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Detecting Remote Sequence Homology in Disordered
Proteins: Discovery of Conserved Motifs in the N-Termini
of Mononegavirales phosphoproteins
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Abstract

Paramyxovirinae are a large group of viruses that includes measles virus and parainfluenza viruses. The viral Phosphoprotein
(P) plays a central role in viral replication. It is composed of a highly variable, disordered N-terminus and a conserved C-
terminus. A second viral protein alternatively expressed, the V protein, also contains the N-terminus of P, fused to a zinc
finger. We suspected that, despite their high variability, the N-termini of P/V might all be homologous; however, using
standard approaches, we could previously identify sequence conservation only in some Paramyxovirinae. We now
compared the N-termini using sensitive sequence similarity search programs, able to detect residual similarities
unnoticeable by conventional approaches. We discovered that all Paramyxovirinae share a short sequence motif in their first
40 amino acids, which we called soyuzi. Despite its short length (11-16aa), several arguments allow us to conclude that
soyuzl probably evolved by homologous descent, unlike linear motifs. Conservation across such evolutionary distances
suggests that soyuz1 plays a crucial role and experimental data suggest that it binds the viral nucleoprotein to prevent its
illegitimate self-assembly. In some Paramyxovirinae, the N-terminus of P/V contains a second motif, soyuz2, which might
play a role in blocking interferon signaling. Finally, we discovered that the P of related Mononegavirales contain similarly
overlooked motifs in their N-termini, and that their C-termini share a previously unnoticed structural similarity suggesting a
common origin. Our results suggest several testable hypotheses regarding the replication of Mononegavirales and suggest
that disordered regions with little overall sequence similarity, common in viral and eukaryotic proteins, might contain
currently overlooked motifs (intermediate in length between linear motifs and disordered domains) that could be detected

simply by comparing orthologous proteins.
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Introduction

Paramyxovirinae are a large subfamily of viruses containing nine
human pathogens such as measles virus, mumps virus and the
emergent Hendra and Nipah viruses. The viral Phosphoprotein (P)
plays a central role in viral replication and in interferon escape. P
plays multiple roles in replication, acting as a co-factor of the viral
polymerase (L) and binding to the nucleocapsid [1]. The viral
nucleoprotein (N) can self-assemble illegitimately on cellular RNA,
and a third function of P is to prevent this by binding N and
keeping it in a monomeric form, called N°, until encapsidation
occurs [1]. The Paramyxovirinae P gene expresses other proteins
than P from different reading frames (Figure 1): the protein V,
which shares its N-terminus with P but has a different C-terminus
(forming a zinc finger), and, in some genera, the protein C, which
overlaps the N-terminus of P (Figure 1). All three proteins encoded
by the P gene play a role in interferon escape [2]. Experimental
studies of P are difficult for many reasons: multiple functions, gene
overlaps, abundance of structural disorder in P and N [3,4,5],
large size of L and the nucleocapsid, and transient interactions.

Paramyxovirinae P is composed of two main parts: an N-terminal
moiety that is highly variable in sequence and in length, from 150
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to 380 amino acids (aa), and is disordered [6,7,8,9], i.e. lacks a
defined, stable tertiary structure [10], and a conserved C-terminal
moiety comprising a multimerization domain that binds to L, and
a nucleocapsid-binding domain (Figure 1). Related viruses from
the order Mononegavirales, such as Pneumovirinae, Rhabdoviridae and
Filoviridae, express a similar protein, usually also called P, which
also binds the nucleocapsid, acts as the co-factor of the
polymerase, and is also almost always encoded by the second
gene of the viral genome. The P of all Mononegavirales have a similar
organization [11,12,13,14,15,16,17] but there is no apparent
sequence or structural similarity in P across all families.
Previously, using standard approaches such as psi-blast [18], we
detected sequence similarity in a short region of the N-terminus of
some Paramyxovirinae P only [5]. However, all Paramyxovirinae P are
clearly orthologous (i.e. descended from a common ancestor
without gene duplication), since their C-termini have statistically
significant similarity and they are encoded by genes in the same
location [5]. Therefore, we reasoned that their disordered N-
terminal moieties might all be also descended from a common
ancestor, despite their high variability in sequence and in length.
In that case, they might have retained some residual sequence
similarity that would have escaped detection by conventional
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Figure 1. Organization of the Paramyxovirinae P gene. The P, V and C proteins are encoded from alternative reading frames. V is produced in all
Paramyxovirinae genera whereas C is only produced in henipaviruses, morbilliviruses, and respiroviruses.

doi:10.1371/journal.pone.0031719.g001

approaches. In order to detect such potential regions, we used
sensitive bioinformatics approaches that can detect weak similar-
ities between protein regions: profile-profile comparison and
multiple sequence alignment coupled with software that can
indicate reliably aligned regions. Motifs found by this approach
can be validated by examining their prevalence, their location,
their function, and by finding them in newly sequenced viruses
that were unknown at the time of the analysis.

We discovered that the N-termini of the P of all 45 species of
Paramyxovirinae share a short sequence motif within their first 40aa,
soyuzl. Disordered regions, particularly of viral proteins, are
thought to evolve extremely fast and, to our knowledge, this is the
first reported example of sequence conservation in a disordered
region between such distantly related viruses. We argue that this
conservation suggests an important function for soyuzl and we
propose reasons why it might constitute a good drug target. A second
motif, soyuz2, is found downstream of soyuzl in some Paramyxovir-
inae, and may play a role in blocking the interferon pathway.

We analyzed other Mononegavirales P and found that their
disordered N-termini also contained conserved motifs of similar
length, although these might not be homologous to soyuzl. In
addition, their C-termini, despite having different folds, contained
a structurally and functionally similar region, suggesting that they
might have a common origin.

Materials and Methods

Our hypothesis is that the disordered N-termini of the
phosphoproteins might contain regions that are similar in sequence.
The similarity is expected to be weak since it has escaped detection so
far. At present, the most sensitive method to detect sequence
similarities between two query proteins is to gather homologs of each,
to derive two multiple sequence alignments (MSAs), each composed
of one query protein and of its homologs, and to compare the two
MSAs using profile-profile comparison [19]. A sequence profile is a
representation of a multiple alignment, containing information about
which amino acids are “allowed” at each position of the alignment
and about their probability of occurring. Comparing profiles of two
multiple alignments is much more powerful than comparing two
single sequences, because the profiles contain information about how
each sequence can evolve, and can therefore detect weak similarities
that remain after both sequences have evolved apart [19].
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Our strategy consists of the following steps: 1) collect
sequences of orthologous phosphoproteins; 2) extract their N-
terminal regions; 3) group them by genus and align them; 4)
identify sequence motifs, i.e. regions having detectable, though
possibly statistically subsignificant sequence similarity, using
profile-profile comparison and multiple sequence alignment; 5)
check that their conservation does not result from the presence of
an underlying RNA structure; 6) the final step is to validate
motifs that have subsignificant similarity. This can be done by a)
obtaining new sequences from distantly related viruses (if they also
have the motif, it is very unlikely to be spurious); b) examining
the prevalence of the motifs (a motif found in numerous related
species is unlikely to have occurred by chance); ¢) examine the
location of the motifs (motifs all occurring in exactly the same
position are more likely to result from homologous descent than
from convergent evolution); and d) examine functional data
associated with the motifs. This validation step is performed in
the Discussion.

Sequences used in the study

The accession numbers of the sequences of Paramyxovirinae P
used in this study, as well as the abbreviations of species names are
in Table 1. The accession numbers of the P of Pneumovirinae,
Filoviridae, and Rhabdoviridae are in Table 2. Unpublished sequences
for the Rhabdoviridae genus ephemerovirus were kindly provided by
PJ. Walker. We did not analyse the P of taxa for which too few
sequences were available, i.e. Bornaviridae and the recent genus
nyavirus [20]. The N-terminus of P is defined as the part upstream
of the multimerization domain (Figure 1).

Sequence alignment and comparison

We generated multiple sequence alignments (MSAs) of the N-
terminal moieties of the P of each Paramyxovirinae genus by using
MAFFT [21] (version 6 with options L-INS-i). We also used the
metapredictor M-coffee [22], ran with all default MSA programs
with the exception of MAFFT: PCMA (version 2.0) [23], POA
[24], DIALIGN-TX [25], Muscle [26], ProbCons [27], ClustalW
[28] and T-Coffee [29]. We examined the reliability of the
alignments using Guidance [30] (using the MAFFT option) and
CORE [22] (which is part of the standard output of M-coffee
[22]). These methods are complementary, since they rely on
independent approaches (respectively robustness to changes in
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Table 1. Sequences of Paramyxovirinae P or V proteins.

Virus species Abbreviation Genus Accession number
Atlantic salmon paramyxovirus Atlantic PMV Respirovirus-like B1NLR3
Avian Paramyxovirus 2 Avian PMV2 Avulavirus B4Y565
Avian Paramyxovirus 3 Avian PMV3 Avulavirus B5L5T6
Avian Paramyxovirus 4 Avian PMV4 Avulavirus B6UPM7
Avian Paramyxovirus 5 Avian PMV5 Avulavirus D3X604
Avian Paramyxovirus 6 Avian PMV6 Avulavirus 295810683
Avian Paramyxovirus 7 Avian PMV7 Avulavirus 224979460
Avian Paramyxovirus 8 Avian PMV8 Avulavirus C5lov3
Avian Paramyxovirus 9 Avian PMV9 Avulavirus 217068695
Avian Paramyxovirus 10 Avian PMV10 Avulavirus 300432147
Beilong virus Beilong Henipavirus-like Q287X8
Bovine parainfluenza virus 3 bPIV3 Respirovirus P06162
Canine distemper virus Canine DV Morbillivirus QIDGW6
Dolphin Morbillivirus Dolphin MV Morbillivirus 1586312
Bat paramyxovirus/Eid_hel/GH-M74a/GHA/2009 Bat PMV Henipavirus Personal communication
Fer de lance virus Fer de lance Ferlavirus 34391488
Hendra virus Hendra Henipavirus 055777
Human parainfluenza virus 1 hPIV1 Respirovirus P32530
Human parainfluenza virus hPIV2 Rubulavirus P19847
Human parainfluenza virus 2 hPIV3 Respirovirus P06163
Human parainfluenza virus 4 hPIV4 Rubulavirus P21739

J virus J virus Henipavirus-like Q49HN9
Mapuera virus Mapuera Rubulavirus A3R041
Measles virus Measles Morbillivirus Q9EMA9
Menangle virus Menangle Rubulavirus 82712718
Mossman virus Mossman Morbillivirus-like Q6WGM4
Mumps virus Mumps Rubulavirus P30927
Nariva virus Nariva Morbillivirus-like B8XH60
Newcastle disease virus Newcastle Avulavirus POC765
Nipah virus Nipah Henipavirus Q997F2
Pacific salmon paramyxovirus Pacific PMV Respirovirus-like JF795583
Parainfluenza virus 5 PIV5 Rubulavirus P11207
Peste des petits ruminants virus PPRV Morbillivirus C3W4R0
Phocine distemper virus Phocine DV Morbillivirus P35941
Pigeon Paramyxovirus 1 (strain of Newcastle disease virus) Pigeon PMV1 Avulavirus 258547241
Porcine rubulavirus Porcine RV Rubulavirus 151266279
Rinderpest virus Rinderpest Morbillivirus P60169
Salem virus Salem Morbillivirus-like QolIzCo
Sendai virus Sendai Respirovirus P04859
Simian virus 41 SV41 Rubulavirus P36315
Tioman virus Tioman Rubulavirus Q91NG9
Tuhoko virus 1 Tuhoko1 Rubulavirus 298388482
Tuhoko virus 2 Tuhoko2 Rubulavirus 298388490
Tuhoko virus 3 Tuhoko3 Rubulavirus 298388498
Tupaia paramyxovirus Tupaia PMV Morbillivirus-like Q9QM81
doi:10.1371/journal.pone.0031719.t001

phylogenetic guide trees, and degree of agreement between several We compared in a pairwise fashion the MSAs of P of each
multiple alignment algorithms). We discarded parts of the MSAs Paramyxovirinae  genus by making profile-profile comparisons
that we did not consider to be reliably aligned. with HHalign [31]. The threshold for statistically significant
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similarity was set at the commonly used value E=1x10"", and
we also examined subsignificant similarities that had E-values
between 1x107" and 1x107% To generate an MSA of the
N-termini of all Paramyxovirinae P and examine its reliability, we
proceeded as above. All alignments presented in the Figures
were visualized using Jalview [32], with the ClustalX colouring
scheme (see Figure 2b and 2d in [33]), and are available on
request.

We followed the same approach for the P of other Mononegavir-
ales families.

Sequence motif discovery

We used the following programs (all ran from their web
interface using default parameters) in order to identify over-
represented sequence motifs in the N-termini of Paramyxovirinae P:
MEME [34] (version 4.7.0), DILIMO'T [35], and SlimFinder [36]
(version 4.1).

Nucleotide sequence analyses

The nucleotide alignments corresponding to the amino acid
alignments of the N-termini of P were obtained using Protogene
[37], which 1s part of the T-coffee suite at http://www.igs.cnrs-
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Table 2. Sequences of Pneumovirinae, Filoviridae, and Rhabdoviridae P protein.
Family or subfamily Genus Virus species Accession number
Pneumovirinae Metapneumovirus Avian metapneumovirus 50898284
Human metapneumovirus 46852134
Pneumovirus Human respiratory syncytial virus 9629202
Bovine respiratory syncytial virus 9631271
Pneumonia virus of mice 56900718
Filoviridae Ebolavirus Ivory Coast ebolavirus B8XCN7
Bundibugyo ebolavirus B8XCM8
Zaire ebolavirus Q6V1Q9
Sudan ebolavirus Q5XX07
Reston ebolavirus Q91DEO
Cuevavirus LLoviu virus 353745024
Marburgvirus Marburg virus Q1PD52
Rhabdoviridae Lyssavirus Rabies virus P22363
Australian bat lyssavirus Q9QSsP3
European bat lyssavirus 1 A4UHP9
Shimoni bat virus D4NRJ9
Mokola P0C569
West Caucasian bat lyssavirus Q5VKP1
Vesiculovirus Vesicular stomatitis virus (VSV) Indiana Q5VKP1
Maraba virus 298563846
Cocal virus B3FRK7
Vesicular stomatitis virus (VSV) Alagoas B3FRL2
Carajas virus 298563847
Vesicular stomatitis virus (VSV) New Jersey P04877
Isfahan virus Q5K2K6
Chandipura virus P16380
Piry virus Q01769
Pike fry virus C3VM12
Spring viremia of carp virus Q91DS2
doi:10.1371/journal.pone.0031719.t002

mrs.fr/Tcoffee/tcoffee_cgi/index.cgi. We used the metaserver
WAR [38] to predict the secondary structure of RINAs.

In order to detect nucleotide constraints imposed by a potential
RNA structure underlying soyuzl or soyuz2, we examined visually
the nucleotide variability at each codon position of the alignment.
A constraint exerted mostly at the protein level would result in the
second codon positions being the most conserved, and the third
codon positions the least conserved. Conversely, departure from
this pattern would indicate the presence of selection exerted at the
nucleotide level.

Protein sequence analyses

Secondary structure was predicted using Jpred [39]. Disordered
regions were predicted using Medor [40], according to the
principles described in [41]. We used Composition Profiler [42] to
analyze the compositional bias (enrichment or depletion) of
different regions in specific amino acids when compared to
SwissProt (release 51).

The physico-chemical characters of amino acids are as follows
(see also Figure 2d in [33]): aliphatic (IVL); hydrophobic
(WFYMLIVACTH); alcohol (ST); polar (DEHKNQRST); tiny
(AGCS); small (AGCSVNDTP); bulky (EFIKLMQRWY); posi-
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tively charged, 1.e. basic (KRH); negatively charged, i.e. acidic
(DE); or charged (DEKRH).

To imvestigate the 3D structure of soyuzl and soyuz2, we
examined the three structures available for PIV3 V: a monomer of
V bound to DDBI alone (PDB accession number 2b5l, chains C
and D) [43], and a monomer of V bound to the complex DDB1-
CUL4-ROCI (accession number 2hye, chain B), which is the one
presented in Figure 7 [44]. Structural comparison between
Mononegavirales P was carried out using FATCAT [45].

Results

The N-terminal tip of all Paramyxovirinae P, except

respiroviruses, contain a common motif of 16aa, soyuz1

The N-termini of Paramyxovirinae P are globally alignable within
each genus, but not between different genera. Therefore, we first
generated multiple sequence alignments (MSAs) of the N-terminal
moieties of the P of each Paramyxovirinae genus and then compared
the MSAs in a pairwise fashion (see Material and Methods).
HHalign reported statistically significant similarities between the
first 50-60aa of rubulavirus, avulavirus and henipavirus P, with E-
values around 1x107°. This corresponds to the conserved region
described previously in these genera only (described in Figure 7 of
[5]). However, HHalign also reported subsignificant similarities
(E>1x10"% between the first 40aa of the P of other genera, for
instance between henipavirus and morbillivius P (E=1.7x1077)
corresponding respectively to aa 7-26 of Nipah virus P and to aa 9
28 of measles virus, or between henipavirus and respirovirus P
(E=1.5x107%, corresponding to aa 6-18 of Nipak virus P and
aa 25-36 of Sendat virus P. Thus, the P of most Paramyxovirinae have
a short region of marginal sequence similarity in their extreme N-
terminus.

To investigate further this similarity, we aligned the first 60aa of
Paramyxovirinae P using MSA algorithms classified among the best-
performing in recent benchmarks, and examining their reliability
using two complementary methods (see Material and Methods). A
region of 16aa, which we called soyuzl, was reliably aligned in the
N-termini of the P of all Paramyxovirinae except respiroviruses
(Figure 2). Soyuzl contains four positions with strict physico-
chemical conservation (see Material and Methods for the
classification of amino acids employed here). They are located in
positions 1, 4, 8 and 11, shown in bold above the alignment in
Figure 2 (numbering starts at the first position with strict
conservation). Soyuzl also contains 6 positions with good
(>80%), but not strict, physico-chemical conservation, shown
above the alignment in Figure 2. In all genera, soyuzl was
predicted to form a short a-helix, upstream of a long region devoid
of secondary structure.

Soyuz1 is also present in respirovirus P but in a shorter
form of 11aa

We examined the N-terminus of P in the remaining genus,
respiroverus. It is highly variable but we identified a short region (aa
25-36 in Sendai virus) predicted to form an o-helix, conserved in all
respiroviruses and also in the related Ailantic salmon paramyxovirus
(Figure 3). This region contains the same four conserved positions
as soyuzl, if one allows in position 4 small aa, such as V (found in
hPIV1 and Senda: virus), instead of only tiny aa (Figure 3). We
aligned the first 60aa of all Paramyxovirinae P, including respiroviruses.
MAFFT and M-coffee aligned the conserved region of respirovirus P
with the soyuzl of other Paramyxovirinae (see Figure 4), but the
alignment was deemed less reliable by CORE and GUIDANCE.
All generally conserved positions of soyuzl were also conserved in
respiroviruses, with the exception of positions —5 and —1. We
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conclude that respirovirus P also have a soyuzl motif, albeit in a
shorter version (11laa), starting at aa | instead of aa —3.

Newly sequenced Paramyxovirinae P also contain a
soyuz1 motif

We obtained two unpublished sequences of P: that of bat
paramyxovirus (a new henipavirus isolated from African bats and
kindly contributed by F.J. Drexler) and that of Pacific salmon
paramyxovirus [46,47] (related to resprroviruses and kindly contributed
by J. Winton and B. Batts). We found both to contain the soyuzl
motif (Figure 4). In addition, while this manuscript was in
preparation, the sequence of a new Paramyxovirinae, Tailam virus,
related to Beilong virus, was published [48], and it also contains the
soyuzl motif (not shown).

In summary, in all Paramyxovirinae, i.e. 45 species including nine
human pathogens (marked by a skull and crosshones symbol in
Figure 4), P contains in its first 40aa a short motif, soyuzl, with
predicted a-helical potential. Note that the protein V also contains
the soyuzl motif, since it has the same N-terminus as P (Figure 1).

Soyuz2, a motif downstream of soyuz1 conserved in
most rubulaviruses, avulaviruses and henipaviruses

A region of 20aa is conserved downstream of soyuzl in
rubulaviruses, avulaviruses and  henipaviruses, with the exception of
hPIV4, mapuera virus, porcine RV and avian PMV3 (see Figure 2). We
called this motif soyuz2 and present it in more detail in Figure 5.
Its most striking feature is a strictly conserved E in last position.
Soyuz2 corresponds to the second half of the conserved region we
had previously detected (described in Figure 7 of [5]). However,
the alignment of soyuz2 was incorrect because it mistakenly
incorporated 4PIV4 and porcine RV, and as a consequence the
alignment failed to reveal several conserved positions reported
herein, including the strict conservation of E. We could find no
region similar to soyuz2 in other viruses, with the exception of
Nariva virus and Mossman virus (phylogenetically close to morbillivi-
ruses and henipaviruses), which might have a degenerate version of
the motif (Figure 2). The rest of P is extremely variable among
Paramyxovirinae P (see Figure 6).

In summary, all Paramyxovirinae P contain a short motif, soyuzl,
while some rubulaviruses, avulaviruses, and henipaviruses contain
another motif, soyuz2, downstream of soyuzl. In these genera,
soyuzl and soyuz2 correspond respectively to the first and second
half of the conserved region we had previously described [3].
However, the P of the three other Paramyxovirinae genera also
contain a soyuzl motif, previously undetected. In our previous
work, we could detect soyuzl using standard approaches such as
psi-blast only because in some genera it occurs together with
soyuz2, which is very well conserved. We could identify the
presence of soyuzl in the three remaining Paramyxovirinae genera
only by carefully examining subsignificant similarities in profile-
profile comparisons (in the present work).

Soyuz1 is enriched in order-promoting and acidic
residues, while soyuz2 is enriched in flexible and basic
residues

We studied the amino acid composition of soyuzl and soyuz2
(see Material and Methods). Globally, soyuzl is significantly
(P<<0.01) depleted in the positively charged residue R and
enriched in negatively charged (acidic) residues D and E. Soyuzl
is thus negatively charged or neutral in most species, with the
exception of morbilliviruses and some unclassified species, which can
be positively charged. Remarkably, soyuzl never contains any
Proline; this depletion is highly significant (P=10"°). Given that
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Figure 2. Alignment of the N-termini of P from all Paramyxovirinae except respiroviruses (see Figure 3), realized with MAFFT and
coloured according to the ClustalX scheme [33]. Abbreviations and accession numbers are in Table 1. Positions with conserved physico-
chemical character are indicated above the alignment, in bold if the character is strictly conserved (100%) and in normal font if it is generally
conserved (>80%). Numbering of the soyuz1 motif (above the alignment) starts at the first strictly conserved position. Unpublished sequences are
shown by an asterisk.
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Figure 3. Alignment of the N-termini of P from respiroviruses. Positions matching the soyuz1 of the other Paramyxovirinae are indicated above
the alignment (see Figure 2). An experimentally characterized substitution in Sendai virus is in bold.
doi:10.1371/journal.pone.0031719.9003
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Figure 4. Alignment of the N-termini of P from all Paramyxovirinae. Conventions as in Figure 2. The part of soyuzl not conserved in
respiroviruses is indicated by a dashed line above the alignment. Species pathogenic for humans are marked by a skull and crossbones.
Experimentally characterized substitutions in measles virus and Sendai virus are in bold.

doi:10.1371/journal.pone.0031719.g004

Proline is strongly disfavored in helices, and that soyuzl is
consistently predicted as o-helical, this suggests that soyuzl might
need to form an a-helix to perform its function(s). Finally, soyuz1 is
globally enriched in order-promoting, bulky, and hydrophobic aa
(I in particular).

On the contrary, the soyuz2 motif is depleted in acidic residues
(D 1in particular) and thus almost always positively charged. It is
depleted in order-promoting residues and enriched in disorder-
promoting ones.

In conclusion, soyuzl is often negatively charged, is hydropho-
bic, and has a strong propensity towards o-helices, whereas soyuz2
is positively charged and likely to be highly flexible.

Soyuz1 and soyuz2 are mostly in extended conformation
in the only 3D structure available

As mentioned in the Introduction, the N-terminus of P has been
found experimentally to be mostly disordered in many Paramyx-
ovirinae (by disorder we mean lack of stable tertiary structure; this
does not exclude transient secondary structure). However, the N-
terminus of P has recently been observed in an ordered state, in
the V protein of parainfluenza virus 5 (PIV5), a rubulavirus, bound to

@ PLoS ONE | www.plosone.org

the cellular protein DDB1 [43,44]. In the structure, solved by X-
ray crystallography, regions upstream of soyuzl (aal-9) and
downstream of soyuz2 (aa 55-80) are not observable, presumably
because they are disordered (they are indicated by dotted lines in
Figure 7). In particular, the strictly conserved E of soyuz2 (E56 in
PIV5) is not observable, which suggests that DDBI is not the
natural target of soyuz2.

Figure 7 represents the complex between DDBI (in grey) and V
(in purple), with soyuzl in red and soyuz2 in blue. V is composed
of two structurally independent elements [43,44]: a non-globular
moiety (aa 1-40, to the right-hand side of V in Figure 7), and a
globular moiety (aa 41-222), to the left hand-side of V in Figure 7).
The first moiety of V contains an o-helix, called the H helix
(indicated by text in Figure 7), which provides the main
contribution to binding DDBI1, by inserting itself into a pocket
of DDBI [49]. The second moiety contains a seven-stranded -
sheet followed by a zinc finger. Only the first four B-strands are
visible in Figure 7.

As can be seen in Figure 7, soyuzl and soyuz2 mostly adopt an
extended conformation with little regular secondary structure
when bound to DDBI, with two exceptions: six aa of soyuzl
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regions causmg a difference in interferon blocking
between hPIV2 and hPIV4 V (see Discussion

Figure 5. N-termini of P from the rubulaviruses, avulaviruses, and henipaviruses that have the soyuz2 motif. Conventions as in Figure 2. (A)
Experimentally characterized substitutions in soyuz2 and in the H helix are in bold. (B) Comparison of the N-termini of the V protein of PIV5 and hPIV2
(which both have a soyuz2 motif) with that of hPIV4 (which lacks the soyuz2 motif).

doi:10.1371/journal.pone.0031719.9005

contribute to the beginning of the H helix (see also Figure 5), and
two aa of soyuz2 contribute to the B-ladder, forming its first -
strand. Unfortunately, to our knowledge there is no experimental
information regarding the structural state of soyuzl or soyuz2
when not bound to DDBI1.

The conservation of soyuzl or soyuz2 is not due to an
underlying RNA structure

The conservation of soyuzl and soyuz2 (see Figure 6) suggests a
strong constraint. In theory, this constraint could result from the
presence of an overlapping reading frame or an underlying RNA
structure, rather than from selection acting at the protein level.
Many Paramyxovirinae (rubulaviruses, avulaviruses, ferlaviruses) do not
have a C reading frame that overlaps P [50,51]; we therefore
examined whether there was an overlooked RNA structure
underlying soyuzl. We could not detect any predicted RNA
structure (see Material and Methods). A simple analysis (not
shown) of the nucleotide variability at each codon position of the

@ PLoS ONE | www.plosone.org

alignment revealed no striking departure from constraints imposed
by selection acting at the protein level (see Material and Methods).
We conclude that an RNA structure cannot be the main reason for
conservation of soyuzl, although we cannot exclude the presence
of an RNA secondary structure forming non-canonical base pairs
and undetectable by current programs [52], which might exert a
weak constraint on the protein-coding sequence.

We performed the same analyses on soyuz2 (not shown), and
again could detect neither a predicted RINA structure nor
departure from sequence constraints operating at the protein
level. Therefore, the conservation of soyuz2 most probably comes
from a constraint at the protein level.

The N°-binding site of Paramyxovirinae P encompasses
soyuz1 or overlaps with it

The conservation of soyuzl within an otherwise hypervariable
region (see Figure 6), its hydrophobicity [53] and helical
propensity are reminiscent of protein-binding regions that are
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Figure 6. Alignment of the first 100aa of all Paramyxovirinae P. Conventions as in Figure 2. The boundaries of N°-binding regions
(underlined in red) have generally been determined indirectly (Table 3), and thus should be taken as approximate. Regions downstream of soyuz1
and soyuz2 (90-330aa in length, of which only ~50aa are visible on the figure) are unalignable between different genera of Paramyxovirinae.

doi:10.1371/journal.pone.0031719.g006

disordered in isolation but can fold upon binding their target [54].
We searched the literature for functional information associated
with soyuzl and found that it is located within the N°-binding site
of P in almost all Paramyxovirinae for which experimental data are
available (Table 2 and Figure 6). This strongly suggests that soyuzl
plays a role in binding N°. The only exception is Sendai virus, a
respirovirus, in which soyuzl is not entirely encompassed within the
N°-binding site of P but rather overlaps it by 3aa (see Table 3,
Figure 3 and Figure 6). However, in the article that determined

V protein E56

Figure 7. Structure of the V protein from parainfluenza virus 5
bound to DDB1. The PDB accession number of the structure is 2HYE.
Aa 1-9 and aa 55-80 of V, encompassing the last 2aa of soyuz2, are not
visible in the crystal structure, presumably because they are disordered
(see text). Soyuz1 is coloured red and soyuz2 blue. The H helix of V,
bound to DDBI1, is indicated; it partially overlaps with soyuz1.
doi:10.1371/journal.pone.0031719.g007
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this N°-binding site [55], we noticed that the sequence reported as
that of hPIV1 P was actually that of hPIV1 C. While this does not
impact on the authors’ experimental conclusions, it means that the
region actually conserved in respirovirus P (aa 2542 of Sendai virus P)
1s larger than that reported in their article (aa 32-42), and in fact
encompasses soyuzl (Figure 3).

Examining the effect of substitutions introduced into soyuzl
might yield further clues to its function(s). We could find only two
studies that performed such substitutions. A double substitution
(E14A - C15A) in measles virus V (in bold in Figure 4) caused only a
very minor reduction in binding to N° [56], and the substitution
D33G in Sendai virus P (in bold in Figure 3 and Figure 4) had no
apparent effect on viral replication [55]. We note, however, that
the effect of the former substitution was tested on V rather than P,
and that these substitutions did not affect the four positions of
soyuzl that are strictly conserved physico-chemically (Figure 4).

The N-terminal tips of other Mononegavirales P also
contain conserved motifs

Other Mononegavirales P have an organization similar to that of
Paramyxovirinae, shown in Figure 1. We found that the P of most
Mononegavirales have an N-terminal “tip”” with features similar to
those of soyuzl, i.e. a low variability and one or two predicted
secondary structure elements located upstream of a variable region
devoid of predicted secondary structure. In particular, all
Pneumovirinae P have a conserved N-terminal motif, which we
called mir (Figure 8A). Likewise, the P of all Filoviridae have a
conserved N-terminal motif (Figure 8B), which we called sputnik
(we could not find previous descriptions of these motifs in the
literature). The similarity between the mir motif of metapneumovirus
and preumovirus P was not significant (E=1.4x10"7), while the
similarity between the sputnik motif of ebolaviruses and Marburg virus
was significant (E = 1.4x1077). Interestingly, while this manuscript
was in preparation, the sequence of a new Filoviridae, LLoviu virus,
was published [57], and it also contains the sputnik motif
(Figure 8B).

We could find a conserved N-terminal region only in the P of
three genera of the Rhabdovindae: vesiculoviruses, lyssaviruses
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Table 3. Functional information associated with the soyuz1 motif.

Protein Location of Region
Genus Species characterized’ soyuz1 (aa) characterized? Function of that region® References
Rubulavirus PIV5 Vv 12-27 22-34 (=H helix) Binds to DDB1 [49]
Rubulavirus hPIV2 Pand V 11-26 1-46 Nuclear Localisation Signal [109]
Rubulavirus hPIV2 Pand V 11-26 1-46 Binds to N° [110,111,112]
Henipavirus Nipah Vv 2-17 1-50 Binds to N [113]
Morbillivirus Measles P and V 4-19 1-20 Binds to N° [56,114]
Morbillivirus Rinderpest P 4-19 1-59 Bind to N [93]
Respirovirus Sendai P 25-35 33-41 Binds to N° [55]
Respirovirus hPIV3 P 25-35 1-40 Binds to N° [115]

doi:10.1371/journal.pone.0031719.t003

(Figure 8C), and ephemeroviruses (not shown), and there was no
detectable sequence similarity between the genera. This might be
related to the much higher overall sequence variability of
Rhabdoviridae P when compared to other AMononegavirales. 'The N-
terminal motifs of Preumovirinae (Figure 8A) and Rhabdoviridae
(Figure 8C) are predicted or known [58] to be o-helical, like
soyuzl. The sputnik motif of Filoviridae is clearly different, since it
contains a short predicted B-strand and a Proline (Figure 8B).

These N-terminal motifs have no detectable sequence similarity,
with one potential exception. The mir motif of metapneumoviruses
has striking similarity to soyuzl, matching 9 out of its 10 conserved
positions (Figure 8, panel Al). Nevertheless, this similarity should
be taken with caution since it is based on only two sequences, and
since the mir motif of the other Preumovirinae genus, pneumouvirus,
matches only two of the four characteristic positions of soyuzl,
positions 4 and 11, and contains a Proline, absent from soyuzl
(Figure 8, panel A2).

The functions of the mir and sputnik motifs are unknown, to our
knowledge, whereas the conserved N-termini of Rhabdoviridae P are
known to bind N° (Figure 8C), like in Paramyxovirinae [59,60]. The
N°binding region of VSV P has recently been determined
precisely by X-ray crystallography [58], and it corresponds well to
the region conserved in other vesiculoviruses (Figure 8C).

The C-termini of Mononegavirales P contain a structurally
similar region

The common organization of Mononegavirales P and their
common genomic location suggests that they may have originated
from a common ancestor and we therefore looked in detail at
potential structural similarities. Their multimerization domains are
structurally dissimilar [61,62,63]. On first inspection, their C-
terminal domains are also very different: they form a triple a-helix
bundle in Paramyxovirinae (“X domain”) [64,65,66], a mixed o-f
fold in Rhabdoviridae [67,68], and an o-helix subdomain packed
against a B-sheet subdomain in Filoviridae (Interferon Inhibitory
Domain, IID) [69]. Nevertheless, we performed a similarity search
on the recently solved structure of Jaire ebolavirus I1ID. FATCAT
[45] reported the X domain of Paramyxovirinae P within the first 15
hits, superposing it well (P=1.28x107% RMSD = 2.6 over 51 aa)
with the first three helices of the a-helical subdomain of IID (aa
218-268, composing 39% of its residues) (Figure 9). We found that
the C-terminal domain of the P of rabies virus, a Rhabdoviridae, also
had weak structural similarity with the X domain of measles virus P

@ PLoS ONE | www.plosone.org
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'P and V share the same N-terminus, containing soyuzl (see Figure 1). We indicate whether the study was carried out on P or/and V.
2The location of these functional regions have generally been determined indirectly, and should thus be taken as approximate boundaries.
3In cases where the form of N was not characterized (either N° or the nucleocapsid), we report “N".

(superposition over two o-helices only; not shown), as previously
reported [70].

Discussion

The motifs we detected probably evolved by
homologous descent

The motifs we have identified are certainly not spurious, since
they are also present in two distantly related viruses whose
sequence was released after our main analysis. The fact that the
motifs are present in all species within their respective families (for
instance, soyuzl is present in all 45 Paramyxovirinae) strongly
suggests that they are functionally important. In theory, they could
have originated either by convergent evolution or by homologous
descent. The sequence similarity between the motifs of different
genera is generally not statistically significant (except for the
Filoviridae sputnik motif) and cannot by itself discriminate between
these two hypotheses. However, in the case of soyuzl, we believe
three points argue compellingly in favour of homologous descent.
1) Soyuzl is demonstrably homologous in rubulaviruses, avulaviruses,
and fempaviruses, since in these it has statistically significant
similarity. 2) In all genera, soyuzl is found in exactly the same
position, within the first 40aa of P. This common location is much
less likely to have originated by convergent evolution. 3) A part of
C that overlaps P downstream of soyuzl (in green in Figure 10) has
distant, but statistically significant similarity among kenipaviruses,
morbilliviruses and related viruses (not shown). Therefore, the
corresponding region of P (crisscrossed in Figure 10) is also
homologous in these viruses. Thus, it is not only the C-terminal
moiety of P, but almost all of P downstream of soyuzl that is
demonstrably homologous in /enipaviruses and morbilliviruses. This
considerably increases the probability that the similarity among
their soyuzl results from homologous descent. Lastly, we note that
the fact that respiroviruses have a somewhat divergent soyuzl motif
is coherent with Paramyxovirinae phylogeny (Figure 10), in which
respiroviruses are basal [71].

Similarly, the mir motif always occurs in the same position in
Preumovirinae P, arguing (albeit less strongly) for homologous
descent.

Soyuz1 probably binds N°

It seems unlikely that the conservation of soyuzl results from
binding a cellular partner involved in antiviral defense, because
even closely related viruses often use different proteins or different
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Conserved mMtifs in Mononegavirales P

A. Pneumovirinae

soyuz1-like region (metapneumovirus only)

A1 mir motif
Metapneumovirus avian metapneumovirus 1 K 1BHRRTQS IVEDK I | 44
human metapneumovirus 21 KPSHKRSQS | IGEKVN 44
i human respiratory syncytial virus £ 1 MEK- - - FAPE[FHGEDANNKATKF[LES IKGKFA- - - - - - - - - - - - 29
Pneumovirus bovine respiratory syncytial virus 1 LESLKGKFT------------ 29
pneumonia virus of mice 1 LKHRSFPSEKPLAIIPNTATH 41

soyuz1-like region

w < o
> (9} [S3 ‘3
B 9 59 38
8 o8 cg 2
E & c® 2
= oc oL . 2
© o2 2 Sgom T
[} >= £ ©>=0 >
o I< F df<a I
A2 5 112 4 6789 1

. avian metapneumovirus 1.P | 44
Metapneumowrus human metapneumovirus 1 PmN 44

B. Filoviridae
sputnik motif

Ebola Céte d'lvoire & AAA INDPSLP IRNQCTR PH.SS-DCIPRPKN 64

Ebola Bundibugyo % ARVTYNPPPTTTGTRSC TLPSISPSIHSKIKT 64

Ebolavirus Ebola Zaire 2 TKGREGHTAAT TQNDRMP! NNPGLCNMASQMQQTK 63
Ebola Sudan 2 1 MQQDRT------------ 52

EbolaReston 1 MYNDRL------------ 52

Lloviu * 1 M-------------------------- 31

P 38

Marburgvirus Marpurg & 1 MADSSY------ooeoe oo

C. Rhabdoviridae
L-binding region [disputed]

N’-binding region (rabies)

Lyssavirus

rabies & 1 KRLHEDBEKSSNLEBEMVRVE 73
Australian bat 1 NINEAKPQSFENNPID| 73
European bat 1 1 KRLRII A YKQIQQEEDASRQ 73
Shimoni Bat 1 RRMRL | DMSRQKD IR IBDEG 73
Mokola 1 SRLR|/IEDKSRRTKTEEEERD 73
West Caucasian Bat 1 SKLQ I SBNVRSDTSPNEYSD 73

N’-binding region (VSV)

Vesiculovirus conserved region
VSV Indiana 1 EHTR 49
Maraba 1 IKEK 50
Cocal 1 VHAl 50
VSV Alagoas 1 LKAA 50
Carajas 1 SKEV-AR 49
VSV New Jersey 1 K-PT 50
Isfahan 1 -NBDDE IQSVS 49
Chandipura 1 --GSPT Eil I 45
Piry 1 TTLSASNGSS 44
Pike fry 1 PVPKSV-TYVTNENSTS 49
Spring viremia of carp 1 PVPKTV-KYVTEEENLS 49

Figure 8. Alignments of the N-termini of P from Pneumovirinae, Filoviridae and Rhabdoviridae. Conventions as in Figure 2. Abbreviations
and accession numbers are in Table 2. (A) Mir motif of Pneumovirinae. A1 — Alignment of the N-terminus of P of both metapneumoviruses and
pneumoviruses. A2 — Same alignment as in A1 but restricted to metapneumoviruses. Positions corresponding to soyuzl are indicated above the
alignment. The coloring of sequence conservation is different from A1 since conservation is now based only on the two metapneumovirus sequences.
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Conserved mMtifs in Mononegavirales P

(B) Sputnik motif of Filoviridae. The asterisk indicates the newly published sequence of LLoviu virus. (C) N-termini of the P of two Rhabdoviridae
genera: lyssavirus and vesiculovirus. A disputed L-binding site in lyssavirus P is indicated [108]. The boundaries of the N°-binding region of VSV P were

obtained from the crystal structure of N°-P [58].
doi:10.1371/journal.pone.0031719.g008

regions of a protein to bind the same antiviral protein [72,73].
Thus, we think that soyuzl probably binds a conserved viral or
cellular partner(s) indispensable to viral replication. One of these
partners is almost certainly N°, since soyuzl is encompassed within
the N°-binding site of P in all species for which biochemical data
are available (Table 2 and Figure 6). Accordingly, in the rubulavirus
PIV5, the binding of P to N° is mostly of a hydrophobic nature,
since it is abolished by detergent but not by strong salts [74]. This
is consistent with it occurring through soyuzl, which is very
hydrophobic. Intriguingly, the respirovirus N°-binding site, which
has been mapped precisely to a stretch of 8aa, does not correspond
exactly to soyuzl but rather overlaps its first 3aa (Figure 3) [53].
This suggests that the soyuzl of respiroviruses, which is divergent in
sequence, might function differently from that of other Paramyx-
ovirinae. Alternatively, the conservation of soyuzl might be
explained by it binding not only N° but also a second protein
whose binding site partially overlaps with that of N° but extends
upstream. This would provide an attractive mechanism to explain
the initiation of encapsidation of the viral genome: by binding to
soyuzl, this protein would provoke the release of N°, which would
then be free to bind to nascent RNA. A candidate for this role
might be the polymerase, L.

Soyuz2, a role in inducing the proteasomal degradation
of STAT proteins in rubulaviruses?

Soyuz2 is found in only three genera, but in these it is much
more conserved than soyuzl (Figure 2). This suggests that soyuz2
might interact with a cellular partner rather than a viral one.
Despite its striking conservation, its function is unknown.
However, we think that an elegant comparison between the V
of rubulavirus hPIV2, which has the soyuz?2 motif, and of hPIV4,
which does not have it (see Figure 2), suggests a role for soyuz2 in
proteasomal degradation of STAT proteins [75]. Both hPIV2 V
and hPIV4 V bind the DDBI-cullin4-STAT1-STAT2 complex
[75]. However, unlike hPIV2 V, hPIV4 V is incapable of
triggering subsequent proteasomal degradation of STATI1 or

Measles X domain

Ebola IID domain

a-subdomain

Figure 9. Structural superposition of the C-termini of two
Paramyxovirinae and Filoviridae P. FATCAT superposition between
the measles virus X domain (PDB accession number 1760, chain A), in
red, and the Zaire ebolavirus 1D domain (3FKE, chain A), in green. N and
C refer to N- and C-termini.

doi:10.1371/journal.pone.0031719.g009
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STAT?2, a key step in blocking interferon signaling [2,76]. Nishio et
al. [75] replaced a region of hPIV2 V corresponding almost
exactly to soyuz2 by the equivalent region of hPIV4 V (boxed in
Figure 5B). The exchange abolished the ability of hPIV2 V to
block interferon signaling, strongly suggesting that soyuz2 plays a
role in it. A study on the rubulavirus PIV5 provides additional
support: a single substitution of soyuz2, L50P (in bold in Figure 5),
decreased the capacity of V to block interferon [77]. Interestingly,
this decrease was enhanced by an additional substitution, Y26H,
in the H helix that binds DDB1 (Figure 5). Thus, although the
great majority of studies on V have focused on its conserved C-
terminus [2,76], soyuz2 should also be the subject of investigations.
The V proteins of henipaviruses and avulaviruses, which also contain a
soyuz2 motif, inhibit the action of STAT1 through mechanisms
different from rubulaviruses [78,79,80]. Nevertheless, in view of the
conservation of soyuz2, it is tempting to speculate that in the three
genera the inhibition of STAT1 might rely on a common cellular
target with which soyuz2 interacts. We note that a substitution
mapped within soyuz2, N37D (in bold in Figure 5), enhanced
replication and virulence of Pigeon paramoxyvirus 1, an avulavirus
[81]. Further studies are needed to determine whether it caused an
effect on interferon signaling or on replication, and whether P or V
was involved.

The P of Mononegavirales probably share a common
origin

This study and another [70] have detected a structural similarity
between two o-helices of the C-terminal domains of Paramyxovir-
inae, Rhabdoviridae, and Filoviridae P. Several arguments suggest that
this similarity, although weak (subsignificant), might be the result
of common ancestry: the P proteins are encoded by genes with the
same location and have a similar organization; the similarity
occurs between domains occupying the same position within P;
and finally, the structurally similar regions have the same function:
they bind the viral nucleocapsid [70,82,83]. A common origin of
domains that have different structural folds might seem improb-
able, but other examples are known [84] and the two o-helices
might correspond to “elementary functional loops”, which are
conserved structural and functional elements proposed to form
building blocks of ancestral proteins [85].

A similar role for the N-termini of Mononegavirales P to

that proposed in the Paramyxovirinae?

All Mononegavirales N can self-assemble illegitimately on cellular
RNA [86,87,88,89], with the exception of Bomaviridae [90,91]. In
both Paramyxovirinae and Rhabdoviridae, the N-terminus of P binds
N° and keeps it unassembled [5,55,59,60,92,93]. In view of their
probable common origin (see above), it would be interesting to
mvestigate whether in Preumovirinae and Filoviridae it is also P that
prevents the assembly of N°, and whether binding occurs through
mir and sputnik. Interestingly, in preumonia virus of mice, a
pneumouvirus, a region containing mir has been reported to bind N
[94], though what form of N was bound was not studied. We
found no published data regarding sputnik, but lawre ebolavirus
VP35 mutants lacking sputnik did not support viral replication or
transcription, though they were still able to block interferon
induction (Grosch and Miihlberger, personal communication).
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Henipavirus
soyuz1
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Morbillivirus
soyuz1
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soyuz1
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Figure 10. Regions with sequence similarity in Paramyxovirinae P and C. The N-termini of Paramyxovirinae P and the C proteins that overlap
them are represented to scale (the N-terminus of henipavirus P is about 380aa long). The phylogenetic relationships between different genera are
shown on the left as a cladogram based on [71]. Regions with statistically significant similarity (and thus homologous) are shown in the same colours,
whereas regions that have subsignificant similarity are shown in grey. The crisscrossed regions of henipavirus and morbillivirus P are homologous,
even though they have no detectable similarity, since they overlap homologous regions of C, in green (see Discussion).

doi:10.1371/journal.pone.0031719.g010

Our approach should allow the identification of
previously overlooked short, disordered domains

It has been recently proposed that conserved, disordered regions
longer than 20-30aa form a new type of binding elements:
“disordered domains”, which fold into specific structures upon
binding their target [95,96,97]. These regions often constitute
functional, evolutionary and structural units (hence the name
“domain”), and were thought to clearly differ from shorter elements,
in particular linear motifs (3—11aa) [98], through their binding mode,
affinity, and the fact that they arise by homologous descent rather
than convergent evolution [95]. Reliable i silico identification of
disordered domains would be a major advance because they mediate
numerous (possibly thousands) of crucial but poorly characterized
protein-protein interactions [99]. So far their detection has been
restricted to domains longer than 20-30aa [95] because similarities
detected between shorter regions are not statistically significant.

Our study shows that carefully examining disordered regions of
orthologous proteins allows the detection of shorter regions, such
as soyuzl (11-16aa), which most probably evolved by homologous
descent. We expect our approach to detect short disordered
domains even in hypervariable, very long regions (up to 380aa for
soyuzl). Further improvements in their detection could come from
progress in aligning disordered regions [100,101]. Our approach
should also be applicable to prokaryotes and eukaryotes, whose
orthologs are available in dedicated databases that greatly facilitate
their collection [102].

An alternative approach to identify sequence motifs could rely
on dedicated software such as MEME [34], DILIMOT [35], and
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SlimFinder [36]. Using these programs with default parameters
(see Material and Methods), we were unable to fully recover all
instances of soyuzl and soyuz2. This could be due to the fact that
the programs are optimized to detect shorter motifs (3—11aa), and
are not intended to detect them within very long regions.
Nevertheless, we think that these methods could be complemen-
tary for future research, especially since they have the advantage of
being fully automated. Finally, we note that in principle our
approach is also applicable to the discovery of motifs in ordered
regions, though this was not the focus of this study.

An approach to detect new drug targets?

In conclusion, experimental studies are now needed to identify
the soyuzl-binding site on N°, elucidating what triggers the release
of soyuzl by N° during replication, and to identify the function(s)
of soyuz2. The use by viral proteins of short peptides located
within flexible regions to bind other viral proteins is emerging as a
common pattern, found for instance in the interactions between
PB1, PA and PB2 in wmfluenza virus [103,104,105], and antiviral
approaches aimed at disrupting these interactions are being tested
[106]. The motifs found by our approach have the double
advantage that they are plausible Achilles’ heels of viruses (as
suggested by their exceptional conservation) and are found in a
wide range of human pathogens. If their biochemical role were
confirmed, they might thus constitute new, attractive antiviral
drug targets. Recently, Castel ez al. [107] have provided a proof of
concept for this idea by using a peptide mimicking the N°-binding
site of P to inhibit the replication of rabies virus, a Rhabdoviridae.
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