO. The solid line with open circles represents the theoretical

Figure 8. The dependence of the ratio R1 on p for YBCO. The
solid line with the open circles represents the theoretical calculation.
The black filled symbols correspond to experimental results obtained
by: (a) - M. Sutherland et al. [84], (b) - K. Nakayama et al. [85], (c) - A.
Kaminski et al. [86], (d) - M. Plate et al. [87], (e) - D.K. Morr et al. [88], H.F.
Fong et al. [89], (f) - N.C. Yeh et al. [90], (g) - V. Born et al. [91], (h) - H.
Murakami et al. [92], (i) - H. Edwards et al. [93], (j) - H. Edwards et al. [94].
The inset shows the dependence of the critical temperature on the hole
density estimated from the relation presented in [77].
doi:10.1371/journal.pone.0031873.g008

Figure 9. (A) The dependence of the ratio R1 on TC for YBCOe ; we
consider the case p~0:098 and p~0:157. (B) The dependence of the
ratio R1 on x for Pr-YBCO. (C) The dependence of the ratio R1 on x for
Zn-YBCO.
doi:10.1371/journal.pone.0031873.g009

Figure 10. The dependence of the ratio R1 on p for Bi2212. The
solid line with the open circles represents the theoretical calculation.
The filled and half-filled symbols correspond to experimental results
obtained by: (a) - Ch. Renner, et al. [74], [75], (b) - A. Hoffmann, et al.
[95], (c) - Y.G. Ponomarev, et al. [96], (d) - T. Oki, et al. [97], (e) - V.M.
Krasnov, et al. [98], (f) - A.K. Gupta, et al. [99], (g) - A. Kanigel, et al. [79],
(h) - J.C. Campuzano, et al. [100], K. Tanaka, et al. [101], (i) - T. Nakano, et
al. [102], (j) - M. Oda, et al. [103], (k) - K. McElroy, et al. [104], (l) - A.
Matsuda, et al. [105], (m) - J.E. Hoffman, et al. [106], (n) - C. Howald, et al.
[107], (o) - H. Murakami, et al. [108]. The lines (p) are obtained by using
the empirical relation (33). The inset shows the dependence of the
energy gap on the temperature; the filled region between the solid
lines represents possible theoretical values of Dtot; (r) - the experimental
results [79].
doi:10.1371/journal.pone.0031873.g010

Figure 11. The dependence of the ratio R1 on x for PCCO. The
solid line with the open circles represents the theoretical calculation
based on TC and T��; the dotted line with open circles represents the
theoretical calculation based on TC and the appropriately selected
U

0ð Þ
MF . The black filled symbols correspond to experimental results

obtained by: (a) - A. Biswas, et al. [109], (b) - A. Zimmers, et al. [110], (c) -
Y. Dagan, et al. [111], (d) - C.C. Homes, et al. [112], (e) - P. Fournier, et al.
[113].
doi:10.1371/journal.pone.0031873.g011
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calculation obtained by using the input parameters TC and T��;
the dotted line with open circles represents the theoretical

calculation obtained by using the input parameters TC and the

appropriately selected U
0ð Þ

MF . The black filled symbols correspond

to experimental data (Appendix S5 and the Table S5). Based on

Fig. 11, it is easy to see that the theoretical results very well

reconstruct the experimental values of R1.

The Anisotropic Superconductivity
In the presented subsection we will study the thermodynamic

properties of the d-wave superconducting state on the basis of the

postulated pairing model. In particular, we will calculate the

dependence of the energy gap amplitude Dtot on the temperature

for the selected values of the EEPH potential. Next, we will

analyze the dependence of the 2D
0ð Þ

tot=kBTC ratio on the hole

density for La2{xSrxCuO4 (LSCO) and Bi2212 superconductors.

The theoretical predictions will be compared with the experimen-

tal data.

Model. The effective Hamiltonian we have rewritten in the

form:

H:H 0ð ÞzH 1ð ÞzH 2ð Þ: ð34Þ

The first term represents the non-interacting electrons:

H 0ð Þ:
X
k s

ek c
{
k sck s: ð35Þ

The EPH and EEPH interaction terms are given by:

H 1ð Þ:
X
k q s

Vk q c
{
k zq{sc

{
{k{q sc{ k sck {s, ð36Þ

and

H 2ð Þ:
X

k k’q l s

Uk k’q l c
{
k{ l sck shk’l q sc

{
{kz l{sc{k{s, ð37Þ

where: hk’l q s:c
{
k’z lzq{sck’{sc

{
{ k’{ l{q sc{ k’s. The functions

Vkq and Ukk’ql indicate the pairing potentials:

Vkq:
v0Dg 1ð ÞD2

ek{ekz q

� �2
{v2

0

, ð38Þ

and

Uk k’q l:
v0Dg 2ð ÞD2

ek{ek{ l zek’{ek’z lzq

� �2
{v2

0

: ð39Þ

On the basis of the operators (36) and (37) it is possible to deduce

the Hamiltonians which describe the d-wave superconducting

state. In the case of the Hamiltonian (36) this procedure is known

and widely described in the literature (see e.g. the paper [81]).

With reference to the above, we will discuss only the derivation of

the anisotropic Hamiltonian on the basis of the EEPH operator. In

the first step, we separate the momentums in the expression (37):

H 2ð Þ^
X

k 1*k 4s

Uk 1*k 4
c
{
{k 1sc{k 2shk 3 k4sc

{
k 1{sck 2{s, ð40Þ

where: hk 3k 4s:c
{
k 3{sc

{
{k 3sc{k 4sck 4{s.

With help of the relation: cks~
1ffiffiffiffiffi
N
p

X
j
e{i k Rj cjs, we

transform the operator (40) to the Wannier representation, where

we restrict ourselves to on-site and the nearest neighbor pairing.

The Hamiltonian takes the form:

H 2ð Þ^
X

Sj1j2TSj3j4Ts

U
{ð Þ

j1*j4
c
{
j1scj1sh

{ð Þ
j3j4sc

{
j2{scj2{s

z
X

Sj1j2TSj3j4Ts

U
zð Þ

j1*j4
c
{
j1scj2sh

zð Þ
j3j4sc

{
j2{scj1{s,

ð41Þ

where h
{ð Þ

j3j4s:c
{
j3{scj3{sc

{
j4scj4s and h

zð Þ
j3j4s:c

{
j3{scj4{sc

{
j4scj3s.

The symbols U
{ð Þ

j1*j4
and U

zð Þ
j1*j4

denote the local and kinetic

potential respectively. Next, we return to the Bloch representation:

H 2ð Þ^
X

k 1*k 4s

U
{ð Þ

k 1*k 4
zU

zð Þ
k 1*k 4

h i

|c
{
{k 1sc{k 2shk 3k 4sc

{
k 1{sck 2{s,

ð42Þ

where:

U +ð Þ k1*k4ð Þ: 1

N4

X
Sj1j2T

X
Sj3j4T

U
+ð Þ

j1*j4

|e
+i k 2+ k 1ð Þ Rj2

{Rj1

� �
+i k 4+ k 3ð Þ Rj4

{Rj3

� �
:

ð43Þ

Now, we assume: U
{ð Þ

j1*j4
^U

zð Þ
j1*j4

~{U=24N3
0 , where the

symbol N0 denotes the normalization factor: N0:1=
Pv0

k . In

the next step, we limit the symmetry of the energy gap to the

dominating d-wave symmetry. The total Hamiltonian after

applying the approximation presented for the s-wave takes the

form:

H gð Þ:
X
k s

ekc
{
k sck s{ V gð Þz

U gð Þ

6
D gð Þ



 


2� 	

|
Xv0

k

D
gð Þ

k c
{
k:c

{
{ k;zD

? gð Þ
k c{ k;ck:

h i
:

ð44Þ

The symbol V gð Þ and U gð Þ denotes the d-wave effective potential

for the EPH and EEPH channel respectively. In particular:

V gð Þ:V=2 and U gð Þ:U=8. The anisotropic order para-

meter is given by: D
gð Þ

k :D gð Þg kð Þ, where the amplitude is

expressed as: D gð Þ:
1

N0

Xv0

k
g kð ÞSc{k;ck:T and g kð Þ:

2 cos kxð Þ{ cos ky

� �� �
.

On the basis of the Hamiltonian (44), we calculate the

thermodynamic Green function by using the equation of motion

method. The result has the form:
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SSck:Dc{ k;TT~{

V gð Þz
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D
gð Þ

k

v2{ E
gð Þ

k

� �2
, ð45Þ

where:

E
gð Þ

k :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
k z V gð Þz

U gð Þ

6
D gð Þ



 


2� 	2

D gð Þ



 


g kð Þ
� �2

s
: ð46Þ

We turn the reader’s attention toward the fact, that the obtained

Green function possesses the analytical structure, which is more

complex than the structure of the BCS Green function [56], [57]

[82]. In particular, the energy gap amplitude is the complicated

function of the order parameter amplitude. However, the energy

gap, in spite of its complicated form, is characterized by the pure d-

wave symmetry.

On the basis of Eq. (45) we derive the fundamental

thermodynamic equation:

1~ V gð Þz
U gð Þ

6
D gð Þ



 


2� 	

1

N0

Xv0

k

g2 kð Þ
2E

gð Þ
k

tanh
bE

gð Þ
k

2
: ð47Þ

The sum
Pv0

k is approximated in the following manner:Pv0

k ^
Ð p

{p

Ð p

{p dkxdkyh v0{Dekx ,ky
D

� �
, where the symbol h rep-

resents the unit step function. In the model calculations, we have

taken t as the energy unit.

The numerical results. In Fig. 12 we present the

temperature dependence of the energy gap amplitude.

(Dtot: V gð Þz
U gð Þ

6
D gð Þ



 


2� 	

D gð Þ



 


) for V gð Þ~0:02t, v0~0:3t

and the selected values of U gð Þ. It is easy to see, that for the high

values of the EEPH potential, the shape of the function Dtot Tð Þ is

sharply different from the BCS prediction. In particular, for

T[v0,TCw the energy gap is very weakly dependent on the

temperature; up to the critical temperature Dtot extends into the

anomalous normal state to the temperature T�. In the case of the

d-wave superconducting state, the temperature T� is interpreted as

the pseudogap temperature (in contrast to the s-wave supercon-

ductivity, where the highest value of the temperature, for which

the non-zero solution of the gap equation exists, is connected with

the Nernst temperature T��).
Below we compare the theoretical predictions with the

experimental data for LSCO and Bi2212 superconductors. For

this purpose, we have calculated the values of the pairing

potentials on the basis of TC and T� experimental values. The

obtained results have been collected in Table 2. Next, by using the

V gð Þ and U gð Þ values, the hole density dependence of the

R1:2D
0ð Þ

tot=kBTC ratio has been obtained. We notice, that the

energy gap amplitude at the temperature of zero Kelvin is defined

as: D
0ð Þ

tot: V gð Þz
U gð Þ

6
D

gð Þ
0




 


2� 	
D

gð Þ
0




 


, where D
gð Þ

0 denotes the

order parameter amplitude at the temperature of zero Kelvin.

In Fig. 13 we present the dependence of the R1 ratio on the hole

density for LSCO superconductor. It can be seen, that with the

increase of p, the parameter R1 successively decreases. In

particular, for the underdoped region (pv0:155) the values of

R1 are significantly higher than the d-wave BCS value 4:28 [83].

Slightly above p~0:155 (the overdoped region) the R1 ratio

approaches closely the weak-coupling d-wave BCS result. We

notice, that for pw0:15, the lower accuracy of the theoretical

results can not be determined, since TC and T� are experimentally

indistinguishable (see Table 2 ). Now, we have compared the

Figure 12. The dependence of the energy gap amplitude on
the temperature for the selected values of the EEPH potential.
The solid line represents the physical stable solution; the dotted line
corresponds to the unstable solution, where the thermodynamic
potential is bigger than in the first case. The vertical line indicates the
position of the critical temperature.
doi:10.1371/journal.pone.0031873.g012

Table 2. The parameters V gð Þ and U gð Þ calculated by using TC and the mean values of T�.

Material Type t Ref. v0 Ref. TC T� Ref. V gð Þ U gð Þ

meV meV K K meV meV

LSCO p~0:10a 240 [58] 96 [13] 58 193:7+30:2 [114] 3.76 66.86

p~0:15a 38 135:5+30:2 [114] 4.41 53.89

p~0:22a 28 44:3+30:2 [114] 3.91 45.11

Bi2212 p~0:125 350 [126],[127], 80 [29],[30], 83 *290 [74],[75] 5.47 55.40

p~0:143 [129]. [31],[130], 90 *300 [137] 5.68 56.37

p~0:193 [131]. 84 *270 [137] 5.51 51.72

p~0:198 81 *220 [137] 5.40 43.88

aThe hole density p has been estimated as the doping p~x.
doi:10.1371/journal.pone.0031873.t002
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theoretical predictions which the experimental values of R1,

received by the few different researchers. The qualitative

agreement of the theoretical predictions with the experimental

data proves, that the measured dependence of the ratio R1 on p

can be well reproduced with an use of the presented model.

In Fig. 14 we show the shape of the function R1 pð Þ for Bi2212

superconductor. The presented results prove, that the theoretical

line determines the high value of R1 in the whole range of the

considered hole density; p[v0:125,198w. Important is also the

fact, that the model correctly reconstructs the experimental data.

Discussion

In the paper the microscopic model of the superconducting state

that induces at high temperature was presented. The starting point

of our considerations was the assumed statement: that a proper

description of the superconducting condensate in the cuprates is

possible only when the pairing mechanism would inseparably link

together the strong electron correlations and the crystal lattice

vibrations. The Hamiltonian proposed in the paper seems to be

the most simple among the operators that satisfy the above

postulate.

In the study we have shown, that for the large values of the

EEPH coupling, the s-wave energy gap at the vicinity of the

superconducting state existence weakly depends on the tempera-

ture and it vanishes above TC (at the temperature that was

interpreted as Nernst temperature). The key test of our model was

the determination of the dependence of the ratio R1 on doping for

the selected superconductors. The obtained agreement between

the theoretical and experimental data seems to be extraordinary,

when taking into account the simplicity of the considered

Hamiltonian and used approximations.

In the paper, we have also presented the model that describes

the properties of the d-wave superconducting state in the two-

dimensional system. In the first step, we have derived the

fundamental thermodynamic equation. Next, on the basis of the

exact numerical solution, we have shown, that for the high value of

the EEPH potential, the temperature dependence of the energy

gap amplitude differs sharply from the BCS prediction. In

particular, the energy gap is slightly dependent on the temperature

for T[v0,TCw; above the critical temperature, the energy gap

persists to the pseudogap temperature. The theoretical predictions

Figure 13. The ratio R1 as a function of p for LCSO superconductor. The solid lines with the open squares represent the theoretical
calculations based on the data presented in the paper [114]. The overshadowed areas mean the accuracy of the achieved results. The filled symbols
correspond to the experimental results obtained by: (a) - Hashimoto, et al. [114], (b) - Nakano, et al. [102], (c) - Oda, et al. [115], (d) - Kato, et al. [116],
(e) - Wang, et al. [117], (f) - Yoshida, et al. [118], (g) - Wen, et al. [119].
doi:10.1371/journal.pone.0031873.g013

Figure 14. The dependence of the ratio R1 on p for Bi2212. The
solid line with the open squares represents the theoretical calculation.
The filled and half-filled symbols correspond to the experimental results
obtained by: (a) - Renner, et al. [74], [75], (b) - Hoffmann, et al. [95], (c) -
Ponomarev, et al. [96], (d) - Oki, et al. [97], (e) - Krasnov, et al. [98], (f) -
Gupta, et al. [99], (g) - Kanigel, et al. [79], (h) - Campuzano, et al. [100],
Tanaka, et al. [101], (i) - Nakano, et al. [102], (j) - Oda, et al. [103], (k) -
McElroy, et al. [104], (l) - Matsuda, et al. [105], (m) - Hoffman, et al. [106].
The lines (n) are obtained by using the empirical relation (33).
doi:10.1371/journal.pone.0031873.g014
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have been compared with the experimental data for LCSO and

Bi2212 superconductors. It has been shown, that the calculated

hole density dependence of the R1 ratio correctly reproduces the

experimental data.

In our opinion, the achieved results clearly suggest that presented

pairing mechanism should be seriously taken into consideration in the

further researches which may lead to the most precise understanding

of the properties of the high temperature superconducting state.

Methods

Numerical Calculations
The calculations have been conducted on the Częstochowa

University of Technology cluster, built in the framework of the

PLATON project, no. POIG.02.03.00-00-028/08 - the service of

the campus calculations U3. The Fortran programming language

has been used.
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51. Szczęśniak R, Jarosik MW, Szczęśniak D (2010) Pressure-induced supercon-

ductivity in the fcc phase of lithium: Strong-coupling approach. Physica B 405:

4897–4902.
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