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Abstract

Alllelopathic potential of chicory was investigated by evaluating its effect on seed germination, soluble sugar,
malondialdehyde (MDA) and the chlorophyll content of three target plants species (Festuca arundinacea, Trifolium repens
and Medicago sativa). The secretion of allelochemicals was regulated by keeping the donor plant (chicory) separate from the
three target plant species and using different pH and nitrogen levels. Leachates from donor pots with different pH levels and
nitrogen concentrations continuously irrigated the target pots containing the seedlings. The allelopathic effects of the chicory
at equivalent coupling of nitrogen supply and pH level on the three target plants species were explored via models analyses.
The results suggested a positive effect of nitrogen supply and pH level on allelochemical secretion from chicory plants. The
nitrogen supply and pH level were located at a rectangular area defined by 149 to 168 mg/l nitrogen supply combining 4.95 to
7.0 pH value and point located at nitrogen supply 177 mg/l, pH 6.33 when they were in equivalent coupling effects; whereas
the inhibitory effects of equivalent coupling nitrogen supply and pH level were located at rectangular area defined by 125 to
131 mg/l nitrogen supply combining 6.71 to 6.88 pH value and two points respectively located at nitrogen supply 180 mg/l
with pH 6.38 and nitrogen supply 166 mg/l with pH 7.59. Aqueous extracts of chicory fleshy roots and leaves accompanied by
treatment at different sand pH values and nitrogen concentrations influenced germination, seedling growth, soluble sugar,
MDA and chlorophyll of F. arundinacea, T. repens and M. sativa. Additionally, we determined the phenolics contents of root and
leaf aqueous extracts, which were 0.104% and 0.044% on average, respectively.

Citation: Wang Q, Xie B, Wu C, Chen G, Wang Z, et al. (2012) Models Analyses for Allelopathic Effects of Chicory at Equivalent Coupling of Nitrogen Supply and
pH Level on F. arundinacea, T. repens and M. sativa. PLoS ONE 7(2): e31670. doi:10.1371/journal.pone.0031670

Editor: Hany A. El-Shemy, Cairo University, Egypt

Received August 25, 2011; Accepted January 11, 2012; Published February 22, 2012

Copyright: � 2012 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The Ministry of Science and Technology of the Peoples Republic of China, International S and T Cooperation Research Project between China and
Serbia (grant number: 2011-1-7, (http://www.istcp.org.cn/), and The National Science and Technology Pillar Program of China (grant number: 2011BAD17B05,
http://www.most.gov.cn/), funded this work. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: wangquanzhen191@163.com

Introduction

Allelopathy was first defined by Molisch as a direct or indirect

interaction among plants that causes harmful or beneficial effects

through the release of chemicals [1–3]. A number of scientists have

recognized the importance of allelopathy and other molecular

mechanisms in crop and forage production. Hopefully, the

technologies developed as a result of that recognition will

significantly reduce the use of herbicides while still effectively

protecting biodiversity. In turn, these advances could dramatically

increase agricultural production and enhance the quality of many

crop products [4–8]. Allelopathy plays an important role in agro-

ecosystems and often has a great influence on the interactions of

biotic communities [9], such as the vegetation community

composition [10]. Such influences and interactions are mainly

the result of allelochemical release from donor plants to target

plants [9]. Allelochemicals are mainly a variety of secondary

metabolites which include organic acids, phenols, terpenes, fatty

acids and L-tryptophan [11,12]. Researchers and farmers have

both widely proven that these secondly metabolites possess

insecticidal, antimicrobial and nematicidal properties. Additional-

ly, microbes can use these secondary metabolites as carbon

sources, and bacteria utilize these compounds for quorum-sensing

[13]. Thus, allelochemical secretion plays a major role in the

success of plants and in maintaining ecological balance.

Chicory (Cichorium intybus L.), a perennial ratoon plant of the

family Compositae, originated in the Mediterranean, central Asia

and northern Africa. Cultivation of this plant has been reported as

early as the ancient Roman and Greek eras [14,15]. Chicory is one

of the most promising novel plant candidates among the

carbohydrates with a potential for utilization in both food and

non-food products [16,17]. Four thousand years ago, chicory roots

were used as a substitute for coffee in ancient Egypt [18,19].

Chicory has a higher content of sodium, zinc, copper, iron, calcium,

magnesium and sulphur compared to ryegrass and lucerne [20,21].

Thus, chicory supplementation in a grass mixture can supply

protein, minerals and vitamins to livestock [22]. Grazing chicory

has shown a better growth rate than perennial ryegrass or other
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grasses [23,24]. The optimal chicory growth temperature is 17–

20uC with an assimilation function abating at more than 20uC.

Chicory needs sufficient moisture, light and nutrients throughout

the growth process. This plant is highly adaptable to acidic and

alkaline soil conditions, but exorbitant acidity inhibits its growth.

The gramineae of F. arundinacea grows well in fertile, moist, fine

loamy soil that is rich in organic matter with a pH value range of

4.7–8.5. This plant does not withstand high temperatures, drought

or trampling. It is resistant to half cloudy conditions and is

sensitive to fertilizer. It is a plant suited for warm humid

subtropical to temperate regions.

The legume of T. repens can adapt to all kinds of soil types and

grows well in partially acidic environments. T. repens is resistant to

trimming and trampling and has a strong regeneration ability. In

high shade conditions, it grows poorly. It is highly resistant to

diseases, harmful insects and gas pollution.

M. sativa is a perennial, highly resistant legume forage crop that

has adapted to grow in many climates and soil environments. It

thrives in dry, warm and sunny climates with less rainy weather.

The optimal temperature is 25 to 30uC. An annual rainfall between

400–800 mm facilitates growth, but rainfall over 1,000 mm is

detrimental. This alfalfa species has adapted to growth in neutral

and slightly alkaline soil, but not in strongly acidic and alkaline soils.

The optimum soil pH value is around 7–8.

However, the allelopathic effect of chickory on other grasses is

not well documented. Nitrogen is one of the main nutrients

required by plants [25]. Inadequate nitrogen supply will limit plant

growth and decrease yield potential [2,26,27]. Additionally, soil

pH can affect nutrient absorption and plant growth [28,29].

Therefore, we addressed three main questions in our study: 1) Is

the germination and growth of F. arundinacea, T. repens and M. sativa

affected by aqueous extracts of the fleshy roots and leaves of

chicory grown in sands with different pH and nitrogen levels? 2)

Do chicory secreting allelopathic compounds in leachates affect

soluble sugar, malondialdehyde (MDA) and chlorophyll contents

of the three target plant species? 3) How does the integrative effect

of nitrogen and pH coupling via donor plant influence seedling

growth of the three target plant species?

Results

Effects of chicory leaching on the total soluble sugar,
MDA and chlorophyll content of target plants

The highest soluble sugar content was in F. arundinacea under

donor condition of nitrogen and pH at 65 mg/l and 8.5

respectively; then comes that in T. repens at 65 mg/l of nitrogen

and pH = 7.0 (Fig. 1 A). The content of soluble sugar in F.

arundinacea was higher than that in T. repens and M. sativa (Fig. 1 A).

Both the highest and the second highest MDA content were in T.

repens under donor condition of 130 mg/l of nitrogen combining

pH = 5.5 and 260 mg/l of nitrogen combining pH = 8.5 respec-

tively (Fig. 1 B). Additionally, for F. arundinacea, the content of

MDA was lower than the other two target plants (Fig. 1 B). The

highest chlorophyll content was in F. arundinacea under donor

condition of 260 mg/l of nitrogen and pH = 5.5 (Fig. 1 C). The

variance analysis indicated that the experimental factors, nitrogen

pH and target plants, individual effect, the pairwise effects and

interacts of the three were significant in terms of the soluble sugar,

MDA and chlorophyll content (Table 1).

Effects of crude chicory root and leaf water-soluble
extract on germination and growth of T. repens

The results of the T. repens germination potential and rate,

radicle and hypocotyl length with the concentrations of chicory

root water-soluble extract under three combinations of different

pH levels and nitrogen concentrations are shown in Fig. 2. The

integrative trends of germination potential, germination rate,

lengths of radicle and hypocotyls were decreased with an

exception of hypocotyls at lower 25 g/l of extract when the

extracts concentration increased from 0 to 50 g/l. The range (R)

can described as the degree of influence the factors had on the test

results. The effects of the chicory root and leaf extracts at the all

pH levels and nitrogen concentration combinations on the

germination potential of T. repens was as follows: R3 (261 mg/L

nitrogen at pH 8.5).R2 (130 mg/L nitrogen at pH 5.5).R1

(65 mg/L nitrogen at pH 7.0); and germination rate as follows:

R3.R1.R2. The chicory plant produced more secondary

metabolites when grown in 261.22 mg/L nitrogen at pH 8.5.

Generally, the lower concentrations of chicory root and leaf

extracts fail to significantly influence the germination potential and

germination rate of T. repens, which decreased with an increase in

the extract concentration. The 50 g/L treatment significantly

inhibited the T. repens germination potential and rate.

The ranges of the chicory root extracts from the three pH levels

and three nitrogen concentrations combinations on the radicle and

hypocotyl length of T. repens were as follows: R3.R2.R1 and

R3.R1.R2, respectively. In contrast, the range of the chicory leaf

extracts from the three pH and three nitrogen concentration

combinations on the radicle length of T. repens was R3.R1.R2;

and on the hypocotyl length was R3.R2.R1. The radicles were

more sensitive to inhibition than the hypocotyls. When extract

concentrations were very low (6.25 g/L), the growth of the radicle

was inhibited. However, the growth of the hypocotyl was normal

in lower extract concentrations and was not inhibited until the

extract concentration reached 50 g/L or higher.

Effects of crude chicory leaf and root water-soluble
extract on germination and growth of M. sativa

The results of the M. sativa germination potential and rate,

radicle and hypocotyl length with the crude chicory water-soluble

extract concentrations under three combinations of both different

pH levels and nitrogen concentrations are shown in Fig. 3. The

integrative trends of radicle length, germination potential and

germination rate at 2 and 3 groups were decreased when the

extracts concentration increased from 0 to 50 g/l. Fig. 3 also

shows that the extract combination 2 that contains 130.61 mg/L

nitrogen with a pH of 8.5 can exhibit a strong inhibiting result

especially with the 50 g/L extract concentration. All of the three

other extract combinations do not exhibit this suppressive effect as

the 6.25 g/L, 12.5 g/L, 25 g/L extracts show almost no difference

compared with control. However, all 50 g/L extracts show

obvious growth hindrances. For M. sativa, the germination

potential exhibited a larger difference than the germination rate

under the same combination and extract concentration.

The extract of combination 2 (130.61 mg/L nitrogen and

pH 8.5) exhibited a strong prohibitive result on the M. sativa

radicle and hypocotyl growth. Fig. 3 also illustrated that the M.

sativa radicle is more sensitive than the hypocotyl. When the

extract concentration was 50 g/L, almost the growth of all radicals

was obvious different compared to control, but the hypocotyls no

significant difference.

Effects of crude chicory leaf and root water-soluble
extracts on germination and growth of F. arundinacea

The results of F. arundinacea germination potential and rate,

radicle and hypocotyl length with the crude chicory water-soluble

extract concentrations under the three combinations of different

Models Analyses for Allelopathy of Chicory
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pH levels and nitrogen concentrations are shown in Fig. 4. The

integrative trends of germination potential, germination rate,

lengths of radicle and hypocotyl were decreased when the extracts

concentration increased from 0 to 50 g/l. The effect of the chicory

root extracts of the three pH and nitrogen concentration

combinations on the germination potential and rate of F.

arundinacea was R1.R2.R3. When the root extract concentration

was 50 g/L, all the trials were significantly different than the

control. The extract concentration combinations 1 and 3 were

different only up to 25 g/L with some change at 12.5 g/L. The

effect of the chicory leaf extracts from the three pH levels and

nitrogen concentration combinations on the germination potential

and rate of F. arundinacea was R3.R2.R1. When the leaf extract

concentration was 6.25 g/L, the treatments began to show a

significant difference compared to the control. For F. arundinacea,

all the R values for germination potential were greater than

germination rate under the same treatment conditions.

Both root and leaf extracts at a concentration of 12.5 g/L, play

a part in the growth of the radicle. However, extract concentra-

tions of 25 g/L were needed to affect the lengths of the hypocotyl.

Table 1. The variance analysis of the soluble sugar, MDA and
chlorophyll content of the target plants under different
treatments of nitrogen and pH.

Source DF Pr.F

soluble sugar MDA Chlorophyll

Nitrogen 2 ,.0001 ,.0001 0.0015

pH 2 0.0040 0.0005 0.0001

Target plants 2 ,.0001 ,.0001 ,.0001

Nitrogen6pH 4 ,.0001 ,.0001 ,.0001

Nitrogen6Target plants 4 ,.0001 ,.0001 ,.0001

pH6Target plants 4 ,.0001 ,.0001 ,.0001

Nitrogen6pH6Target plants 8 ,.0001 ,.0001 ,.0001

R-Square 0.8259 0.7316 0.8363

doi:10.1371/journal.pone.0031670.t001

Figure 1. Contents of soluble sugar, MDA and chlorophyll in T. repens, M. sativa and F. arundinacea under orthogonal designed
experiment. Note: (A) soluble sugar, (B) MDA and (C) chlorophyll.
doi:10.1371/journal.pone.0031670.g001

Models Analyses for Allelopathy of Chicory
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Figure 2. Effects of aquatic lixivium of different concentrations of chicory root and leaf extracts on the germination potential,
germination rate, and radicle and hypocotyl length of T. repens under varying nitrogen and pH treatments.
doi:10.1371/journal.pone.0031670.g002

Figure 3. Effects of aquatic lixivium of different concentrations of chicory root and leaf extracts on germination potential,
germination rate, and radicle and hypocotyl length of M. sativa under varying nitrogen and pH treatments.
doi:10.1371/journal.pone.0031670.g003
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Generally, F. arundinacea radicle and hypocotyl lengths showed

obvious differences with increase of chicory root and leaf extract

concentrations.

Phenolics analysis and pH determination of chicory crude
water-soluble extraction

Phenolics inhibit seed germination and seeding growth, which is

generally accepted. Phenolics were analyzed using high-perfor-

mance liquid chromatography (HPLC) (Fig. S1). The phenolics

contents of chicory root and leaf extracts were determinated by

caffeoylquinic acids and by caffeoylquinic acids and quercetin

glucuronide, respectively. The root and leaf extracts made up 0.10

and 0.06 g per 100 g of dry mass, respectively. And pH of root

and leaf extracts ranged from 4.88 to 5.84 and 4.34 to 6.57,

respectively.

Models analyses for allelopathic effects on equivalent
coupling of nitrogen (X1) and pH (X2)

Under equivalent coupling effects of X1 and X2, curves of the

quadratic models of radicles and hypocotyls lengths at aquatic

lixivium of fleshy root were shown in Fig. 5. The lengths of radicles

and hypocotyls had maximum values. This indicated that the

coupling effects of X1 and X2 facilitated the growths of radicles

and hypocotyls. Therefore, the responding X1 and X2 of

maximum points compose optimal ranges of the seedling growth

as 2.29,X1,2.59 and 0.90,X2,1.27 respectively. The ranges

decoded as 149 mg/l,nitrogen (X1),168 mg/l and 4.95,pH

(X2),7.0 (Table 2 and Fig. 5).

However, the curves of the quadratic models of radicles and

hypocotyls lengths at aquatic lixivium of leaves were shown that

the lengths of radicles and hypocotyls had minimum values on

equivalent coupling effects of X1 and X2 (Fig. 6). It indicated that

the coupling effects of X1 and X2 inhibited the growths of radicles

and hypocotyls. Therefore, the responding X1 and X2 of

minimum points compose ranges of the inhibitory effects as

1.93,X1,2.02 and 1.22,X2,1.25 respectively. The ranges

decoded as 125 mg/l,nitrogen (X1),131 mg/l and 6.71,pH

(X2),6.88 (Table 2 and Fig. 6).

Under equivalent coupling effects of X1 and X2, curves of the

quadratic models of MDA content with X1 and X2 were shown in

Fig. 7. The MDA contents had maximum values. The responding

X1 and X2 of maximum points compose the point of the

equivalent coupling effect at X1 = 2.77 and X2 = 1.16. The point

decoded as nitrogen (X1) = 180 mg/l and pH (X2) = 6.38 (Table 2

and Fig. 7).

The contents of soluble sugar and chlorophyll in the target plant

species as dependent variables with the nitrogen and pH

treatments were respectively approached to two-variable quadratic

regression models. The response surface and contour charts for the

coupling effects of nitrogen and pH on the soluble sugar content

shown that had a minimum point at 177 mg/l and pH = 6.33

(Fig. 8). Fig. 9 showed that on chlorophyll also had a minimum

point at 166 mg/l and pH = 7.59.

Discussion

The results of this research agree with that allelopathy is an

accepted phenomenon of chemical interactions with widespread

significance in natural ecosystems [9,30]. The released allelo-

chemicals naturally function on other plants, weeds or microor-

ganisms in inhibitory or excitatory ways [31]. The occurrence of

allelopathic interactions implies that plants are less passive than

expected, as they interact directly with other plants by transmit-

Figure 4. Effects of aquatic lixivium of different concentrations of chicory root and leaf extracts on the germination potential,
germination rate, and radicle and hypocotyl length of F. arundinacea under varying nitrogen and pH treatments.
doi:10.1371/journal.pone.0031670.g004

Models Analyses for Allelopathy of Chicory
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ting, receiving or responding to chemicals [32]. The allelopathic

competence of the leaves and roots of many plants and trees are

well documented in both laboratory and greenhouse experiments

[31]. The results of this study accorded with above points to some

extent (Fig. 1, 2, 3, 4).

Plants are affected by artificially controlled environmental

factors, such as altering the media pH, increasing the soil nitrogen

content and enhancing light. Plant culture pH would impact its

growth by changing the decomposition of organic matter in the

soil. It was reported that organic matter decomposition is greatest

at a neutral pH and is reduced with an increase or decrease from

neutral [33]; however, others have shown that organic matter

decomposition increased from slightly acidic to alkaline pH [34].

Both of the viewpoints were inferred from Fig. 1 and Fig. 5, 6, 7, 8,

9 in this study. Inconsistent decomposition may be due to other

complicated soil factors [35]. The culture pH also affects the

enzymatic activity of the culture medium. For example, phenol

oxidase and peroxidase were found to change with pH change.

Therefore pH can affect normal plant growth through the

alteration of the enzymatic activity. Additionally, nitrogen

fertilization may have a profound impact on below-ground

decomposition. It may modify the microbial community compo-

sition and thus alter the production of soil enzymes involved in the

depolymerization of soil organic matter and plant litter [36–38]. In

our experiments, the results that the points of maximum lengths of

radicle and hypocotyls were at 149 to 168 mg/l range of nitrogen

(Fig. 5). An increase in soil nitrogen availability may suppress the

activity of oxidative enzymes. The effect of nitrogen on

decomposition is dependent on the chemical composition of the

organic matter [39] and may further affect plant growth

metabolism.

Chicory root and leaf water-soluble extracts shown allelopathic

effects as illustrated by the inhibition of germination potential,

germination rate, and growth of the radicles and hypocotyls in all

three target plants tested at different levels of extracts (Fig. 2, 3, 4).

The most effective concentration was 50 g/L, which had a more

pronounced inhibitory effect on the germination potential. The

germination potential, germination rate, and the growth of the

radicles and hypocotyls in three bioassay indexes decreased with

increasing concentration of crude chicory root and leaf water-

soluble extract. The seed germination was also strongly inhibited

at the early stages of the experiment (Fig. 2, 3, 4). The roots may

be the primary target as they are in direct contact with the

leachates containing the chicory allelochemicals [40] and were

particularly sensitive to allelochemicals [41]. The stem extracts

were more inhibitory to radicle growth than were the root extracts

for barley (Hordeum vulgare L.) [42]. In contrast, our experimental

results in Fig. 2, 3, 4 demonstrated that leaf extracts have stronger

inhibitory effects than the root extracts of chicory. Furthermore, in

models analyses, there were maximum length of radicle and

hypocotyls under aquatic lixivium extract of chicory root (Fig. 5).

This inferred that the root extract facilitated the seedling growth;

Figure 5. Nitrogen and pH equivalent coupling effects of models for the effects of aquatic lixivium of chicory root on the radicle
and hypocotyl length of the three plants.
doi:10.1371/journal.pone.0031670.g005

Table 2. Orthogonal matrix of the experimental design L9(34).

Treat
No.

Nitrogen
concentration(mg/l) pH Target plant

matrix code (X1) matrix code (X2) matrix

1 1(65.31) 1 1(5.5) 1.00 2 (MS)

2 1 1 2(7.0) 1.27 1 (TR)

3 1 1 3(8.5) 1.55 3 (FA)

4 2(130.61) 2 1 1.00 1

5 2 2 2 1.27 3

6 2 2 3 1.55 2

7 3(261.12) 4 1 1.00 3

8 3 4 2 1.27 2

9 3 4 3 1.55 1

TR, MS and FA are stand for Trifolium repens, Medicago sativa and Festuca
arundinacea respectively.
doi:10.1371/journal.pone.0031670.t002

Models Analyses for Allelopathy of Chicory
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whereas minimum length of those under the extract of leaf (Fig. 6)

inferred that the leaf extract inhibited the seedling growth. These

may be caused by a higher concentration of phytotoxins in the

leaves versus the roots. These findings accorded with the reports

that the study of Peganum harmala L. demonstrated the inhibitory

order as: leaves.stems.roots [8], that the aqueous extracts of

lettuce leaf (Lactuca sativa L.) showed marked inhibition of seed

germination of alfalfa [43] and similar results were also obtained

when robinia (Pseudo acacia L) leaf was grown in soil mixed with

barnyard grass, white clover, lettuce and Chinese cabbage at

various concentrations [44].

The membrane fat peroxidation function of plants can increase

in adverse conditions, which would increase the content of MDA

as one of the decomposition products [1,45]. Under equivalent

coupling effects of nitrogen and pH, curves of the quadratic

models showed a maximum MDA content in this study (Fig. 7).

This inferred an inhibited effect at the points of the maximum

MDA contents when the point was at X1 = 2.77 and X2 = 1.16.

The point decoded as nitrogen (X1) = 180 mg/l and pH

(X2) = 6.38 (Table 2 and Fig. 7). MDA concentration will increase

when plants are exposed to diverse stresses or become senescent

[45]. The higher MDA content subjected to a coupling effect of

higher nitrogen (180 mg/l) and lower pH (6.38) environment in

our experiment.

Soluble sugar is important in the osmotic regulation of

substances within a plant body. In adverse conditions, an increase

in the soluble sugar content is expected [1,13]. In this study, the

response surface and contour charts illustrated a minimum content

of soluble sugar for the coupling effects of nitrogen and pH. The

point of the minimum value was at 177 mg/l and pH = 6.33

(Fig. 8). This inferred that there was a stimulative effect at the

point rather than an inhibitory effect.

Chloroplasts are the locations where photosynthesis takes place.

Therefore, it is used to intercept light energy. The chlorophyll

content directly impacts the photosynthetic ability of a plant, and

to a certain extent, it reflects the level of leaf nitrogen [6,46]. The

result of this study showed a minimum value of chlorophyll

content in the target plants when models’ analyzing the coupling

effects of nitrogen and pH (Fig. 9). This inferred that there was a

strongest inhibitory effect at the point of the minimum value which

was at 166 mg/l and pH = 7.59 (Fig. 9). Plants grown in nutrient

solutions with a lower pH were negatively affected by the addition

of HCl, which was added when the pH level was adjusted [46].

However, under acidic pH treatment (pH = 5.5, 261 mg/l

nitrogen), the chlorophyll content of the target plants showed

significant differences (Fig. 1 C). These results could have been

caused by the presence of either excess protons or chloride ions in

the solution [46].

Figure 6. Nitrogen and pH equivalent coupling effects of models for the effects of aquatic lixivium of chicory leaf on the radicle and
hypocotyl length of the three plants.
doi:10.1371/journal.pone.0031670.g006

Figure 7. Nitrogen and pH equivalent coupling effects of
models for the coupling effects in terms of the MDA content in
the target plants.
doi:10.1371/journal.pone.0031670.g007

Models Analyses for Allelopathy of Chicory
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Changing the soil pH and nitrogen composition can alter the

secondary metabolism of allelochemicals. For investigating that

the integrative effect of nitrogen and pH coupling via donor plant

influence seedling growth of the target plant species, the results of

models analyses (Fig. 5 to 9) were combined and plotted as

distribution surface of nitrogen and pH (Fig. 10). Rectangular area

‘A’ and point ‘C’ indicated the results of Fig. 5 and 8 respectively.

They were combined a location defined by 149 to 168 mg/l

nitrogen supply and 4.95 to 7.0 pH level (area ‘A’) and at 177 mg/

l nitrogen, 6.33 pH level (point ‘C’) (Fig. 10) because both of them

had positive coupling effects on the target plants in this study. In

contrast, the combinative treatments of the nitrogen and pH on

chicory located at rectangular area ‘B’, point ‘D’ and ‘E’ (Fig. 10),

which respectively indicated the results of Fig. 6, 7 and 9, had

negative coupling effects on the target plant.

Phenolic compounds are often discussed in relation to

allelopathy, which have been proven with phytotoxic perhaps

due to their some minor fraction in many literatures [6,40]. The

total concentrations of phenolic acids in the ecotypes of important

species were positively correlated with the total organic acid

concentrations found in their respective soils [47]. Exposure to

phenolic acids caused depolarization and an increased ion

permeability in barley root membranes, and the inhibition of ion

uptake was directly related to membrane perturbation and not to

cytoplasmic changes [48]. Contents of phenolics for different

treatments exist obvious difference, which basically increase with

extractions concentrations rising.

Increasing the nitrogen level of cultivation can result in an

increase in the conversion rate of organic to mineral nitrogen by

soil microbes. Thus, a positive feedback mechanism is activated

that leads to an increase the leaching of NO3
2. The greater the

total nitrogen uptake by plants, the greater the plant productivity

[49,50]. There were significant differences with regards to soluble

sugar and MDA content among the 65, 130 and 261 mg/l

treatment conditions (Fig. 1 A and Fig. 10). Similarly, a decrease in

the soluble sugar concentration in the Lycium barbarum leaf was

Figure 8. Response surface and contour chart for the coupling effects of nitrogen and pH on soluble sugar content in the target
plants.
doi:10.1371/journal.pone.0031670.g008

Figure 9. Response surface and contour chart for the coupling effects of nitrogen and pH on chlorophyll in content the target
plants.
doi:10.1371/journal.pone.0031670.g009

Models Analyses for Allelopathy of Chicory
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discovered with an increasing application rate of nitrogen fertilizer

[51]. All of these changes were attributed to the complex

physiological and biochemical mechanisms of plants. Therefore,

these mechanisms need to be further investigated.

Different plants contain different genes. The diversity of genetic

pool decides the diversity of various traits, so plants are expected to

show differences in factors such as height, MDA content,

chlorophyll content, etc. when they are grown in the same

biotope. When the target plants were treated as factors, the soluble

sugar, MDA and chlorophyll content showed significant differ-

ences. For example, F. arundinacea had a stronger nitrogen

absorbability and assimilation even in the lower nitrogen supply

and, as a result, had a better ability to maintain a high chlorophyll

content [52]. Thus, these results can only be used to select for grass

species with medium or poor nitrogen resistance.

Conclusion
This study suggested a positive effect of nitrogen supply and pH

level on allelochemical secretion from chicory plants. The nitrogen

supply and pH level were located at rectangular area defined by

149 to 168 mg/l nitrogen supply combining 4.95 to 7.0 pH value

and point located at nitrogen supply 177 mg/l, pH 6.33 when

they were in equivalent coupling effects; whereas the inhibitory

effects of equivalent coupling nitrogen supply and pH level were

located at rectangular area defined by 125 to 131 mg/l nitrogen

supply combining 6.71 to 6.88 pH value and two points

respectively located at nitrogen supply 180 mg/l with pH 6.38

and nitrogen supply 166 mg/l with pH 7.59. Aqueous extracts of

chicory fleshy roots and leaves accompanied by treatment at

different soil pH values and nitrogen concentrations influenced

germination, seedling growth, soluble sugar, MDA and chloro-

phyll of F. arundinacea, T. repens and M. sativa. Further research to

quantify allelochemical activity as a function of pH and nitrogen

supplementation and to investigate its consequence on hydrolytic

enzyme activities may help to make precise decisions on adjusting

the habitat of chicory.

Materials and Methods

Two experiments composed this study. The experiment one was

conducted in a completely automated PVC greenhouse, located at

the Northwest A & F University (34u289N, 108u079E). The yearly

average sunshine duration is 2,150 h. The average temperature is

12–14uC with the highest temperature between 39–40uC and the

lowest temperature 221–215uC, which represents the half-humid,

warm temperate climate zone. The soil pH was 8.26, and the total

nitrogen content in the top 20 cm of the soil was 0.00972% with a

C:N ratio of 11. The experiment two was germination test which

was conducted in constant temperature culture base.

Experimental materials
Our chicory (C. intybus L.) plants were transplanted from the first

agricultural station in Northwest A & F University to the

greenhouse as donor plants and placed 70 cm above the target

plants. Our target species included T. repens, F. arundinacea and M.

sativa, which were sown in pots as target plants.

Experimental design
The experiment one was orthogonally designed to incorporate

three factors at three levels using the L9(34) orthogonal matrix. It

contained three different target species (F. arundinacea, T. repens and

M. sativa), three nitrogen treatments (X1: 0.5 N, 1 N and 2 N) and

three pH treatments (X2: pH 5.5, pH 7 and pH 8.5). There were

total of 9 treatments with three repetitions and comprised of 27

pots (Table 3).

Multiple 25 cm diameter pots were used as donor pots, which

had a 10-cm diameter gap on the bottom. In this gap, a plastic

funnel (12 cm diameter) was glued to the pot. The funnel was filled

with pebbles and a wire netting (made of various meshes) was

placed on the top to retain the sand placed in the pot. The funnel

was connected to a polyethylene (PE) tube to allow the flow of

leachate. Each of three pots was supplemented with and liquid

nitrogen at appropriate pH every other day, which compensated

for the water loss due to evaporation and leaching.

Experiment one
pH and nitrogen treatment. To test the allelopathic effects

of the chicory, we used sand with different pH levels and nitrogen

concentrations in an orthogonal design of three factors with three

levels (total of nine treatments). The pH values were adjusted to

5.5, 7, 8.560.02 using 0.001 mol/L NaOH and HCl. The

concentrations of nitrogen treatments were 65.305, 130.610 and

261.122 mg/L, respectively (half, one and double times of the

nitrogen content of modified Hoagland’s nutrient solution).
Soluble sugar, MDA and total chlorophyll content

analysis. Using the shoots (1 g fresh weight) corresponding to

the 3 target plant species (F. arundinacea, T. repens and M. sativa) for

each treatment, the amount of soluble sugar (sucrose), MDA and

chlorophyll in 0.1 g was measured with a spectrophotometer (U-

Figure 10. Distribution surface of nitrogen and pH for the
effects on the seedling growth, soluble sugar, MDA and
chlorophyll in the target plants.
doi:10.1371/journal.pone.0031670.g010

Table 3. Design for the orthogonal L9 (34) test.

Level Factors

Target plant pH Nitrogen concentration

I Trifolium repens 5.5 65.31 mg/L

II Medicago sativa 7 130.61 mg/L

III Festuca arundinacea 8.5 261.12 mg/L

doi:10.1371/journal.pone.0031670.t003
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2001,Hitachi, Japan) at 450, 532 and 652 nm, respectively. Each

experiment was conducted three times and results are presented in

Fig. 1 as the mean of these three replicates.

Experiment two
Crude water-soluble extraction of chicory for experiment

two. When finished experiment one, the chicory plants in each

donor pot were immediately washed with distilled water and

divided into the above ground and the underground parts, then

sliced up, air dried, ground into powder and passed through a 40

mesh sieve respectively. Eighteen (962) samples of the dry matter

were got. Each one was soaked for 48 h (10.0 g of 100 mL distilled

water) at 25uC with stirring once every 12 h. After a 10 minute

centrifugation at 4000 rpm, the supernatant liquid was harvested

and passed through filter funnels to obtain an original fluid with a

concentration of 100 g/L. Each of the original fluid was then

diluted to 6.25, 12.5, 25, 50 g/L and added with a control of

distilled water for composing five levels of treatments. Totally 90

(96265) samples of aquatic lixivium were got as treatments. The

solutions were used to irrigate growing seeds of the target plants in

Petri dishes every other day.
Allelochemicals analysis and pH determination of chicory

crude water-soluble extraction. HPLC was applied to

phenolics of chicory allelochemicals. A column of Diamonsil 18 C

(2) (250 mm64.6 mm ID) was placed. Linear gradient elution was

carried out at a flow rate of 1 ml/min. Solvent A was 3% acetic acid

in distilled water, and solvent B, acetonitrile with 3% acetic acid.

Detected wavelength is 280 nm, and column temperature is 38uC.

Identification and quantification of phenolic compounds were

performed by comparing retention times, wavelength detection, and

peak areas to those of standard compounds (Fig. S1). pH meter was

used to determine pH of every extractions.
Germination test. The seeds of the three target plants

species were disinfected with potassium permanganate for

15 minutes, and then rinsed repeatedly to remove the potassium

permanganate completely with distilled water (5 to 6 washes).

Next, the seeds were separately placed in 270 (9063 repetition)

Petri dishes (9 cm diameter and 1.7 cm deep). Fifty seeds were

placed in each Petri dish. They were fitted with two pieces of 9 cm

filter paper and moistened with 1 mL of the treatments

respectively. The covered Petri dishes were incubated in

completely dark conditions (Eyela, Eyelatron FLI-301NH, Japan)

at 25uC for either 14 days for F. arundinacea or 10 days for T. repens

and M. sativa. The percentage of germination potential (the 5th

day for F. arundinacea and the 4th day for T. repens and M. sativa)

and the germination rate (measured on the last experimental day)

was recorded. The physiological characteristics of the radicles and

hypocotyls and the length of both organs were also documented.

This experiment was conducted three times and the results were

presented in Fig. 2, 3, 4 as the mean of the three replicates.

Data analysis and statistic methods
The germination potential, germination rate and radicle and

hypocotyl length along with the sucrose, MDA and chlorophyll

content of target plants were analysed using the analysis of

variance (ANOVA) test. The five individual plants per target pot

were averaged as an experimental unit. The target species and the

treatments were treated as factors. Also, the fixed factors included

three nitrogen concentrations and three pH levels. For the

determination of significance, post hoc LSD tests were used to

identify significantly different treatments.

For generic results, the factors nitrogen and pH were denoted

by X1 and X2. The levels of X1 and X2 were coded (Table 2). The

dependent variables, lengths of radicles and hypocotyls treated by

root aquatic lixivium and leaves aquatic lixivium were denoted by

YR-R, YR-H, YL-R and YL-H respectively. The MDA contents in the

target species was denoted by YMDA. These variables were

approached and analyzed via two-variable (X1 and X2) quadratic

regression models as [53–55]:

Y~
X2

i~1

(bi|jz1X
j
i )zu i~1,2; j~1,2ð Þ ð1Þ

Where, b is constants. For equivalent coupling effects of X1 and

X2, thus,

LY

LX1
~

LY

LX2
ð2Þ

Then, one-variable quadratic models of Y with X1 and X2 were

respectively obtained and their quadratic curves were presented in

Fig. 5, 6, 7.

Response surface and contour charts are respectively graphed

for the soluble sugar and chlorophyll contents with their

responding nitrogen and pH treatments (Fig. 8 and 9).

Additionally, Distribution surface of nitrogen and pH for the

results of two experiments was plotted in Fig. 10. The analyses and

graphical procedures specified above were all performed using

SAS (v8.2) [56].

Supporting Information

Figure S1 Chromatograms of chicory samples after
water extraction; black, blue and green line respectively
represent table sample, root extract and leaf extract.

(DOC)

Acknowledgments

We are grateful to Dr. Djura Karagic, Forage Crops Department, Institute

of Field and Vegetable Crops, Serbia, for creative comments on this

manuscript.

Author Contributions

Conceived and designed the experiments: BX QW. Performed the

experiments: BX CW GC. Analyzed the data: QW BX JC. Contributed

reagents/materials/analysis tools: ZW TH. Wrote the paper: QW BX PW.

References

1. Rice EL (1984) Allelopathy, 2nd edn Academic Press, New York, USA.

2. Fang CX, He HB, Wang QS, Qiu L, Wang HB, et al. (2010) Genomic analysis of

allelopathic response to low nitrogen and barnyardgrass competition in rice (Oryza

sativa L.). Plant Growth Regul 61: 277–286. Doi:10.1007/s10725-010-9475-8.

3. Kato-Noguchi H (2009) Stress-induced allelopathic activity and momilactone B

in rice. Plant Growth Regul 59: 153–158.

4. Fang CX, Xiong J, Qiu L, Wang HB, Song BQ, et al. (2009) Analysis of gene

expressions associated with increased allelopathy in rice (Oryza sativa L.)

induced by exogenous salicylic acid. Plant Growth Regul 57: 163–172.

5. Kato-Noguchi H, Yamamoto M, Tamura K, Teruya T, Suenaga K, et al. (2010)

Isolation and identification of potent allelopathic substances in rattail fescue.

Plant Growth Regul 60: 127–131.

6. Le Thi H, Toshiaki T, Kiyotake S, Van Chin D, Kato-Noguchi H (2008)

Allelopathy and the allelothathic activity of a phenylpropanol from cucumber

plants. Plant Growth Regul 56: 1–5.

7. Salam MA, Morokuma M, Teruya T, Suenaga K, Kato-Noguchi H (2009)

Isolation and identification of a potent allelopathic substance in Bangladesh rice.

Plant Growth Regul 58: 137–140.

Models Analyses for Allelopathy of Chicory

PLoS ONE | www.plosone.org 10 February 2012 | Volume 7 | Issue 2 | e31670



8. Sodaeizadeh H, Rafieiolhossaini M, Havlik J, Van Damme P (2009) Allelopathic

activity of different plant parts of Peganum harmala L. and identification of their
growth inhibitors substances. Plant Growth Regul 59: 227–236.

9. Parvez SS, Parvez MM, Nishihara E, Gemma H, Fujii Y (2003b) Tamarindus

indica L. leaf is a source of allelopathic substance. Plant Growth Regul 40:

107–115.

10. Lawton JH (1994) What Do Species Do in Ecosystems. Oikos 71: 367–374.

11. Ens EJ, French K, Bremner JB, Korth J (2010) Novel technique shows different
hydrophobic chemical signatures of exotic and indigenous plant soils with similar

effects of extracts on indigenous species seedling growth. Plant Soil 326:
403–414.

12. Nakano H, Fujii Y, Yamada K, Kosemura S, Yamamura S, et al. (2002)

Isolation and identification of plant growth inhibitors as candidate(s) for
allelopathic substance(s), from aqueous leachate from mesquite (Prosopis juliflora

(Sw.) DC.) leaves. Plant Growth Regul 37: 113–117.

13. Hadacek F (2002) Secondary metabolites as plant traits: Current assessment and

future perspectives. Critical Rev Plant Sci 21: 273–322.

14. Mulabagal V, Wang HB, Ngouajio M, Nair MG (2009) Characterization and
quantification of health beneficial anthocyanins in leaf chicory (Cichorium intybus)

varieties. European Food Res Techn 230: 47–53.

15. Plmuier W (1972) Chicory improvement. Revueder Agriculture 4: 567–585.

16. Wang Q, Cui J (2011) Perspectives and utilization technologies of chicory
(Cichorium intybus L.): A review. Afri J Biotech 10: 1966–1977.

17. Hassan HA, Yousef MI (2010) Ameliorating effect of chicory (Cichorium intybus

L.)-supplemented diet against nitrosamine precursors-induced liver injury and
oxidative stress in male rats. Food Chem Toxicol 48: 2163–2169.

18. Deshusses J (1961) The content of formic acid in roasted coffee, chicory, soluble

extracts of coffee and coffee substitutes. Mitt Geb Lebensmittelunters Hyg 52:

428–30.

19. Van Waes C, Baert J, Carlier L, Van Bockstaele E (1998) A rapid determination
of the total sugar content and the average inulin chain length in roots of chicory

(Cichorium intybus L). J Sci Food Agri 76: 107–110.

20. Belesky DP, Fedders JM, Turner KE, Ruckle JH (1999) Productivity, botanical
composition, and nutritive value of swards including forage chicory. Agron J 91:

450–456.

21. Jung GA, Shaffer JA, Varga GA, Everhart JR (1996) Performance of ‘grasslands
puna’ chicory at different management levels. Agron J 88: 104–111.

22. Hogh-Jensen H, Nielsen B, Thamsborg SM (2006) Productivity and quality,

competition and facilitation of chicory in ryegrass/legume-based pastures under

various nitrogen supply levels. European J Agron 24: 247–256.

23. Barry TN (1998) The feeding value of chicory (Cichorium intybus) for ruminant

livestock. J Agri Sci 131: 251–257.

24. Turner KE, Belesky DP, Fedders JM (1999) Chicory effects on lamb weight gain

and rate of in vitro organic matter and fiber disappearance. Agron J 91:
445–450.

25. Cambui CA, Svennerstam H, Gruffman L, Nordin A, Ganeteg U, et al. (2011)

Patterns of Plant Biomass Partitioning Depend on Nitrogen Source. PLoS ONE
6(4): e19211. doi:10.1371/journal.pone.0019211.

26. Delfini R, Belgoff C, Fernandez E, Fabra A, Castro S (2010) Symbiotic nitrogen

fixation and nitrate reduction in two peanut cultivars with different growth habit

and branching pattern structures. Plant Growth Regul 61: 153–159.
Doi:10.1007/s10725-010-9461-1.

27. Zhang Y, Lv H, Wang D, Deng J, Song W, et al. (2011) Partial nitrate nutrition

amends photosynthetic characteristics in rice (Oryza sativa L. var. japonica)
differing in nitrogen use efficiency. Plant Growth Regul 63.Doi: 10.1007/

s10725-010-9520-7.

28. Chaillou S, Vessey JK, Morotgaudry JF, Raper CD, Henry LT, et al. (1991)
Expression of Characteristics of Ammonium Nutrition as Affected by Ph of the

Root Medium. J Exp Bot 42: 189–196.

29. Vessey JK, Henry LT, Chaillou S, Raper CD (1990) Root-Zone Acidity Affects

Relative Uptake of Nitrate and Ammonium from Mixed Nitrogen-Sources.
J Plant Nutr 13: 95–116.

30. Parvez SS, Parvez MM, Fujii Y, Gemma H (2003a) Allelopathic competence of

Tamarindus indica L. root involved in plant growth regulation. Plant Growth
Regul 41: 139–148.

31. Parvez SS, Parvez MM, Fujii Y, Gemma H (2004) Differential allelopathic

expression of bark and seed of Tamarindus indica L. Plant Growth Regul 42:
245–252.

32. Fitter A (2003) Making allelopathy respectable. Science 301: 1337–1338.

33. Delaune RD, Reddy CN, Patrick WH (1981) Organic matter decomposition in
soil as influenced by pH and redox conditions. Soil Biol Biochem 13: 533–534.

34. Amato M, Ladd JN (1992) Decomposition of 14C-labelled glucose and legume
material in soils: Properties influencing the accumulation of organic residue C

and microbial biomass C. Soil Biol Biochem 24: 455–464.

35. Yao H, Bowman D, Rufty T, Shi W (2009) Interactions between N fertilization,
grass clipping addition and pH in turf ecosystems: Implications for soil enzyme

activities and organic matter decomposition. Soil Biolo Biochem 41: 1425–1432.
36. De-Forest JL, Zak DR, Pregitzer KS, Burton AJ (2004) Atmospheric nitrate

deposition, microbial community composition, and enzyme activity in northern
hardwood forests. Soil Sci Societ America J 68: 132–138.

37. Gallo M, Amonette R, Lauber C, Sinsabaugh RL, Zak DR (2004) Microbial

community structure and oxidative enzyme activity in nitrogen-amended north
temperate forest soils. Micr Ecol 48: 218–229.

38. Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) The effects of long term
nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest

soil. Soil Biolo Biochem 34: 1309–1315.

39. Sinsabaugh RL, Carreiro MM, Repert DA (2002) Allocation of extracellular
enzymatic activity in relation to litter composition, N deposition, and mass loss.

Biogeochemi 60: 1–24.
40. Viard-Cretat F, Gallet C, Lefebvre M, Lavorel S (2009) A leachate a day keeps

the seedlings away: mowing and the inhibitory effects of Festuca paniculata in
subalpine grasslands. Annal Bot 103: 1271–1278.

41. Perry LG, Thelen GC, Ridenour WM, Weir TL, Callaway RM, et al. (2005)

Dual role for an allelochemical: (+/2)-catechin from Centaurea maculosa root
exudates regulates conspecific seedling establishment. J Ecolo 93: 1126–1135.

42. Oueslati O, Ben-Hammouda M, Ghorbal MH, Guezzah M, Kremer RJ (2005)
Barley autotoxicity as influenced by varietal and seasonal variation. J Agron

Crop Sci 191: 249–254.

43. Chon SU, Jang HG, Kim DK, Kim YM, Boo HO, et al. (2005) Allelopathic
potential in lettuce (Lactuca sativa L.) plants. Sci Horticul 106: 309–317.

44. Nasir H, Iqbal Z, Hiradate S, Fujii Y (2005) Allelopathic potential of Robinia
pseudo-acacia L. J Chem Ecolo 31: 2179–2192.

45. Dong J, Wu FB, Jin ZQ, Huang YQ (2006) Heterosis for yield and some
physiological traits in hybrid cotton Cikangza 1. Euphytica 151: 71–77.

46. Barkosky RR, Einhellig FA, Butler JL (2000) Caffeic acid-induced changes in

plant-water relationships and photosynthesis in leafy spurge Euphorbia esula.
J Chem Ecol 26: 2095–2109.

47. Kidd PS, Proctor J (2000) The growth response of ecotypes of Holcus lanatus L.
from different soil types in northwestern Europe to phenolic acids. Plant Biolo 2:

335–343.

48. Glass ADM, Dunlop J (1974) Influence of Phenolic Acids on Ion Uptake .4.
Depolarization of Membrane-Potentials. Plant Physiol 54: 855–858.

49. Lea PJ, Azevedo RA (2006) Nitrogen use efficiency. 1. Uptake of nitrogen from
the soil. Annals Appl Biolo 149: 243–247.

50. Levang-Brilz N, Biondini ME (2003) Growth rate, root development and
nutrient uptake of 55 plant species from the Great Plains Grasslands, USA. Plant

Ecolo 165: 117–144.

51. Chung RS, Chen CC, Ng LT (2010) Nitrogen fertilization affects the growth
performance, betaine and polysaccharide concentrations of Lycium barbarum.

Ind Crops Prod 32: 650–655.
52. Suriguga, Ma WL, Sun TJ, Liu SJ (2008) Comparative study on response to

medium with different nitrogen supply levels of ten grass species during seedling

stage. Xibei Zhiwu Xuebao 28: 1689–1694.
53. Chatterjee S, Price B (1977) Regression analysis by example John Wiley & Sons,

Inc., New York.
54. Lattin JM, Carroll JD, Green PE (2003) Analyzing multivariate data Brooks/

Cole, USA.

55. Gregory S (1978) Statistical methods and geographer Longman Inc., New York,
London and New York.

56. SAS-Institute-Inc. (1988) SAS/STAT User’s Guide SAS Institute Inc., Cary,
NC.

Models Analyses for Allelopathy of Chicory

PLoS ONE | www.plosone.org 11 February 2012 | Volume 7 | Issue 2 | e31670


