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Abstract

Paired immunoglobulin-like receptors beta, PILRb, and alpha, PILRa, are related to the Siglec family of receptors and are
expressed primarily on cells of the myeloid lineage. PILRb is a DAP12 binding partner expressed on both human and mouse
myeloid cells. The potential ligand, CD99, is found on many cell types, such as epithelial cells where it plays a role in
migration of immune cells to sites of inflammation. Pilrb deficient mice were challenged with the parasite Toxoplasma gondii
in two different models of infection induced inflammation; one involving the establishment of chronic encephalitis and a
second mimicking inflammatory bowel disease in order to understand the potential role of this receptor in persistent
inflammatory responses. It was found that in the absence of activating signals from PILRb, antigen-presenting cells (APCs)
produced increased amounts of IL-27, p28 and promoted IL-10 production in effector T cells. The sustained production of IL-
27 led ultimately to enhanced survival after challenge due to dampened immune pathology in the gut. Similar protection
was also observed in the CNS during chronic T. gondii infection after i.p. challenge again providing evidence that PILRb is
important for regulating aberrant inflammatory responses.
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Introduction

Dap12 is a modulator of the amplitude of an immune response,

but in a very cell specific way [1]. There are many receptors that

pair with Dap12 whose expression patterns, in part help govern

the ultimate consequence of Dap12 signaling. One receptor

partner of Dap12 is the paired-immunoglobulin-like receptor-beta

(PILRb). PILRb is a type I glycoprotein with a single extracellular

Ig-like domain and a truncated cytoplasmic tail [2]. PILRb does

not contain its own activation motif, but is dependent on Dap12

for ITAM mediated signals. PILRa is the inhibitory form of the

receptor containing an ITIM within its intracellular domain that is

thought to bind SHP-1/2 upon phosphorylation [3] [2]. PILRa
and PILRb are mainly expressed on cells of the myeloid lineage in

both human and mouse populations, with most cells displaying

both isoforms of this receptor on their surface constitutively.

However, there is some differential expression between the paired

receptors, with PILRb as the primary isoform displayed by NK

cells [4]. Expression of both receptors has also been shown to be

upregulated on CNS-infiltrating macrophages and microglial cells

during experimental autoimmune encephalomyelitis (EAE) (Joyce-

Shaikh and Cua, unpublished data).

While expression of this paired receptor is relatively restricted, its

potential ligands have a considerably more ubiquitous expression

pattern. A CD99-like molecule was first identified on T cells as

interacting with PILRb on NK cells and activating their cytotoxic

capacity. [4]. The same group also found that the CD99-like

molecule was able to activate bone-marrow derived dendritic cells

(DCs) and promote TNFa production. Although the PILRs contain

a conserved arginine residue typical of Siglec family members, they

do not themselves bind simple sialylated sugars. Instead, the ability

of CD99 to bind PILRa and PILRb was characterized as involving

recognition of two O-glycosylated sites on CD99 and these sites are

thought to be essential for stable interaction between receptor and

ligand [5,6]. Despite the efficiency with which the activating

receptor is triggered by CD99 and CD99-like molecules, it was

discovered that the affinity of PILRa for CD99 binding is

significantly higher than the affinity of PILRb [5].

CD99 is a glycoprotein that is thought to modulate a number of

immune responses related to inflammation. It is expressed on the

PLoS ONE | www.plosone.org 1 March 2012 | Volume 7 | Issue 3 | e31680



surface of a large variety of immune cells and tissues including

activated T cells [7]. It may also play a role in regulating the

migration of cells into tissues as it is also found on endothelial tight

junctions where it has been shown to mediate immune cell

extravasation from the blood [8,9,10]. Additionally, the inhibitory

receptor, PILRa, is also thought to act as a co-receptor for viral

glycoprotein B allowing pathogen entry into the host cell and in

some cases viral persistence [11,12]. There is an ever growing body

of evidence to suggest that the CD99:PILRa/b interactions have a

significant affect on the quality of the innate immune response.

However, little is actually known about the overall function of these

receptors or of their possible cross-regulation of each other.

Many DAP12 associated receptors have been shown to play key

roles in regulating immune responses of macrophages and DCs

during inflammatory responses. We therefore, used activating

receptor-deficient mice to study the relevance of PILRb in

immune function. Specifically, given the receptor/ligand pattern

of expression, we decided to employ two models of infection-

induced chronic inflammation by challenging mice via alternative

routes of infection with the protozoan parasite Toxoplasma gondii (T.

gondii). In this way, we were able to analyze how PILRb deficiency

may alter the function of inflammatory antigen presenting cells

(APCs) in tissues commonly targeted during autoimmune

inflammation; the CNS and the mucosa. Low dose intra-

peritoneal challenge with T. gondii promotes a systemic Th1

response during the acute phase of infection that serves to clear the

immediate infection, drives the parasite into latency, and allows for

pathogen persistence in the host’s CNS [13,14,15]. A susceptible

host will eventually succumb to toxoplasmosis, a chronic brain

inflammation that is the result of increasing recruitment of

immune cells into the brain to keep the parasite from reactivating.

Both infiltrating and CNS resident APCs are important for

maintaining the balance of pro- and anti-inflammatory mediators

during chronic infection [15,16].

Via high dose per oral infection with T. gondii, we were able to

establish a murine model of inflammatory bowel disease (IBD) to

test the impact of abrogating the function of PILRb [17]. This

route of infection promotes a robust Th1-type response that

precipitates an aggressive immune-mediated pathology, causing

necrosis of ileal villi, and resulting in the ultimate demise of the

host within 7–14 days after challenge [18]. This model of infection

mimics other IBD models with regard to immunological

mechanisms and histological changes. For example, it is known

that CD4+ T cells play a critical role in mediating pathology after

high-dose infection with T. gondii, and an aberrant response to

commensal flora worsens outcome. Thus, the innate immune

response greatly affects outcome and severity of disease by

establishing and then continuing to promote inflammation well

beyond the initiating injury.

Through the use of activating receptor deficient mice (Pilrb2/2)

we now show that APCs may use this receptor pair to balance the

production of pro- and anti-inflammatory cytokines during an

immune response. In the absence of PILRb, mice infected by either

route exhibited enhanced survival after parasitic challenge, which

was characterized by increased production of IL-27, but not IL-10.

APCs from PILRb2/2 mice exhibit a more tolerogenic phenotype

which likely promotes enhanced control of inflammatory effector

T cells.

Materials and Methods

Mice
Pilrb2/2 mice were derived as previously described [19] were

bred and housed within micro isolator caging units on site at

MRL. Mice were bred as homozygous knockouts and wild-type

(WT) C57Bl/6 (Jackson Laboratories, Bar Harbor, ME) were used

as age- and sex-matched controls in all experiments. All animal

procedures were approved by the Institutional Animal Care and

Use Committee of Merck Research Laboratories in accordance

with guidelines of the Association for Assessment and Accredita-

tion of Laboratory Animal Care.

Parasites
For in vivo experiments, mice were inoculated either intra-

peritoneally with 20 cysts or per orally with 80–100 cysts of the

Me-49 strain of T. gondii. Brain homogenate from chronically

infected CBA/CaJ mice (Jackson Labs) were used as the source of

cyst preparations for inoculation.

Cyst counts
Individual brains from chronically infected mice were processed

in 3 ml of PBS using syringes and consecutive 18 G, 20 G and

22 G needles to create a homogenate. The number of cysts present

in 30 ml of homogenate was used to determine the total number of

cysts present within each brain.

Histology
Dissected brain or ileum were fixed in 10%NBF before

embedding in paraffin. Hematoxylin and eosin staining was

performed on sections of tissue for analysis of pathology.

Brain mononuclear cell isolation and culture
Brain mononuclear cells (BMNC) were isolated from the CNS

by performing collagenase digestion and separating lymphocyte

populations using a percoll gradient as previously described

[20,21]. Cells were plated at 26105 cells per well in complete

RPMI (Life Technologies, Gaithersburg, MD) supplemented with

10% FCS (HyClone Laboratories, Logan, UT), 1% HEPES,

50 mM 2-mercaptoethanol, 1% sodium pyruvate, and penicillin

and streptomycin for a final volume of 200 ml. Cultures were

stimulated with either aCD3 at 5 mg/ml or soluble Toxoplasma

antigen (STAg) at 20–25 mg/ml (generous gift of C.A. Hunter,

University of Pennsylvania, Philadelphia, PA).

Splenocyte and lymph node culture
Spleens or LNs were harvested and dissociated into single-cell

suspensions in complete RPMI as above. Erythrocytes were

depleted from splenocyte suspensions using RBC Lysing Buffer

(Sigma, St. Louis, MO), and cells were washed in complete media.

Cells were plated at either 46105 or 26105 cells per well for

splenocytes or LNs, respectively, and for a final volume of 200 ml.

Cells were cultured as above for analysis of cytokine production

after 2–3 days of restimulation at 37uC.

APC enrichment
Magnetic cell sorting was performed to enrich populations of

splenic dendritic cells (CD11c (N418) microbeads) and macro-

phages (CD11b microbeads), respectively from mice 5 days post

i.p. parasite or PBS challenge using the standard protocols from

Miltenyi Biotec (Auburn, CA). Cells were sorted using an

autoMacs Separator according to the standard protocol. Cell

pellets were used for RNA isolation and analysis of gene transcripts

by RT-PCR (see below).

Cytokine protein quantification
Serum samples or supernatants from cell culture were analyzed

for cytokine protein levels using either ELISA kits for IFNc, IL-
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27p28, IL-12p70, NO (all from R&D,), IL-10 (Invitrogen,), or

LincoPlex (LINCO Research) for TNFa.

Vector construction
The p2øC31.RSV.hAAT.bpA plasmid was provided by Dr.

Zhi-Ying Chen (Stanford University, Stanford, CA). The vector

was modified and a unique 59 PmeI and 39 PacI restriction sites

flanking hAAT was introduced to facilitate directional cloning of

cDNA’s. PCR amplification was performed to place 59 PmeI and

39 PacI cloning sites on the mEBI3, mp28 and linked mIL-27

cDNA’s and these were ligated with the modified minicircle

producing vector. All constructs were verified by restriction

digestion and sequencing of the cloned insert and flanking region.

Production of minicircle DNA
Mini-circle DNA was produced following the methods de-

scribed with some minor modifications [22]. For overnight

cultures 1 liter of Terrific broth containing 100 ı̀g/ml Ampicillin

was inoculated and incubated 18 hrs shaking at 270 rpm.

Following the minicircle production method cultures were

precipitated and stored at 280 C. Endotoxin free Qiagen

megaprep kits were used for DNA purification, with 120 ml

volumes of solution P1, 2&3. Minicircle DNA was eluted from the

column, isopropanol was added and stored at 220 C. DNA was

precipitated by spinning at 12 K, 309 at 4 C, rinsed with 70%

ethanol, air dried and resuspended in 1 ml of endotoxin-free Tris

EDTA. Minicircle DNA was dialyzed in Midi MWCO 3.5 kDa

tubes overnight against Tris EDTA. Purified minicircle DNA was

verified by restriction digestion and sequencing.

Minicircle Delivery
Minicircles were administered using a hydrodynamics-based

transfection procedure as described previously [23]. Briefly, 20 mg

of minicircle DNA in 2 ml of Ringer’s solution was administered

via tail vein injection within 5–8 seconds. Systemic expression of

specific transgenes was verified using ELISA to analyze peripheral

blood at various time points.

RNA isolation and real-time quantitative PCR
Total RNA was extracted from dissected tissue by homogeniz-

ing organs into RNA STAT-60 (Tel-Test) using a polytron

homogenizer, and following manufacturer’s instructions. After

isopropanol precipitation, total RNA was re-extracted with

phenol:chloroform:isoamyl alcohol (25:24:1) (Sigma-Aldrich) using

phase-lock light tubes (Eppendorf). For cell pellets, RNA was

isolated using the RNeasy method, according to the manufactur-

er’s protocol (Qiagen). Total RNA was reverse-transcribed using

QuantiTect (Qiagen) according to manufacturer’s instructions.

Primers were obtained commercially from Applied Biosystems.

Real-time quantitative PCR was performed using an ABI 7300 or

7900 sequence detection system. The absence of genomic DNA

contamination was confirmed using primers that recognize

genomic region of the CD4 promoter. Quantities of transcripts

encoding ubiquitin were measured in a separate reaction and used

to normalize the data by the –Ct method [24].

Parasite burden analysis. For parasite burden analysis,

mesenteric lymph nodes or spleen were harvested on D3 or D9

post infection and flash frozen. Tissues were homogenized in

Trizol (Invitrogen) reagent to extract RNA followed by cDNA

synthesis using Superscript III First-Strand Synthesis System

(Invitrogen) according to manufacturer’s instructions. Gene

expression was monitored by real-time PCR using Taqman

primer/probe sets (Applied Biosystems) for mouse b-actin and

Toxoplasma Sag1. Data was collected on the Mx3000P Q PCR

System (Agilent Technologies).

Statistical Analysis
Student’s t-test was performed for analysis of significance and all

results are expressed as mean 6 SEM, unless otherwise noted. P

values are presented where statistical significance was found.

Results

PILRa/b modulate CNS inflammation during chronic
infection after i.p. challenge with T. gondii

Data from previous experiments performed in our laboratory

showed that mRNA expression of both PILRs was increased in CNS

resident microglial cells 14 days after induction of experimental

autoimmune encephalomyelitis (EAE), the mouse model of Multiple

Sclerosis compared to expression at day 0 (Fig. S1a). Therefore, to

test whether activating receptor deficient APCs were capable of

modulating responses in an infection-induced model of CNS

inflammation, C57BL/6 WT and gene deficient mice were infected

intra-peritoneally (i.p.) with 20 cysts of the Me-49 strain of T. gondii

and followed out for 100 days. We first determined if there was

normal expression of PILRa in the absence of PILRb compared to

WT mice during toxoplasmosis. When brain mononuclear cells

(BMNCs) were harvested from chronically infected mice 60 days

after challenge, and analyzed by RT-PCR for receptor expression,

both WT and Pilrb2/2 mice exhibited similar levels of PILRa
inhibitory receptor (Fig. S1b). As expected, the PILRb-activating

receptor mRNA was detected in the WT mice, but was absent in

gene-deficient mice following parasite infection.

When compared for survival, the WT C57BL/6 mice—which

are susceptible to infection—began succumbing between 60 and

90 days post-challenge, whereas Pilrb 2/2 mice remained

resistant beyond 100 days post infection (Fig. 1a). In addition,

histological examination of the brain from chronically infected

mice confirmed the presence of more inflammatory infiltrate in

WT compared to Pilrb 2/2 brain, suggesting that the enhanced

resistance in Pilrb2/2 mice is due to reduced immunopathology

associated with fewer CNS infiltrating cells (Fig. 1b).

In order to better characterize the mechanism behind this

enhanced survival, either whole brain or BMNCs were isolated

from both groups after 60 days of infection and parasite burden

and inflammatory infiltrate were quantified. Cyst counts revealed

significantly lower pathogen load in the activating receptor

Pilrb2/2 mice compared to WT controls (Fig. 1c). When

BMNCs isolated from chronically infected mice were examined by

flow cytometry, no difference in types of infiltrating cells, or

percentages of cell population were observed between strains (data

not shown). However, when actual numbers of infiltrating cells

were determined, we found that Pilrb2/2 mice had significantly

fewer numbers of BMNCs corresponding to enhanced resistance

to encephalitis (Fig. 1d).

Chronic resistance to toxoplasmosis requires a delicate balance

between pro-inflammatory cytokines like IFNc and TNFa to

control infection and regulatory cytokines like IL-10 to prevent

immunopathology [25]. Therefore, we isolated BMNCs from

chronically infected mice and determined if there was a difference

in production of cytokines. In response to aCD3 restimulation there

was significantly more TNFa and IFNc protein detected in the

supernatants of Pilrb 2/2 cultures compared to WT cultures

(Fig. 1e and f). One would have expected more inflammatory

cytokine production in WT cultures given that WT mice have a

higher parasite burden than Pilrb 2/2mice at the same time-point.

More IFNc production in Pilrb 2/2 mice would also suggest the
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presence of more inflammatory cells, however, our previous data

revealed fewer cells infiltrating the CNS. One explanation for this

paradox is that the enhanced IFNc production in the Pilrb2/2 may

lead to better control of parasite reactivation, and thus better control

of parasite numbers. Nitric oxide production in the CNS is an

important mechanism of pathogen control during chronic infection,

however when nitric oxide levels were analyzed in BMNC cultures,

no difference was seen under any condition (Fig. 1g). Higher levels

of inflammatory cytokine production would need to be balanced by

regulatory cytokines in order to keep CNS inflammation subdued.

Previously published studies have assigned IL-10 an important role

in controlling CNS inflammation during chronic toxoplasmosis

[15,26,27]. When IL-10 production was assessed in BMNC

cultures, significantly greater levels were detected in Pilrb 2/2

BMNC cultures not only in response to aCD3, but also after antigen

restimulation over amounts produced in WT cultures (Fig. 1h).

These data again suggested that Pilrb2/2 APCs promote IL-10

secreting T effector cells that home to the CNS and provided a more

stringent regulation of inflammation in the CNS. However, the

enhanced production of anti-inflammatory cytokines did not

preclude the possibility that Pilrb 2/2 mice may also have an

increased ability to clear the parasite from the local site of infection

during the acute response.

Increased systemic IL-27p28, but decreased IFNc in Pilrb
2/2 mice after i.p. infection

In order to characterize the acute immune response to infection

with T. gondii, both WT and Pilrb deficient mice were infected i.p.

as before and lymphocyte responses were analyzed at various

timepoints during the first two weeks post challenge. When serum

from day 5-infected mice were tested for inflammatory cytokines,

systemic IL-12 production was similar. However, circulating IFNc
was reduced in Pilrb2/2 mice (Fig. 2a and b). Although serum

IL-10 was enhanced in both WT and Pilrb 2/2 mice after

infection, there was no difference between strains (Fig. 2c).

Interestingly, the reduction in IFNc production did not have a

deleterious effect on controlling infection, because analysis of day

3- and day 5-peritoneal exudate cells (PECs) revealed no

differences in parasite burden between strains (Fig. S2a). Since

there were no obvious differences in the acute phase activation of

the immune response to T. gondii, we wondered whether there

might be differences in other regulatory cytokines at this early

timepoint.

It has been recently shown that the presence of IL-27 can

directly induce a strong regulatory effect on CD4 T cell

production of proinflammatory cytokines, an effect that can also

be mediated by enhancing IL-10 production [28,29,30] [31] [32].

Specifically in the context of infection with T. gondii, IL-27 has

been shown to play a significant role in regulating Th1 activation

and preventing immunopathology (reference 30). Given that

effector T cells from Pilrb2/2 mice have an increased propensity

for secreting IL-10, we assessed the production of IL-27 in WT

and Pilrb deficient mice after i.p infection as a potential mechanism

for the enhanced resistance to toxoplasmosis. Thus, IL-27 was

analyzed in the serum of both acute and chronically infected mice

after infection. Interleukin-27 is not constitutively expressed, as no

Figure 1. Characterization of the local inflammatory response during chronic i.p. infection. WT and Pilrb 2/2 mice were challenged i.p.
with 20 cysts T.gondii and followed over time. Survival of WT and Pilrb2/2 mice through 100 days post infection (a). H&E of brain sections reveal
larger inflammatory foci in WT mice compared to Pilrb2/2, shown at 106magnification (b). Total number of cysts present in the CNS of mice 60–90
days post infection (c). Actual numbers of BMNCs isolated from the CNS of mice (d). Recall assays using BMNCs isolated from WT and Pilrb2/2 mice
and cultured for 72 hrs in the presence of Media alone, STAg, or aCD3. Levels of protein are shown as detected by ELISA for TNFa (e), IFNc (f), NO (g),
and IL-10 (h). For panel a, n = 5–15 mice/group for each of 3 experiments performed. For panel c, pooled data from 2 experiments are shown,
p,0.004. For panel d, one representative experiment of 2 is shown, p,0.05. For panels e,f, and h, pooled data from 2–3 experiments are shown,
*p,0.005; **p,0.002.
doi:10.1371/journal.pone.0031680.g001
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detectable amount of IL-27p28 was observed in the serum of

either WT or Pilrb2/2 mice injected with PBS alone. While levels

of IL-27p28 were increased in both strains by 5 days post infection,

there were significantly higher levels present in serum from Pilrb

2/2 mice than from WT mice (Fig. 2d). Interestingly, systemic

production of IL-27p28 did not lead to a corresponding increase in

IL-10 protein at this early day 5 time point, as there was no

detectable serum IL-10 in either strain (data not shown).

Additionally, production of IL-27p28 was found to be maintained

throughout the course of infection in both WT and KO mice, even

at day 60 post infection (Fig. 2e). Once again significantly higher

levels of p28 were found in the serum of chronically infected Pilrb

2/2 mice compared to WT mice. It may be predicted that the

p28 expression that is present early during infection could enhance

the early Th1 response in Pilrb 2/2 mice and allow for more

efficient clearance of the parasite. Thus, there would be less of a

requirement for sustained IFNc expression under such conditions.

Pilrb 2/2 survive lethal high dose infection with T. gondii
Another model in which IL-10 production is important in

mediating resistance is an infection induced model of IBD, in

which a lethal inflammatory response persists in the ileum after per

oral administration of high dose T. gondii [33]. In order to test the

impact of the absence of Pilrb on APCs under these conditions,

mice were per orally challenged with 80–100 cysts of Me-49 and

survival was monitored. To establish whether or not the PILRs

were expressed in the mucosa during infection, sections of terminal

ileum from infected mice were analyzed by RT-PCR to track the

expression of PILRa and PILRb over time. Messenger RNA for

both the inhibitory and activating forms of the receptor were

found to increase significantly in the gut of WT mice by day 7 post

infection (Fig. 3a, b). As expected, no Pilrb expression was

detectable in gene deficient mice, however there was greater Pilra

expression observed in the ileum of Pilrb 2/2 mice compared to

that of WT mice by day 5 (Fig. 3b). These data suggest that there

is an earlier upregulation of the inhibitory receptor in the absence

of its activating partner. Furthermore, it was found that WT mice

succumbed to infection within 14 days of challenge with only 48%

survival on average, Pilrb 2/2 mice survived significantly longer,

with 87% survival (Fig. 3c).

Early differences in parasite burden may have an effect on the

magnitude of inflammation that is established gut. In order to

determine if there were differences in parasite load after high-dose

infection, we used qPCR to quantitate the amount of parasite

DNA in the mesenteric lymph nodes (MLN) and spleen 3 and 9

days post-infection, respectively. Again, we found no difference in

the MLN at the earliest timepoint of 3 days after infection (Fig.
S2b). Later by day 9, however, Pilrb2/2 spleens show decreased

parasite burden compared to WT spleens and this is consistent

with what we observed during chronic i.p. infection (Fig. 2b).

Locally, inflammation can also be regulated by cellular recruit-

ment to the tissue and the resultant milieu of cytokines. To

determine whether PILRa/b signaling can indeed affect either of

these aspects of the immune response, histological analysis of ileum

from both WT and Pilrb 2/2 mice after infection was performed.

Overall, WT sections of ileum revealed the presence of more

Figure 2. Systemic cytokine response in WT and Pilrb 2/2 mice after acute and chronic i.p infection. WT and Pilrb 2/2 mice were
challenged i.p. with either PBS or T.gondii and serum cytokine protein levels were determined by ELISA during acute infection; IL-12p70 (a), IFNc (b),
IL-10 (c), and IL-27p28 (d) all on day 5. Alternatively, IL-27p28 was analyzed on day 60–90 after challenge (e). Pooled data from 2–3 experiments is
shown for all graphs. For panel b, p,0.043; for panel d, p = 0.0007 and for panel e, p,0.01.
doi:10.1371/journal.pone.0031680.g002
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cellular infiltrate in the mucosa and more blood compared to Pilrb

deficient sections 10 days after challenge (Fig. 3d). When serum

levels of cytokine were analyzed at regular intervals during the first

7 days of infection there were, surprisingly, no significant

differences in systemic IL12p70 or IFNc production between

strains at any time point (Fig. 3e, and f).

Enhanced host survival of Pilrb 2/2 to lethal infection is
associated with increases in IL-27p28

To examine the function of effector cells after infection, MLNs

and spleens were harvested and cultured in recall assays at days 5

or days 7 and 10 post-infection, respectively, and supernatants

were analyzed for the presence of cytokine. Neither IFNc nor IL-

10 production by T cells was found to be significantly different

between cultured WT and Pilrb deficient MLNs (Fig. 4a) or

splenocytes in response to soluble Toxoplasma antigen (STAg) or

aCD3 restimulation at any timepoint (Fig. 4b and c).

Thus, our data suggests that the resistance of Pilrb2/2 mice to

intestinal necrosis during high dose T. gondii infection is not due to a

consistently observed alteration of T cell effector cytokines during

inflammation. Importantly, since Pilrb is not expressed on T cells,

the mechanism by which this receptor modulates inflammation may

not be T cell specific. It was therefore proposed that there must be a

change in the quality of APC activation either because of altered

cytokine production and/or a cell contact-dependent mechanism.

We next analyzed the production of IL-27, both systemically and

after antigen recall. We found that serum IL-27p28 levels were

increased by day 5 and 7 in the Pilrb 2/2 mice compared to WT

(Fig. 4d). In order to further characterize the cytokine milieu

present during early T cell activation, IL-27p28 production was

measured in MLN cultures after 5 days of infection. In response to

both antigen or aCD3 stimulation IL-27p28 was again found to be

increased in the absence of Pilrb compared to WT cells (Fig. 4e).

Taken together these data suggested that in the absence of Pilrb,

enhanced production of IL27p28 may likely lead to a more efficient

control of inflammatory T cells and increased host survival to lethal

immune-pathology. Therefore, in the absence of receptor activa-

tion, APCs may become more tolerogenic in phenotype and

promote a tighter regulation of the resultant inflammatory response.

Figure 3. Normal systemic response to infection, but enhanced resistance to high dose per oral infection. Expression of Pilrb (a) and
Pilra(b) mRNA in the ileum of infected WT and Pilrb 2/2 mice at various timepoints after infection. Survival of WT and Pilrb2/2 mice after high dose
oral infection, n = 8–11 mice/group for each of 3 experiments performed (c). H&E of ileum sections from WT (top panels) and Pilrb2/2 (lower panels),
at day 0 (56) or day 10 post-peroral challenge 56and 206magnification, respectively. Arrows indicate the presence of blood (d). Levels of cytokine
protein present in the serum of naı̈ve or infected mice at various timepoints, IL-12p70 (e) and IFNc (f).
doi:10.1371/journal.pone.0031680.g003
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Splenic DCs exhibit a more ‘‘tolerogenic’’ phenotype in
the absence of PILRb signaling

Since PILRb is expressed on many myeloid subsets, we

undertook experiments to identify which cells were the main

source of IL-27p28 in our model. RT PCR of splenic APC

populations isolated after i.p. parasitic challenge, revealed

increased p28 mRNA in DCs from Pilrb2/2 mice compared to

WT mice, but no difference in EBi3 message (Fig. 5a,b). In

contrast, macrophages from gene deficient mice exhibited lower

message levels for both IL-27 sub-units compared to those isolated

from WT mice. We also observed increased mRNA for IL-10 in

Pilrb2/2 DCs compared to WT populations (Fig. 5c), however,

there were less consistent levels of IL-10 message present in

macrophage populations. Similar levels of PILRa message were

present in both WT and Pilrb2/2 strains for each APC

population making it unlikely that a compensatory upregulation

of the inhibitory receptor had occurred in the absence of the

activating receptor for either DCs or macrophages (Fig. S3).

Thus, these results suggest that by producing higher levels of IL-

27, the DC population may be able to influence the strength of the

inflammatory response despite high levels of inflammatory

cytokines. These data reveal that when PILRb signaling is

abrogated, DCs and possibly macrophages may become more

tolerogenic in phenotype by producing significantly more IL-

27p28 and in turn are better able to influence the overall potency

of the inflammatory response.

IL-27 and not p28 alone is required to mediate resistance
to challenge with T. gondii

Because it is only possible to detect p28 protein in serum and

supernatant samples, we tested if it was indeed IL-27, and not p28

alone that could mediate enhanced resistance to infection in the

Pilrb2/2 mice. We injected DNA plasmids to induce over

expression of either p28, EBi3 or a linked hyperkine form of IL-27

protein in C57Bl/6 mice before high dose per oral pathogen

challenge. When mice were monitored for survival it was found

that deaths occurred in all control groups beginning at day 8 post-

infection, but not in the IL-27-expressing group, suggesting a

direct role for IL-27 in mediating resistance (Fig. 6a). When

serum levels of p28 were tracked, it was found that p28 was

expressed over a log greater compared to the p28 protein in the

IL-27-expressing group. Notably, the levels of p28 protein in the

IL-27-expressing group were significantly higher compared to

control groups (Fig. 6b). Interestingly, in the presence of robust

IL-27 expression we also observed a greater induction of IL-10 in

the serum of IL-27-expressing mice by day 7 post-infection

compared to control or p28-expressing mice (Fig. 6c), while

systemic IFNc protein was similar between all groups (Fig. 6d).

Taken together these data provide evidence for a direct link

between IL-27, the promotion of systemic IL-10 and the enhanced

survival of mice after challenge.

Discussion

DAP12 has been shown extensively to regulate the inflamma-

tory responses of innate immune cells (reference 1). Like others, we

have shown here that interruption of DAP12 signaling results in

the increased production of both IFNc and IL-10 and decreased

activation of both macrophages and DCs [34]. However, our

observations are unique in that for our system the immune

response is significantly altered with the elimination of only one

DAP12 partner, through the deletion of PILRb, keeping all other

signaling pathways in tact. Thus, the effect we have observed may

Figure 4. Host survival is characterized by increased capacity to produce IL-27p28. Recall assays using MLNs at day 5 (a); and splenocytes
at day 7 (b and c, left panels) or day 10 (b and c, right panels) after peroral challenge. Amount of IFNc (a, top graph; and b, left and right) or IL-10 (a,
bottom graph; and c, left and right) detectable in supernatants of WT (grey bars) and Pilrb2/2 (black bars) after 3 days of culture in media alone, with
STAg, or with aCD3. For panel a, one representative experiment of two shown; for panels b and c, combined data from 3 independent experiments
shown. Time course of IL-27p28 protein in serum from infected WT (grey bars) and Pilrb 2/2 (black bars) mice as detected by ELISA, mean 6 SD is
shown (d). Values between strains on days 5, p = 0.0219 and 7, p = 0.0318 are all significantly different. Recall assay using MLNs at day 5 post-peroral
infection and cultured as above. Amount of IL-27p28 detectable in supernatants after 3 days of culture (e). Mean 6 SD are shown. For STAg,
p = 0.0143; for aCD3, p = 0.0371.
doi:10.1371/journal.pone.0031680.g004
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impact more specifically on alternative mechanisms that have been

recently shown to regulate immune responses, such as the

downstream effects of IL-27.

Previously published work has identified IL-27 as having a

significant influence on the balance between an effective immune

response and curbing of immune pathology [35]. IL-27 produced

by myeloid cells has been shown not only to promote Th1

responses during an acute response to infection, but also to be

required for damping of effector cell responses during the late

adaptive stage of infection once the pathogen is controlled

[29,36,37,38]. The pleiotropic effects of IL-27 are also evident

in the data presented here. Despite a decrease in systemic IFNc
production after i.p. challenge, Pilrb deficient mice had no issue

clearing the parasite from the local site of infection. Importantly,

systemic IL-10 production was not different at early time points,

but comes up later in the response and is likely derived from T-

cells. When activated T cells were restimulated with either antigen

or aCD3, they were capable of normal IFNc as well as IL-10

production. This combination provides for adequate protection

against the parasite during acute infection while sustaining tight

regulation of the chronic inflammatory response in the CNS. We

have shown that PILRa and PILRb are expressed not only on

inflammatory macrophages and DCs, but also CNS resident cells

such as microglial cells. Interestingly, it is already known that cells

native to the CNS, such as microglia and astrocytes produce IL-27

under some conditions of inflammation [39,40,41]. These

expression data, along with our observations that the systemic

responses are not greatly altered in Pilrb2/2 mice after challenge,

may suggest that PILRa and PILRb primarily play a role in

regulating local inflammatory responses.

To test this idea we compared survival of WT and Pilrb 2/2

mice after high dose per oral infection, where better control of

local inflammation would be beneficial. Susceptibility in this case is

the result of immune mediated destruction of the mucosa by IFNc-

secreting CD4+ T cells and is independent of systemic infection

[42,43]. Again, while the acute, systemic response to high dose

infection was not altered, the data we have presented here suggest

that the absence of Pilrb significantly changes the local inflamma-

tion in the gut and allows for decreased epithelial damage and

enhanced survival that is directly mediated by IL-27. Furthermore,

we show specifically that DCs deficient for the activating receptor

PILRb express more IL-27 message and exhibit a more regulatory

phenotype with the capacity for efficient damping of the T effector

cell response.

Effector T cell responses to T. gondii have been shown to involve

the generation of IFNc/IL-10 double positive cells that are

required for preventing the immunopathology in response to the

parasite [44]. As previously discussed, IL-10 production is vitally

important for a limited mechanism of resistance after high-dose

per oral challenge with T. gondii, similar to its’ regulatory role in

IBD. Furthermore, there is an ever-increasing body of literature

showing IL-27-dependent upregulation of IL-10 as a mechanism

Figure 5. Cytokine mRNA expression in dendritic cells and macrophages from infected mice. Populations of DCs and macrophages were
enriched from the spleens of WT and Pilrb 2/2 mice 5 days after i.p. challenge. Cells were then analyzed by RT-PCR for mRNA levels of IL27p28 (a)
EBi3 (b) and IL-10 (c). Pooled data from one of two representative experiments is shown.
doi:10.1371/journal.pone.0031680.g005

Figure 6. IL-27 can mediate resistance to parasite induced immunopathology. Expression of p28, EBi3, IL27 hyperkine, or GFP control were
induced in vivo using minicircle DNA for systemic expression prior to high dose peroral infection with T. gondii. Survival curve of all groups 14 days
post infection (a), p,0.02 for IL-27 vs. eGFP treatment groups. Serum cytokine levels for each treatment group at day 0 (white bars) and day 7 (black
bars) post infection showing IL-27p28 (b), IL-10 (c), p,0.004, and IFNc (d). For all panels means 6 SD are shown. For panel a, n = 5 or 10 mice/group
for each of 3 experiments performed. For panels b, c and d, n = 10 mice/group for the experiment shown, 2 total experiments performed.
doi:10.1371/journal.pone.0031680.g006
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for immune regulation. Thus, while we now show that IL-27

secretion by APCs can be modulated through ligation of the

PILRa and PILRb receptors, we cannot eliminate the possibility

that IL-10 may also contribute to the increased survival we

observed after peroral infection.

In a normal host, initial ligation of the more highly expressed

PILRb leads to activation of APCs as they migrate into target

tissues during the early inflammatory response. This first

interaction promotes a proinflammatory milieu due in part to

high levels of IL-12 secretion and lower levels of IL-27. As APCs

become activated, they are able to increase the amount of

inhibitory PILRa on their surface, and with its higher affinity for

CD99-like molecules, may then out-compete the activating

receptor for ligand. This change may cause a corresponding

change in levels of IL-27 production by APCs, and possibly a

corresponding increase in IL-10 production by activated T cells at

the site of inflammation which together serve to down-regulate the

inflammatory response. Thus, PILRa provides a negative feedback

loop for the activating effects of PILRb.

Related to its suppressive affects on Th17 cells it has been

recently shown that IL-27 can ameliorate inflammation and

pathology associated with experimental autoimmune encephalo-

myelitis (EAE) and collagen induced arthritis (CIA), murine

models of multiple sclerosis and rheumatoid arthritis

[45,46,47,48]. Thus, we have provided evidence for the first time,

that the PILRa/b receptor pair may directly promote a more

tolerogenic phenotype and be a possible target for altering the

local proinflammatory environment in both the mucosa and CNS.

Supporting Information

Figure S1 Expression as determined by RT-PCR, of
Pilra (a, left panel) and Pilrb (a, right panel) in
microglial cells 14 days after induction of EAE or in

BMNCs from mice infected with T. gondii for 60–90 days
(b, left and right panels, respectively).

(TIFF)

Figure S2 Parasite burden after infection with T.
gondii. Percentage of infected cells in the PECs of WT and

Pilrb2/2 mice 5 days after i.p. challenge (a). Toxoplasma titer was

monitored by transcript levels of SAG1 3 days post infection in the

MLN at day 3 (b, left panel), and spleen at day 9 (b, right panel)

from WT and Pilrb2/2 mice after peroral challenge with a high-

dose of T. gondii. For each organ SAG1 transcript was normalized

to mouse b-actin and the mean and standard deviation of 3 or 4

mice per condition is shown. Day 3 p = 0.146; Day 9 *p = 0.042.

(TIFF)

Figure S3 Inhibitory receptor, Pilra mRNA expression
in dendritic cells and macrophages. Populations of DCs and

macrophages were enriched from the spleens of WT (open bars)

and Pilrb 2/2 mice (black bars) 5 days after i.p. challenge. Cells

were then analyzed by RT-PCR.

(TIFF)
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