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Abstract

Wnt5a is one of the so-called non-canonical Wnt ligands which do not act through b-catenin. In normal development,
Wnt5a is secreted and directs the migration of target cells along concentration gradients. The effect of Wnt5a on target cells
is regulated by many factors, including the expression level of inhibitors and receptors. Dysregulated Wnt5a signalling
facilitates invasion of multiple tumor types into adjacent tissue. However, the expression and distribution of Wnt5a in
cutaneous squamous cell carcinoma (SCC) and basal cell carcinoma (BCC), as well as the effect of Wnt5a on keratinocyte
migration has not been studied in detail to date. We here report that Wnt5a is upregulated in SCC and BCC and localised to
the leading edge of tumors, as well as tumor-associated fibroblasts. The Wnt5a-triggered bundling of its receptor Fzd3
provides evidence of Wnt5a concentration gradients projecting into the tumor. In vitro migration assays show that Wnt5a
concentration gradients determine its effect on keratinoctye migration: While chemotactic migration is inhibited by Wnt5a
present in homogenous concentrations, it is enhanced in the presence of a Wnt5a gradient. Expression profiling of the Wnt
pathway shows that the upregulation of Wnt5a in SCC is coupled to repression of canonical Wnt signalling. This is
confirmed by immunohistochemistry showing lack of nuclear b-catenin, as well as absent accumulation of Axin2. Since both
types of Wnt signalling act mutually antogonistically at multiple levels, the concurrent repression of canonical Wnt
signalling suggests hyper-active Wnt5a signal transduction. Significantly, this combination of gene dysregulation is not
observed in the benign hyperproliferative inflammatory skin disease psoriasis. Collectively, our data strongly suggest that
Wnt5a signalling contributes to tissue invasion by non-melanoma skin cancer.
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Introduction

Wingless-type (Wnt) ligands are signalling molecules important in

development. Wnt ligands are classified as ‘‘canonical’’ or ‘‘non-

canonical’’ [1]. Canonical Wnts, exemplified by Wnt3a, bind to

Fzd-type receptors, as well as LRP5/6 co-receptors, followed by the

recruitment of a heteromeric protein complex including Dishev-

elled, Axin, and GSK3b to the receptor complex. This leads to

phosphorylation of LRP5/6, release and nuclear translocation of b-

catenin, culminating in the induction of target genes. By contrast,

non-canonical Wnts, including Wnt5a, bind Fzd receptors in

conjunction with alternate co-receptors, including ROR1/2 or Ryk,

causing b-catenin-independent changes such as PKC activation and

cytoskeletal rearrangements [2]. Importantly, by binding to

common Fzd receptors, canonical and non-canonical Wnts act as

competitive antagonists at shared receptors [3].

In development, secretion of all Wnt ligands including Wnt5a is

subject to precise temporal and spatial control whereby concen-

tration gradients are achieved [4]. These gradients direct

morphogenetic movement of target cells as well as the arrange-

ment of asymetrical polarisation of epithelial cells [5]. Thus,

Wnt5a essentially directs migration of cells into surrounding tissue,

for example in limb development. One key element determining

the effect of Wnt on target cells is the presence of secreted

inhibitory proteins. These include the Dickkopf (Dkk) family,

which specifically bind LRP5/6, thus serving as specific inhibitors

of canonical Wnts. Other inhibitors include Wif and the Secreted

Frizzled Related Proteins (SFRP) which bind both types of Wnt

ligands as well as Fzd receptors, thereby inhibiting both canonical

and canonical Wnts [6]. The spatial distribution of SFRP, Fzd,

Dkk, and Wnt is minutely orchestrated in development (e.g. [7],

effectively creating diffusion corridors for Wnt activity.

Not surprisingly given its role as regulator of cell migration into

adjacent tissue, the unregulated activation of Wnt5a has been

associated with invasiveness and in several tumor types, including

melanoma [8,9], breast cancer [10], gastric cancer [11],
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pancreatic cancer [12], and osteosarcoma [13]. Wnt5a-related

tumor invasion may also be mediated by tumor-associated cells.

Thus, breast cancer cells induce Wnt5a expression in tumor-

infiltrating macrophages, causing synthesis of matrix metallopro-

teinase (MMP) 7 [10].

Wnt5a can bind several frizzled receptors, including Fzd2,

Fzd5, Fzd3, Fzd4. Of these, we have previously shown that Fzd5

and Fzd3 are expressed in the parental tissue for both squamous

cell carcinoma (SCC), the epidermis, and basal cell carcinoma

(BCC), the hair follicle, respectively [14]. These Fzd receptor

isoforms have also been shown to mediate Wnt5a-induced

directional motility in melanoma [15], as well as invasive

migration in breast cancer [16]. Importantly, Fzd3 has recently

been shown to accumulate into polarised focal aggregates when

cells are exposed to a Wnt5a gradient in vitro [15]. While Wnt5a

gradients cannot be detected directly in primary tissue, this

discovery opens the possibility of utilising the intracellular

distribution of Fzd3 as indicator of functional Wnt5a gradients

acting on cells in vitro.

Non-melanoma skin cancer comprising BCC and SCC is the

commonest human cancer and still increasing in incidence with

more than 100,000 cases diagnosed each year in the UK.

Although only SCC metastasizes in immunocompetent individu-

als, SCCs are highly locally invasive, making them readily

available natural models to study tissue invasion. The expression

of Wnt5a and cognate receptors has not been studied on the

protein level in these tumors and few data exist on the effect of

Wnt5a on directional migration in SCC cells or keratinocytes in

vitro.

Here we report the distribution of Wnt5a and the receptors

Fzd5 and Fzd3 in SCC and BCC. We utilise Fzd3 localisation to

identify Wnt5a gradients operative in adult skin as well as in SCC/

BCC. We further provide functional evidence that Wnt5a

gradients enhance directed motility of keratinocytes. Expression

profiling shows that invasive SCC, in contrast to benign

inflammatory hyperproliferation of keratinocytes, is marked by

the concurrent upregulation of non-canonical and repression of

canonical Wnt signalling. Our data allow the formulation of a

working model of how Wnt5a may act to enhance motility and

invasiveness in these tumors.

Materials and Methods

Ethics statement
Prior to biopsy, patients gave written consent to storage and

analysis of biopsy samples. Storage and use of all tissues included

in the work presented here was carried out in accordance with the

Helsinki declaration and approved by the Tayside Committee on

Medical Research Ethics B (REC ref. Nr. 07/S1402/90).

Tumor samples
SCC studied here were excised from immunocompetent

patients from the head (n = 7) or the hands/legs (n = 4), in each

case exhibiting surrounding signs of sun damage and classified as

well-differentiated (n = 8), or moderately/poorly differentiated

(n = 3). BCC (n = 9) were all from the head, except for one BCC

excised from the hand.

Immunohistochemistry
Antibodies used were anti Wnt5a (R&D, order nr. AF645, final

dilution 1:400, alternative antibody (shown in fig. S1: Abcam,

clone 3D10, order nr. Ab86720, used at 1:10000 dilution), anti-

frizzled 3 (Insight Biotech, ordered through Acris Antibodies,

Germany, order nr. SP4568P, 1:200), anti-frizzled 5 (Cambridge

Bioscience, ARP41245_P050, 1:800), b-catenin (Millipore, 05–

665). Immunohistochemistry was carried out exactly as described

[14] using Paraffin-embedded samples obtained from the Tayside

Tissue bank.

Stable expression of Wnt5a and cell culture
Establishment of Wnt5a-stably transfected HaCat

cells. HaCat cells were obtained as described previously [17].

Cells were plated in 6-wells cell culture plates at a density of 56104

cells/well prior to lipofectamine transfection with either pcDNA3

WNT5A-HA construct (full length human recombinant Wnt5a

with C-terminal HA tag) or a pcDNA3 empty vector. Cells were

transfected with 1 mg of plasmid DNA complexed with 8 ml

Lipofectamine 2000 Transfection Reagent and incubated with

transfection complex for 4 hours. Supernatant was removed and

DMEM+10% FCS containing 800 mg/ml G418 was added to

each well. Cells were observed over the course of two weeks, with

media changes every 2–3 days. Once colonies started to appear,

cells were trypsinised and transferred to 25 cm2 cell culture flasks.

Cultures were maintained in DMEM containing 10% FCS (non-

heat inactivated) with 800 mg/ml G418. Continued Wnt5a

expression was verified by Western blot using anti- Wnt5a

(R&D, AF645, dilution 1:1000).

Transwell migration assay
A Transwell system that incorporated a polycarbonate filter

membrane with a diameter of 6.5 mm and pore size of 8 mm

(Corning, Sigma-Aldrich, Poole, UK) was used to assess the rate of

cell migration. Mitomycin C-treated cells (16105) were suspended

in 100 ml of 0.1% BSA DMEM with or without human/mouse

recombinant Wnt5a (0.1 mg/ml) (R&D, Abingdon, UK, order nr.

645-WN) and seeded in the upper chamber of the Transwell

insert. The lower chamber was filled with 600 ml of DMEM

supplemented with 5% FBS. Migration of HaCat-pcDNA cells in

the presence of a Wnt5a concentration gradient was performed as

follows. Wnt5a-overexpressing or pcDNA HaCat cells were seeded

in 24 w/plates 48 h before adding the Transwell inserts until

reaching confluence. Immediately prior to adding the Transwell

inserts containing HaCat-pcDNA cells (in 0.1%BSA containing

DMEM) the media in the wells were replaced by fresh 5%FBS

DMEM to remove any pre-secreted Wnt5a. Plates were left for

18 h at 37uC. Subsequently, cells in the filters were stained with

1% Borax and 1% methylene blue. The nonmigrating cells on the

upper surface of the filter were removed with a cotton swab and

the cells that migrated to the lower surface of the filter were lysed

with a solution of 1% SDS and quantified by measuring

absorbance at 630 nm using a microplate spectrophotometer.

Scratch wound migration assay
Cells were grown to confluence in a 6-well plate in Hacat

medium. Two hours before wounding, cells were treated with

mitomycin C (10 mg/ml) to prevent proliferation. A wound was

made by applying a 200 ml plastic pipette tip across the centre of

the cell sheet. Cells were washed twice with PBS and incubated in

DMEM supplemented with either 10% or 1% FCS.

Expression profiling
The log 2 transformed processed array data set was obtained

from [18]), inverse-log2 data calculated, and fold-changes between

SCC and sun-exposed skin control calculated for each case

(n = 12). Average fold-changes and t-tests were then calculated as

described [19]. Psoriasis expression profile analysis was done as

described [19].

Wnt5a in Cutaneous SCC

PLoS ONE | www.plosone.org 2 February 2012 | Volume 7 | Issue 2 | e31827



Results

Wnt5a is strongly expressed in non-melanoma skin
cancer

We studied Wnt5a expression in a panel of SCC (n = 11) and

BCC (n = 9), excised from immunocompetent individuals, by

immunohistochemistry. In order to allow semiquantitative assess-

ment we used the previously characterised expression of Wnt5a in

the basal layer or the epidermis [14] as internal calibration. As

shown in figure 1, Wnt5a was strongly expressed in both SCC and

BCC relative to its expression level in the basal layer of the

epidermis (marked with black arrow) in the same sections (fig. 1a,c).

Tumor-associated fibroblasts as well as endothelial cells also

stained strongly positive for Wnt5a (fig. 1b,d, red and blue arrows,

respectively). Although Wnt5a staining was detectable throughout

tumors (example shown in fig. 1a), it was most intense at the

leading edge of most tumors (fig. 1e). These findings were

consistent between all studied tumor samples (table 1 and below)

and were reproducible using an alternative antibody for IHC

(figures S4, S5).

Focal polarised distribution of Fzd3 in skin and non-
melanoma skin cancer indicates Wnt5a gradients

Wnt5a concentration gradients cannot be directly detected in

vivo. However, recently it was shown that, upon sensing a Wnt5a

concentration gradient, target cells respond by bundling the

Wnt5a receptor Fzd3 into focal aggregates in vitro [15].

Therefore, Fzd3 aggregates can be used as indirect marker to

identify cells exposed to a Wnt5a gradients in primary tissue using

immunohistochemistry. Indeed, we found that Fzd3 exhibited a

strikingly polarised focal distribution both in epidermal keratino-

cytes as well as in the hair follicles (Fig. S1), suggesting that

Wnt5a gradients are operative not only in development, but also

in adult differentiated skin. Next, we investigated Fzd3 distribu-

tion in tumor sections. As with Wnt5a, we utilised the staining

intensity of Fzd3 in the epidermis in each section to semiquan-

titatively assess the relative expression level (fig. 2a, black vs.

white arrows). As shown in figure 2, Fzd3 was found in a zonal

distribution, such that Fzd3-negative tumor areas alternate with

Fzd3-positive areas (fig. 2b,e) within the tumors, while the

invasive edges did not stain positive (fig. 2d). Tumor-infiltrating

fibroblasts and endothelial cells were negative for Fzd3. In those

tumor cells that did express Fzd3, Fzd3 exhibited a pronounced

polarised focal intracellular aggregates, suggesting the existence of

Wnt5a gradients. However, in contrast to normal epidermis,

Fzd3-aggregates were not aligned along recogniseable planes,

indicative of disorganised Wnt5a gradients. This overall Fzd3

expression pattern was quite comparable across all tumors

studied (table 1).

Heterogenous expression of Fzd5 in non-melanoma skin
cancer

Fzd5 is another recognised Wnt5a receptor. Since we previously

found that Fzd5 expression in adult epidermis is restricted to the

high granular layer ([14] and figure 3a, black arrow), indicative of

an expression pattern governed by differentiation, we studied

whether Fzd5 expression in cancers reflected tumor differentiation

status. In contrast to Fzd3, Fzd5 did not exhibit focal intracellular

distribution and was variable between individual tumors. While

the majority of SCC tumors exhibited moderate-to-strong Fzd5

expression (fig. 3a,c), 3 of 11 tumors showed weak-to-absent

staining (fig. 3b,d). Of note, these variations were not related to

tumor differentiation status. Only two BCC samples exhibited

strong Fzd5 expression (fig. 3g), while it was low or undetectable in

the majority (fig. 3f,h; table 1). As with Fzd3, tumors that did

express Fzd5 exhibited Fzd5-positive regions alternating with

Fzd5-negative regions (fig. 3a). By contrast, tumor – associated

endothelial cells consistently exhibited strong Fzd5 expression

(fig. 3c,h). Tumor-associated fibroblasts were weak to moderately

positive for Fzd5 (fig. 3c, inset). Thus, while Fzd5 expression is

variable in non-melanoma skin cancer cells, its expression level in

tumor-vessels is consistent with a role of this receptor in mediating

Wnt5a-dependent inflammatory pathways, consistent with previ-

ous reports [20,21].

Figure 1. Localization of Wnt5a in non-melanoma skin cancer. Immunohistochemistry of Wnt5a from SCC (a,b), or BCC (c,d), shown at 406
(a,c), or 2006 (b,d) magnification. (e) Three SCC tumors, shown at 106magnification, illustrating strong Wnt5a – staining at the tumor edge. Figures
shown are representative for SCC (n = 12), and BCC (n = 9), respectively. Arrowheads indicate the following structures: black - basal layer of the
epidermis, white- tumors, red- tumor associated endothelial cells, blue- fibroblasts, green – hair follicle.
doi:10.1371/journal.pone.0031827.g001

Wnt5a in Cutaneous SCC
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Wnt5a and Fzd receptors are expressed by non-
overlapping tumor cell subsets

We next studied the spatial relationship of Wnt5a, Fzd3, and

Fzd5 in individual tumor samples. To this end, we determined

staining intensities of these proteins in serial sections of individual

tumors, respectively, since antibodies suitable for co-immunoflu-

orescence in paraffin-embedded samples were unavailable. As

shown in figure 4, Wnt5a was predominantly expressed on tumor

margins in SCC (as well as in tumor associated stroma). By

contrast, Fzd3 localized to cells within the tumor mass, sometimes

forming nest-like Fzd3-positive tumor-domains (middle panel,

white arrow head) and, as described above, exhibiting focally

polarised intracellular distribution. Fzd5 exhibited heterogenous

intra-tumor distribution, being localised to intra-tumor clusters

(top), weak/diffusely at the edge (bottom), or homogenously

throughout (middle). Analogous arrangements were observed in

BCC, with Wnt5a being most strongly expressed at the leading

edge, as well as in tumor-associated stroma (figure 5, left panels),

while Fzd3 showed polarised expression within the tumor (figure 5,

top middle), or in Fzd3-positive nests (white arrow heads). Fzd5

was weak or absent in most BCCs (bottom right, cf. table 1).

Where expressed, Fzd5 exhibited diffuse intra-tumor localisation

Table 1. Expression of Wnt5a, Fzd3, and Fzd5 in non-melanoma skin cancer.1

Wnt5a Frizzled 3 Frizzled 5

Level2 SCC Moderate/strong strong Strong (9/12)
weak/absent (3/12)

BCC Weak/absent (7/9)
moderate (2/9)

Pattern SCC Highest at tumor edges patchy (neg. vs. pos. zones) patchy (neg. vs. pos.)

BCC

Intracellular distribution SCC homogenous focal homogenous

BCC

Associated fibroblasts SCC strong partially positive partially positive

BCC negative

Associated
vessels

SCC strong negative strong

BCC

1Immunohistochemistry of formaldehyde-fixed paraffin-embedded SCC (n = 12) and BCC (n = 9) samples was carried out as described in Methods.
2Expression level was scored as ‘‘moderate’’ when staining intensity was comparable, as ‘‘strong’’ when staining was stronger, and as ‘‘low’’ when staining was weaker
than that of epidermis present in the same section, respectively.

doi:10.1371/journal.pone.0031827.t001

Figure 2. Localization of Fzd3 in non-melanoma skin cancer. Immunohistochemistry performed as in figure 1 performed on SCC (a–d), or BCC
(e–f) shown at 406(a), 1006(b,d,e), or 4006(c,f) magnification, respectively. Black arrows indicate staining intensity of Fzd3 in the epidermis used to
assess staining intensity in tumors (denoted by white arrows). Red arrows denote boundary of tumors, pointing toward stroma.
doi:10.1371/journal.pone.0031827.g002
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(upper right), or at the tumor edge (middle right). Taken together,

the data show that Wnt5a and its receptors are expressed by non-

overlapping sub-populations. The strong expression of Wnt5a at

the leading edge, as well as in tumor-surrounding stroma cells, in

conjunction with the polarised expression of Fzd3 within the

tumor mass suggest that Wnt5a gradients project into the tumor to

enhance motility in distinct subpopulations.

Wnt5a concentration gradients enhance directional
motility of keratinocytes

The data summarised above suggested Wnt5a concentration

gradients may be important for its effect on cell motility. To test

this hypothesis functionally, we used human HaCat keratinocytes

as a model. We stably transfected HaCat cells with a Wnt5a-

expressing vector, or empty control vector (termed HaCat

pcDNA). Expression of recombinant Wnt5a was verified by

western-blot (fig. 6A). First, we assessed directed cell migration in a

two-chamber Transwell assay. As shown in figure 6B, when

recombinant Wnt5a was added directly to HaCat-pcDNA

keratinocytes in the upper chamber, thus present in a homogenous

concentration around migrating cells, it inhibited chemotactic

migration toward 5% FCS present in the bottom well. Likewise,

chemotactic migration was significantly reduced in cells overex-

pressing Wnt5a relative to non-overexpressing cells (fig. 6C). An

analogous result was obtained in a short term (6 hours) migration

assay using either 5% FCS or EGF as chemoattractant (fig. S2A).

Moreover, in scratch assays, the migration of Wnt5a-overexpress-

ing HaCat cells in 10% FCS DMEM (fig. 6D) toward the scratch

edge was greatly reduced compared to HaCat-pcDNA cells

(similar results were found when using 1% FCS as chemoattrac-

tant, fig. S2A). Thus, keratinocyte migration is inhibited when

Wnt5a surrounds the cells at homogenous concentration. By

contrast, when Wnt5a-secreting HaCat cells were seeded at the

bottom of a Transwell chamber, thereby establishing an upward

Wnt5a concentration gradient, migration of non-Wnt5a overex-

pressing Hacat cells seeded in the top chamber toward the Wnt5a

source was significantly enhanced (fig. 6e). These data show that

human keratinocytes are induced to migrate toward a Wnt5a-

gradient, but that non-gradient Wnt5a decreases motility toward

other chemoattractants.

Increased Wnt5a expression in cutaneous SCC is
accompanied by repression of canonical Wnt signalling
and downregulation of signalling inhibitors

Since canonical and non-canonical pathways cross-inhibit each

other, the effect of Wnt5a signalling in vitro is dependent on the

relative abundance of other ligands, modulators, receptors, and

downstream effectors in the Wnt signalling network. We therefore

performed a comprehensive analysis of the expression of Wnt-

signalling components in primary invasive cutaneous squamous

cell carcinoma. As shown in table 2, Wnt5a was the most

significantly upregulated of all wnt ligands (four-fold, p = 861026),

independenly confirming the immunohistochemistry data. By

contrast, the most highly expressed canonical Wnt member,

Wnt3a, is significantly down-regulated, thereby alleviating com-

petitive antagonism for Wnt5a at the receptor level. (Another

canonical Wnt ligand, Wnt8b, is formally upregulated, but appears

to be expressed at much lower total levels, Table 2). Among

recognised Wnt5a-binding frizzled receptors, Fzd2 and Fzd5 are

upregulated, albeit at marginal statistical significance (Table 3).

Among extracellular Wnt antagonists SFRP1 is upregulated,

consistent with further repression of canonical Wnt signalling (see

below, Discussion). DKK2, specific for canonical Wnt members, is

also repressed but the expression of the much higher expressed

DKK1 is unaltered. By contrast, antagonists targeting both

canonical and non-canonical Wnts, Wif and SFRP2/3, as well

as the key intracellular signalling antagonist Axin2, are all

significantly downregulated. These changes are graphically

summarised in fig. 7a. Collectively, they suggest that the

upregulation of Wnt5a in invasive SCC is part of a set of changes

acting synergistically to boost non-canonical, but repress canonical

Wnt signalling (see below, Discussion).

Concurrent inverse transcriptional regulation of Wnt5a
and Wnt3a distinguishes SCC from non-invasive benign
hyperproliferation

The transcriptional upregulation of Wnt5a itself is unlikely to

cause invasiveness, since it is also strongly upregulated in psoriasis,

a hyperproliferative but non-invasive disorder [14]. We therefore

sought to identify additional factors turning physiological Wnt5a

action into an enhancer for invasive migration. To this end we

compared gene expression of wnt signalling components in SCC

with psoriasis. In both conditions, the respective pathological state

is compared to healthy control skin. The relative level of gene

Figure 3. Localization of Fzd5 in non-melanoma skin cancer.
Immunohistochemistry of SCC (a–d), or BCC (e–h), in each case showing
an example of tumors exhibiting high (SCC: a,c; BCC: e,g) or low (SCC:
b,d; BCC: f,h) Fzd5 expression. Staining intensities in the tumors can be
directly compared to staining intensities of Fzd5 in the granular layer of
the epidermis (black arrowheads). Panels a,b,e,f are shown at 406 and
c,d, g,h at 2006magnification. The inset on the lower right of (c) shows
a tumor-associated fibroblast. Red arrows denote blood vessels.
doi:10.1371/journal.pone.0031827.g003

Wnt5a in Cutaneous SCC
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Figure 4. Spatial relationship of Wnt5a, Fzd3, and Fzd5 in squamous cell carcinoma. Serial sections of three paraffin embedded SCC tumor
samples (top, middle, bottom row, respectively) were stained for Wnt5a, Fzd5, Fzd3, respectively, as described in Methods, and shown at 2006
magnification. Red asterisk denotes artificial nuclear staining possibly due to antigen retrieval conditions. Red arrows denote boundaries of tumors,
pointing toward stroma.
doi:10.1371/journal.pone.0031827.g004

Figure 5. Spatial relationship of Wnt5a, Fzd3, and Fzd5 localization in basal cell carcinoma. Immunohistochemistry of serially cut
samples stained for Wnt5a, Fzd5, or Fzd3 as indicated, magnification: 1006 (top row), 2006 (middle, bottom rows).
doi:10.1371/journal.pone.0031827.g005

Wnt5a in Cutaneous SCC
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expression, expressed as rank level, was found to correlate well

between the control skin samples in both data sets, respectively,

indicating that dysregulation of genes detected in either condition

occurs relative to a similar control (Fig. S3). Figure 7b shows a

color-coded dysregulation heat map of the Wnt-signalling

components listed in tables 2 and 3 for SCC vs. psoriasis. In

confirmation of our previous findings [14], Wnt5a and Fzd5 are

also upregulated in psoriasis. Likewise, the downregulation of the

canonical wnt inhibitor DKK2, CTNNBIP1 (ICAT), Axin2, as

well as FRZB (SFRP3) is common to SCC and psoriasis. However,

the repression of Wnt3 as well as the dysregulation of SFRP1 and

SFRP2 are only found in invasive cutaneous SCC, but not

psoriasis.

Lack of nuclear b-catenin staining and weak Axin2
protein expression confirm down-regulated canonical
Wnt-signalling in SCC and BCC

In order to obtain further independent evidence for the

activation status of canonical Wnt-signalling we performed

immunohistochemistry of b-actin, using an antibody specific for

activated (Ser38/Thr41 dephosphorylated) b - actin. As shown in

figure 8, nuclear b-catenin was abundant in the granular layer of

the epidermis but absent from either SCC or BCC tumors. This

was true for all SCC (n = 12) and BCC (n = 7) samples studied. We

furthermore took advantage of the publicly available tissue array

repository available at the ProteinAtlas website. This database

contains immunohistochemistry data varying in quality depending

on the reagents used. In the case of b-catenin, the website contains

series stained with four different antibodies, three of which have

been extensively validated (see Data S1). IHC images generated

using either the same antibody specific for activated b-catenin or

antibodies detecting total b-catenin revealed the presence of

membrane-located b-catenin but the consistent absence of nuclear

b-catenin in 12/12 SCC and in 11/BCC using four different

antibodies (fig. 9, Data S1). Finally, we also mined the data at

ProteinAtlas available for Axin2. Even though the level of

validation of this antibody is not quite as robust as for the b-

catenin antibodies, the available data strongly suggest that Axin2

fails to accumulate in either SCC or BCC (figure S6). Thus,

protein level data are consistent with the expression profiling data,

suggesting repression of canonical Wnt signalling.

Discussion

Numerous studies have suggested a role of Wnt5a in cancer

invasion (e.g. [16,22–25]. Nonetheless, the role of Wnt5a in cancer

is controversial, some reports suggesting that Wnt5a may act as

tumor suppressor by antagonising canonical Wnt signalling

(reviewed in [26]). On the other hand, both canonical and non-

canonical Wnt signalling, though mutually antagonistic, appear to

act complementary in different stages of colorectal cancer

Figure 6. Wnt5a inhibits keratinoctye migration when present in homogenous concentration, but acts as chemoattractant when
present as gradient. A. Expression of endogenous and recombinant Wnt5a in whole cell lysates of stably transfected Wnt5a-overexpressing HaCat
or control (HaCat-pcDNA) cells verified by western blot. B. Non-Wnt5a overexpressing HaCat-pcDNA cells were seeded in the upper chamber of a
Transwell in 0.1% BSA DMEM in the absence or presence of recombinant Wnt5a at 1 mg/ml, as indicated in the figure. The lower chamber was filled
with 600 ml DMEM containing 5% FCS as chemoattractant. Results are expressed as percentage of migrating cells when HaCat-pcDNA were seeded in
0.1% BSA DMEM only. The results shown represent mean 6 s.d. of two independent experiment, each performed in triplicate, *p#0.05. C.
Comparison of Wnt5a-overexpressing and pcDNA control cell migration. Cells suspended in 0.1% BSA DMEM were seeded in the upper chamber. The
lower chamber were filled with 600 ml DMEM containing 5% FCS as chemoattractant. Migration was assessed at 18 h using a colorimetric assay.
Results are expressed as percentage of HaCat-pcDNA migrating cells. Results shown represent mean 6 s.d. of n = 4 independent experiment, each
performed in triplicate, *** p#0.001. D. Scratch wound assay performed on mitomycin-C treated cells. During migration, HaCat-pcDNA (a, b, c), or
Wnt5a-overexpressing cells (d, e, f) were maintained in DMEM containing 10% FCS. Pictures were taken just after the scratch was made (0 hrs) (a and
d), as well as 18 h (b and e) and 24 h later (c and f). E. Migration of HaCat-pcDNA control cells in the presence of a Wnt5a concentration gradient.
Wnt5a-overexpressing or pcDNA HaCat cells were seeded in the bottom wells of Transwell plates. Immediately before adding the inserts containing
HaCat-pcDNA cells in the upper chamber, the media in the bottom wells was replaced to remove pre-secreted Wnt5a. Migration was assessed at
18 h. Results are expressed as percentage of HaCat-pcDNA migrating cells. Results shown represent mean 6 s.d. of n = 3 independent experiments,
each performed in triplicate, *** p#0.001.
doi:10.1371/journal.pone.0031827.g006
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development, Wnt5a being upregulated in the later invasive stage

[27]. One crucial aspect of Wnt5a action on cancer cell motility is

the presence of concentration gradients. When added directly to

cell medium, Wnt5a inhibits cell migration. This observation

(fig. 6) has been made by others previously and taken as evidence

that Wnt5a blocks invasion (e.g. [28]). However, when applied as

gradient (fig. 6e), Wnt5a clearly stimulates directed motility [15].

The present data (strong expression of Wnt5a at the edge and in

surrounding stroma, focal polarised intracellular distribution of

Fzd3 within the tumors) suggests the existence of Wnt5a gradients

acting from the tumor margin (as well as Wnt5a expressing stroma

cells, fig. 1b,d) on cells within the tumor, thereby increasing

chemotactic motility into adjacent tissue.

In terms of receptor binding, Wnt5a can bind a number of Fzd

receptors. The present data suggest that Fzd5 is unlikely to

mediate invasion related effects. Thus, in contrast to Fzd3, Fzd5 is

weak or absent in 3/12 SCC and 7/9 BCC. In addition, we

previously found Fzd5 also upregulated in psoriasis. However,

Fzd5 may mediate inflammatory responses triggered by Wnt5a

Table 2. Expression of Wnt – ligands in cutaneous SCC.1

Gene expression level2
fold change3 p value

con tumor

Canonical Wnts4

WNT1 10 22 n.s.

WNT2 98 266 n.s.

WNT2 98 266 n.s.

WNT2B 195 134 n.s.

WNT3 2608 886 0.3 6.E-06

WNT8A 56 85 n.s. n.s.

WNT8B 17 58 3.4 0.004

WNT10A 301 317 n.s.

WNT10B 115 113 n.s.

Non-canonical Wnts

WNT4 97 97 n.s.

WNT5A 696 2915 4.2 8.E-06

WNT5B 123 202 n.s. n.s.

WNT6 107 143 n.s. n.s.

WNT7A 61 95 n.s. n.s.

WNT7B 274 244 n.s. n.s.

WNT11 61 132 n.s.

Unclassified Wnts

WNT9A 128 199 1.6 0.003

WNT9B 24 27 n.s.

WNT16 510 127 0.2 2.E-04

1Data shown (extracted from [18]) represent n = 10 paired samples of
moderately differentiated cutaneous invasive SCC from immunocompetent
patients. BOLD print: fluorescence intensity (arbitrary units) of .1000 in either
control or tumor.

2Expression levels are the inverse log2-transform of raw fluorescence intensity
data provided by [18]. Where multiple probes per gene were present on the
array, the probe yielding the highest fluorescence value is shown. For none of
the genes listed in the table was there an inverse or significant fold-change for
alternative probes.

3Fold-changes between SCC and control samples with a p-value ,0.02 are
shown.

4Classified according to [27].
doi:10.1371/journal.pone.0031827.t002

Table 3. Expression of Wnt – signalling components in
cutaneous SCC.1

Gene expression level2
fold change3 p value

con tumor

Receptors

FZD1 152 139 n.s.

FZD2 94 485 5.2 0.02

FZD3 160 102 n.s.

FZD4 35 50 n.s.

FZD5 16 57 3.5 0.021

FZD6 2058 1737 n.s.

FZD7 708 513 n.s.

FZD8 443 364 n.s.

FZD9 53 37 n.s.

FZD10 771 520 n.s.

Co-receptors

ROR1 222 193 n.s.

ROR2 80 59 n.s.

RYK 177 156 n.s.

LRP5L 107 88 n.s.

LRP5 160 161 n.s.

LRP6 240 174 n.s.

Extracellular inhibitors/modulators

DKK1 90 552 n.s.

DKK2 1310 95 0.1 5.E-12

DKK3 5640 4304 n.s.

DKK4 34 54 n.s.

DKKL1 30 36 n.s.

WIF1 3405 247 0.1 1.E-04

SFRP1 773 2707 3.5 0.003

SFRP2 12057 4286 0.4 4.E-04

SFRP3/FRZB 1362 350 0.3 1.E-04

SFRP4 46 77 n.s.

SFRP5 39 71 n.s.

Downstream signalling components

AXIN1 219 258 n.s.

AXIN2 1280 341 0.27 5.4E-11

DVL1 925 1197 n.s.

DVL2 522 567 n.s.

DVL3 106 163 n.s.

GSK3B 1270 2055 n.s.

CTNNBL1 1274 1418 n.s.

CTNNB1 4018 2771 n.s.

CTNNBIP1 5285 2245 0.4 2.E-04

1Data shown are as detailed in Table 2. BOLD print indicates fluorescence
intensity (arbitrary units) of .1000 in either control or tumor sample.

2Expression levels are the inverse log2-transform of the raw fluorescence
intensity in [18]. Where multiple probes per gene were present on the array,
the probe yielding the highest fluorescence value is shown. For none of the
genes listed in the table was there an inverse or significant fold-change for
alternative probes.

3Fold-changes between SCC and control samples with a p-value ,0.02 are
shown.

doi:10.1371/journal.pone.0031827.t003
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secreted by tumor-associated stroma or endothelial cells such as

inflammatory cytokine production [20,29]. A further recognised

Wnt5a receptor, is Fzd2. Although we could not study Fzd2 by

immunohistochemstry for want of a suitable antibody, we did find

Fzd2 upregulated by expression profiling in SCC, but not in

psoriasis (table 3, fig. 7b). Fzd2 has been shown to enhance

invasiveness in an autocrine manner by controlling focal adhesion

dynamics at the leading edge [30], a mechanism in line with the

distribution of Wnt5a at the leading edge found here in SCC and

BCC. Functional studies will be required to determine if Fzd2

mediates Wnt5a-driven invasiveness in these cancer types.

The comparison of wnt-signalling related expression in SCC

versus the non-invasive hyperproliferative state in psoriasis (fig. 7b)

confirms that the inverse regulation of non-canonical and

canonical Wnt signalling is specific for the invasive phenotype.

Similarly, the non-invasive, pro-inflammatory response in lung

epithelia to acutely increased mechanical pressure is characterised

by concurrent activation of both types of Wnt signalling [31]. Our

findings are in confirmation of a previous study which failed to

detect nuclear b-catenin accumulation in SCC [32] whereas this is

increased in psoriasis [33]. One previous study did report

downregulation of canonical Wnt signalling in psoriasis [34].

However, based on Axin2 as prototypical target of this pathway,

the changes observed are minor (fig. 3b therein). Interestingly, the

specific activation of b-catenin in the granular layer, as well as

Axin2, shown here may explain the slight downregulation of

canonical Wnt signalling noted in psoriasis, since this layer fails to

be formed in that disease. While downregulation of SFRP3 also

occurs in psoriasis, SFRP3 is unable to bind to Wnt1 directly [35],

thus placing it outwith the canonical Wnt signalling pathway.

The data presented here suggest that SFRP proteins, in

particular SFRP2, exhibit very high constitutive expression in

normal skin (table 3), in confirmation of a recent report showing

strong SFRP2 protein staining in skin observed by immunohisto-

chemistry [36]. The physiological role of SFRP2 in the skin

include both modulation of Wnt signalling as well as Wnt-

independent functions. First, the spatial arrangement of Wnt5a

versus SFRP2 suggests that SFRP2 shapes Wnt gradients by acting

as a diffusion barrier analogous to its role in development [7,37].

Thus, in the epidermis, Wnt5a is most strongly expressed in the

basal layer, while SFRP2 is highly expressed in suprabasal cells

[36]. In the hair follicle, Wnt5a is massively expressed in the

dermal papilla [14] while it forms a ring-like enclosure in the inner

root sheath [38]. In both structures, excess SFRP2 is thus poised to

maintain a unidirectional Wnt5a concentration gradient. Second,

independent of Wnt, SFRP2 activates pro-collagen proteases such

as BMP-1, thereby enhancing collagen maturation [39]. Thus, the

reduction of SFRP2 in SCC decreases collagen fibril deposition in

the tumor stroma as it does in other tissue [39], facilitating invasive

cell migration. Both wnt-dependent and wnt-independent func-

tions of SFRP2 therefore counter tissue invasion. That the massive

downregulation of SFRP2 in SCC is clinically relevant, is

additionally strongly suggested by numerous reports of epigenetic

SFRP2 silencing in invasive cancers (see below).

Concomitant to the repression of SFRP2, invasive SCC is

marked by strong upregulation of SFRP1 (table 3). Several lines of

evidence suggest that both of these changes in fact synergise to

promote hyperactive Wnt5a signalling. First, SFRP1 has been

shown to bind canonical Wnt1 but is unable to bind Wnt5a [40]

and also antagonises Wnt1 function but not Wnt5a function in

Figure 7. Specific upregulation of non-canonical Wnt signallling and repression of canonical Wnt signalling in SCC. (a) Cartoon
illustrating functional relationships between Wnt signalling components listed in tables 2 and 3. Red: upregulated, Green: down-regulated. Large
dotted lines represent protein binding. (b) Specific dysregulation of SFRP1 and SFRP2 in invasive SCC, but not psoriasis. Fold-dysregulation of
transcripts in psoriasis plaques was calculated as described previously [19] and aligned to the SCC data set described in tables 2 and 3. Color coding
and bold type set as in table 2. ‘‘n.s.’’: not significant.
doi:10.1371/journal.pone.0031827.g007
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Figure 8. Lack of nuclear b-catenin in SCC and BCC. Immunohistochemistry of three BCC (a–c) and SCC (d–f) samples stained with an antibody
specific for activated b-catenin. Note strong nuclear b-catenin confined to the granular layer of the epidermis in each sample, as well as in a
magnified hair follicle immediately below SCC cells (inset in d). All samples shown at 1006magnification, inset at 4006.
doi:10.1371/journal.pone.0031827.g008

Figure 9. Immunohistochemical detection of b-catenin in BCC (b, e), and moderately differentiated SCC (c, f) samples at the
ProteinAtlas repository (see main text). Samples were stained either with an antibody specific for activated non-phosphorylated b-catenin (top)
or pan-b-catenin (bottom). Images in (a) and (d) show the b-catenin distribution observed with the respective antibody. Note that strong nuclear b-
catenin is confined to the granular layer of the epidermis.
doi:10.1371/journal.pone.0031827.g009
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Xenopus development [41], suggesting that SFRP1 upregulation

further represses canonical Wnt signalling. Second, while SFRP2

increases sensitivity toward apoptosis, SFRP1 has the opposite

effect [42]. Third, SFRP1, but not SFRP2, is a potent angiogenic

factor independent of Wnt signalling, suggesting its upregulation

enhances tumor vascularisation [43,44]. Fourth, and most

importantly, only SFRP2, but not SFRP1 silencing by promoter

methylation was observed in oral SSC [45] and gastric cancer

[46], and promoter methylation is significantly higher in SFRP2

than SFRP1 in cervical cancer [47], as well as in cervical

adenocarcinoma [46,48].

In conclusion, we here show that Wnt5a is overexpressed in

non-melanoma skin cancer, localises to the invasive tumor edge,

and directs gradient – dependent motility of keratinocytes in vitro.

Our data suggest that concurrent upregulation of Wnt5a and

repression of Wnt3a as well as SFRP2 is sufficient to drive tissue

invasion in vitro, a hypothesis which is testable using our previously

established SCC-based in vitro carcinogenesis model [49]. Finally,

our results establish cutaneous non-melanoma skin cancer as

model to analyse dysequilibrium between canonical and non-

canonical Wnt signalling.

Supporting Information

Data S1 Expression of b-catenin in SCC and BCC.
Section 1: Absence of activated b-catenin in 12/12 SCC and

11/11 BCC tumors in the ProteinAtlas database. Section 2:

Literature- review of published IHC staining data on b-catenin

expression in SCC and BCC, suggesting consistent reduction of b-

catenin in SCC. Section 3: critical appraisal of the data on b-

catenin in SCC published in Malanchi et al, Nature 2008. Section

4: critical appraisal of the data on b-catenin in BCC published in

Yang et al, Nature Genetics, 2009.

(PDF)

Figure S1 Immunohistochemistry of Fzd3 in normal
adult skin and anagen hair follicle, performed as
detailed in Methods. ORS, outer root sheat, Ctx, cortex,

DP, dermal papilla. a,b shown at 2006 magnification, inserts in

c,d at 4006. Arrows denote the polarity line in individual cells

pointing away from the Fzd3-pole.

(TIF)

Figure S2 Non-gradient Wnt5a inhibits chemotactic
migration. A. Short term (6 h) migration assay. Control or

Wnt5a-overexpressing HaCat keratinocytes were seeded in the top

chamber of a Transwell plate and migration stimulated as detailed

in Methods either by DMEM containin 5% FCS, or epidermal

growth factor (EGF), as indicated. B. Scratch wound performed on

monolayers of mitomycin-C treated cells. HaCat-pcDNA (a, b, c)

and wnt5a-overexpressing cells (d, e, f) were maintained in

DMEM supplemented with 1% FCS. Pictures were taken just after

the scratch was made (0 hrs) (a and d) as well as 18 h (b and e) and

24 h later (c and f).

(TIF)

Figure S3 Relative levels of gene expression in normal
skin are comparable in data sets quantifying gene
dysregulation in squamous cell carcinoma (SCC) and
psoriasis, respectively. The fluorescence data from each of

the datasets described in Methods and the legend for figure 7 were

used to rank the relative fluorescence intensities among the probes

yielding the most intensive signal for each gene, respectively. Data

shown represent the genes listed in table 2. R2 = 0.92. The data

show that the control gene expression used to define altered gene

expression in either condition is comparable.

(TIF)

Figure S4 Wnt5a – expression in human epidermis.
Immunohistochemistry using an alternative antibody (mouse

monoclonal, clone 3D10) compared to the previously one (mouse

monoclonal, order nr. AF645, R&D) confirms the overall

expression pattern of Wnt5a, as previously reported: strong

expression in the basal layer, strong expression in dermal

fibroblasts and subepidermal capillaries. In addition, the samples

shown above illustrate some biological variation detected: (i)

variable intensity of Wnt5a staining between samples from

different individuals (left vs. middle), (ii) additional suprabasal

expression in some, but not all keratinocytes in the spinous layer

(right), and (iii) discontinuous expression in the basal layer (middle

panel). Immunohistochemistry was performed as detailed in

Methods, panels shown are at 1006magnification.

(TIF)

Figure S5 Expression of Wnt5a in SCC and BCC, as
detected using an alternative antibody. Three SCC (top)

and BCC (bottom) samples are shown, respectively. In each case,

tumor – adjacent epidermis has been inserted to allow assessment

of relative staining intensity. Wnt5a staining is strong and varies

between homogenous (top right, bottom) and being stronger at

tumor edge (top left and middle). Interstingly, the BCC sample on

the bottom left suggest existence of tumor subclones with varying

Wnt5a expression levels. Magnification 1006.

(TIF)

Figure S6 Immunohistochemistry of Axin2 in SCC and
BCC. Samples were taken from the repository available at

ProteinAtlas.org. Numbers in the tumor samples refer to patient

IDs on the website. (a,b): normal anal/vulval skin samples at the

website (normal epidermis was not available as separate samples.

However, tumor-associated epidermis is shown in panels h,i) show

strong expression in the granular layer, paralleling the location of

activated b-catenin (see figs. 8,9). Note that despite intensive

overall staining, the intracellular localisation of Axin2 appears to

be perinuclear/cytoplasmic (insets in panels a,b). Panel C shows

specific cytoplasmic staining in goblet cells of colonic mucosa as

positive staining control. Further evidence for the validity of the

staining results are the much stronger staining observed in colon

carcinoma samples vs. normal colonic mucosa in numerous

samples at the website, as well as stronger staining seen in ovarian

cancer vs. normal ovarian tissue (in confirmation of the data

published by Leung et al, ‘‘Activation of AXIN2 Expression by b-

Catenin-T Cell Factor’’, J Biol Chem 2002). Blue arrows: tumor

tissue, red arrows: tumor-associated cells affording estimate of

relative staining intensity in cluding eccrine glands (d), inflamma-

tory stroma-infiltrate (e,f,g), as well as epidermis (h,i).

(TIF)
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