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Abstract

Runs of homozygosity (ROH) represents extended length of homozygotes on a long genomic distance. In oncology, it is
known as loss of heterozygosity (LOH) if identified exclusively in cancer cell rather than in matched control cell. Studies have
identified several genomic regions which show consistent ROH in different kinds of carcinoma. To query whether this
consistency can be observed on broader spectrum, both in more cancer types and in wider genomic regions, we
investigated ROH patterns in the National Cancer Institute 60 cancer cell line panel (NCI-60) and HapMap Caucasian healthy
trio families. Using results from Affymetrix 500 K SNP arrays, we report a genome wide significant association of ROH
regions between the NCI-60 and HapMap samples, with much a higher level of ROH (11 fold) in the cancer cell lines. Analysis
shows that more severe ROH found in cancer cells appears to be the extension of existing ROH in healthy state. In the
HapMap trios, the adult subgroup had a slightly but significantly higher level (1.02 fold) of ROH than did the young
subgroup. For several ROH regions we observed the co-occurrence of fragile sites (FRAs). However, FRA on the genome
wide level does not show a clear relationship with ROH regions.

Citation: Ruan X, Kocher J-PA, Pommier Y, Liu H, Reinhold WC (2012) Mass Homozygotes Accumulation in the NCI-60 Cancer Cell Lines As Compared to HapMap
Trios, and Relation to Fragile Site Location. PLoS ONE 7(2): e31628. doi:10.1371/journal.pone.0031628

Editor: Patrick Tan, Duke-National University of Singapore Graduate Medical School, Singapore

Received June 1, 2011; Accepted January 15, 2012; Published February 9, 2012

Copyright: � 2012 Ruan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the Intramural Research Program of the National Institutes of Health, Center for Cancer Research, National Cancer
Institute, and also by National Science Foundation ABI: 0845523 and National Institute of Health R01LM009959A1. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: liu.hongfang@mayo.edu (HL); wcr@mail.nih.gov (WCR)

Introduction

In diploid organisms, SNPs are categorized into heterozygotes

and homozygotes according to the difference/identity between

paternal and maternal alleles. Loss of heterozygosity (LOH) [1] in

a cell represents the conditions of loss of normal function of one

allele when the other allele was already inactivated. LOH may

cause tumor suppressor gene loss of function, which is associated

with oncogenesis [2].

Genomic regions affected by LOH often exhibit an extended

length of homozygous SNPs, which forms regions with low

diversity between two copies of DNA. Studies in E. coli [3],

Trypanosoma brucei [4] and mouse [5] show the importance of

extended sequence similarity/diversity in promoting/preventing

homologous recombination. This recombination, if happened

during mitotic process, maybe related to subsequent LOH [6] and

affects genome stability [7,8]. Study by Bacolod, M.D. [9] shows

that colorectal cancer patients have average length of identical by

descent region twice the length of healthy population. Based on

the colorectal cancer data, they later proposed a cancer gene

activity model (CGAM) [10] in an effort to explain how

autozygosity influences cancer predisposition. Similarly, a study

by Assie, G et al. [11] investigated breast, prostate, head and neck

carcinomas and found 16 common loci that have significantly

increased germline homozygosity frequency.

From these previous works, we conclude that 1) LOH is related

to diseases and 2) in cancer there may be an extension of germline

homozygous region. This has been shown population wise in some

type of cancer, and in certain loci across three different types of

carcinoma. Question remains if this phenomenon can be

extrapolated to multiple cancers at the whole genome scale. We

are hypothesizing that the increased size of the homozygous

regions in cancer arises from the extension of regions found in

germline. We are also hypothesizing that the genomic position of

homozygous regions are not equally distributed across the genome

(conserved across individuals) and therefore could depend on the

local properties of the genomic DNA. Finally, we are postulating

that homozygous regions in germline that are dramatically

extended in cancer could have the natural propensity to expend

upon aging. In this manuscript we will refer to these homozygous

regions as runs of homozygosity (ROH).

We have performed a genome wide comparison of ROH

position and length in cancer cell lines from the NCI-60 library as

well as in germline samples from young and adult individuals

obtained from 30 HapMap Caucasian trio families. We also

investigated if a proximity relationship exists between ROH

positions and fragile sites (FRA) that undergo more often DNA

damage repairs. In addition we investigated similar relationship

between ROH and microRNA (miRNA) sites that have been

shown to be associated to FRA regions [12].
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Materials and Methods

NCI-60 Cancer Cell Line and HapMap Samples
The NCI-60 was developed as an anticancer drug screen panel

by the US National Cancer Institute (NCI), Developmental

Therapeutics Program (DTP, http://dtp.nci.nih.gov/) [13]. It

contains 60 Caucasian tumor cell lines from brain (BR), central

nervous system (CNS), colon (CO), lung (LC), white blood cell

(LE), melanocyte (ME), ovary (OV), prostate (PR) and renal (RE).

Detailed information about NCI-60 is available at CellMiner

website (http://discover.nci.nih.gov). To prepare cell lines for

Affymetrix 500 K SNP array analysis, frozen stocks of the NCI-60

were obtained from the NCI Developmental Therapeutics

program (NCI DTP). The cells were cultured as described

previously [14], and then thawed, placed in RPMI 1640 (Lonza

Walkersville, Inc.) containing 5% fetal calf serum (Atlantic

Biologicals) and 2 mM glutamine (Invitrogen Corporation). For

compatibility with our other profiling studies, we used the same

batch of serum used by DTP, and the procedures were done or

overseen by the same researcher (WCR). The colon cell line HT29

was removed due to contamination. Results of two replicates on

ovary cell line OVCAR-3 were merged, and discrepant results

were set to unknown. After exclusion and merge, SNP array data

of 59 cancer cell lines were used in the final analysis. The NCI-60

Affymetrix 500 K SNP array data is publicly available from Gene

Expression Omnibus (GSE32264).

The International HapMap Project is a muti-country effort to

identify and catalog genetic similarities and differences in human

beings (http://HapMap.ncbi.nlm.nih.gov/). Only HapMap sam-

ples with European origin were used to minimize the ethnic

difference with the NCI-60 samples. A total of 59 cancer cell lines

and 30 normal HapMap CEU trio families (30 children (young)

+60 parents (adult)) genotyped with the Affymetrix 500 K SNP

array were analyzed. Genotype calls were made using Affymetrix

Power Tool (APT) (Linux, version 1.12.0) using the BRLMM

algorithm (http://media.affymetrix.com/support/technical/

whitepapers/brlmm_whitepaper.pdf) at the default confidence

level (, = 0.5). The average ‘‘NoCall’’ rate is 4.2% in the NCI-

60 and 0.5% in HapMap samples.

Identify Runs of homozygosity (ROH), ROH frequency
(ROHF) and Hemizygous deletion frequency (HDF)

Existing studies primarily identify ROH by moving a fixed-size

window along SNP genotypes and detecting long stretch of

homozygotes. Drawbacks of this scheme are 1) there is no

standardized criteria for calling ROH, 2) different settings on

window size, homozygous SNP number, accommodation for

genotyping error, or homozygotes stretch length threshold may

significantly influence the result [15]. To avoid bias that may arise

from inappropriately chosen criteria, ROH in the current study

was primarily detected by basic Hidden-Markov Model (HMM)

procedure proposed by Beroukhim R. et al. [16]. While still

arbitrary, HMM is less sensitive to interspersed heterozygotes in

that it tracks the state change between low and high heterozygosity

rates. Although HMM was primarily used to detect LOH, its

working principle makes it applicable to ROH detection. By

locating the position where transition probability is higher than a

given threshold, HMM differentiates ROH from normal hetero-

zygosity regions. Basic-HMM procedure available in the dChip

software (Version 2010/01) [17] was used to perform the analysis

with default settings. SNPs annotations from Human genome

build 19 were used. In addition to HMM algorithm, we also used

PLINK (Version 1.07) (http://pngu.mgh.harvard.edu/purcell/

plink/) [18] (based on fixed size window) as an alternative way

to detect ROH. The parameters used in PLINK are provided as

(Table S5).

ROH frequency (ROHF) is defined as the proportion of

samples with ROH for each SNP locus. To reduce background

noise in the ROHF calculation, ROHF in FRA regions is

calculated by taking mean values of the upper 95th percentile

ROHF in the 65 Mb range.

Copy number variation was computed by pennCNV [19],

which provides integer copy number estimate. The copy number

information was used to calculate hemizygous deletion frequency

(HDF) that is defined as the proportion of samples with only 1

copy of allele for each SNP locus. The average number of SNP

with hemizygous deletion is about 25,000 (5% SNPs on 500 K

array). The maximum HDF is 0.24 in the NCI-60 cell lines.

miRNA and FRA database
Information on 1049 miRNA was obtained from miRBase

www.miRNAbase.org (Version 16) [20]. After excluding records

located on chromosome X and Y, 955 miRNA records were

involved in current analysis. FRA information was obtained from

the HUGO Gene Nomenclature Committee (HGNC) www.

genenames.org/cgi-bin/hgnc_stats.pl (Last Update 09/11/10).

Totally 111 FRAs located on autosomes were involved in current

analysis. Since only FRAs’ cytogenetic position is available, we

converted these positions in genomic coordinates as follow. A

database covered 42,574 gene records (obtained from NCBI

Entrez Gene database) with both cytogenetic and genomic

location was used to map the genomic location of FRAs. As a

result, minimum genomic start and maximum genomic end

positions were used to represent the FRA region, and the mean

value was used to represent the FRA location (As indicated on the

4th bar in Figure 1). For each FRA, we considered, based on a

recombination rate less than 0.5, that 65 Mb can be used as a

maximum distance in our search for FRA related genomic

changes. We also reduced the region down to 61 Mb when

analyzing miRNA-FRA relationship.

Statistical Analysis
ROHF correlation coefficients (Table 1 12th column) between

NCI-60 and HapMap samples were obtained after adjusting for

SNP density and HDF. Correlation P values were further adjusted

by Bonferroni correction.

Adult and young subgroups are different in sample size

(Nadult = 60, Nyoung = 30), thus direct comparison on their ROHF

would be inappropriate (consider SNPs where only one adult and

zero young has ROH). To eliminate the bias, we shrunk the

number of adults to 30 individuals by non-redundant re-sampling.

1000 random adult datasets were generated. ROHF was

calculated for each dataset. For each locus the mean value was

used to represent the adult ROHF, which was compared with

young ROHF to determine statistical significance (Student t-test

followed by Bonferroni correction). The null hypothesis is that

there is no significant difference in ROHF between adult and

young. To estimate the power of the test, we also calculated the

proportion of datasets with positive ROHFdiff ( = ROHFadult

2ROHFyoung) among datasets that show significant difference

between adult and young.

Pathway analysis was conducted by selecting the SNPs with

ROHF difference ranked top 5000 (ROHFdiff = 0.59), 10000

(0.54), 15000 (0.51), 20000 (0.49), and 25000 (0.47) between NCI-

60 and HapMap sample, as well as between HapMap adult and

young subgroups. SNPs selected by applying these different cutoff

settings were analyzed with the GeneGO web tool (GeneGO Inc.)

to report pathways enriched in significant SNPs.

Homozygotes Accumulation in Cancer Cell Lines
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To avoid the bias caused by sex chromosomes, both

chromosome X and Y were excluded from current analysis. All

analyses were conducted by using R version 2.10.0 in the Unix

environment.

Results

ROH in the NCI-60 and HapMap samples
Figure 1 illustrates ROHF among the NCI-60 and HapMap

samples, as well as the physical locations of miRNA and FRA sites.

The average ROHF is 0.32 for the NCI-60, and 0.03 for the

HapMap samples (Table 1). Generally, we observe massive ROH

events spread across the whole genome for the NCI-60 cell lines.

Chromosomes 9p, 13q, and 17p have the highest levels of ROH,

with average ROHF being 0.60, 0.51, and 0.57, respectively. The

same chromosome regions with increased ROHF in the NCI-60

were found to occur in the HapMap non-cancerous samples but

with lower ROHF (Figure 1). Significant correlations between the

NCI-60 and HapMap ROHF were found on all chromosomes

before and after adjustment for SNP density and HDF (Table 1,

12th column). Similar patterns were observed using PLINK to

compute ROH (data not shown). We also analyzed the HapMap

CEPH Affymetrix 100 K array data and found ROHF pattern

same as that from 500 K array (Data not shown), indicating that

the observed patterns are independent of platform used for

genotyping as well as of the application used to compute ROHs.

Suspecting that regions with higher level of ROHF in healthy state

have stronger ROHF correlation between NCI-60 and HapMap

samples, we applied a stepwise increasing cutoff on SNPs

according to their ROHF levels in HapMap samples. The results

show a stepwise increase in correlation coefficient from 0.34 to 0.5

as the cutoff increases from .0.1 to .0.95 quantile (Figure S1).

This indicates that regions with existing ROH in healthy state are

more likely to have a higher level of ROHF in cancer cells. We

also analyzed the HapMap trios according to their status as adult

or young (detailed age information is not available, so only adult/

Table 1. Average ROHF on all chromosomes in NCI60 and HapMap samples.

NCI60 HapMap

Chr p+qa p q FRA corrb p(FRA corr) p+q p q FRA corr p(FRA corr) Corrc SNP number

1 0.27 0.31 0.24 0.14 0.00E+00 0.04 0.03 0.04 0.07 0.0E+00 0.33 40200

2 0.18 0.14 0.20 0.00 7.30E-01 0.04 0.03 0.05 0.02 1.0E+00 0.73 41376

3 0.30 0.35 0.24 20.02 1.50E-04 0.03 0.03 0.03 20.17 1.2E-217 0.44 33761

4 0.36 0.34 0.36 20.08 1.39E-43 0.04 0.04 0.04 20.03 3.4E-04 0.72 32321

5 0.27 0.23 0.28 0.24 0.00E+00 0.03 0.03 0.03 0.21 0.0E+00 0.65 32039

6 0.30 0.20 0.36 20.17 6.26E-204 0.04 0.04 0.03 20.01 1.0E+00 0.31 31384

7 0.20 0.17 0.22 20.06 3.45E-23 0.03 0.02 0.03 0.02 1.0E+00 0.65 25790

8 0.31 0.36 0.28 20.25 0.00E+00 0.05 0.04 0.05 20.22 1.0E-293 0.56 27446

9 0.49 0.60 0.42 20.19 1.47E-190 0.03 0.03 0.03 20.01 1.0E+00 0.20 22862

10 0.43 0.43 0.43 20.01 3.52E-02 0.04 0.03 0.05 0.04 1.3E-09 0.66 28476

11 0.37 0.35 0.38 20.28 0.00E+00 0.04 0.05 0.04 20.03 2.2E-03 0.43 26241

12 0.26 0.28 0.25 20.04 1.58E-08 0.03 0.03 0.04 0.14 0.0E+00 0.51 24925

13 0.51 NAd 0.51 0.18 0.00E+00 0.03 NA 0.03 0.22 0.0E+00 0.44 19106

14 0.40 NA 0.40 0.30 0.00E+00 0.03 NA 0.03 0.38 0.0E+00 0.81 15712

15 0.26 NA 0.26 20.03 3.48E-04 0.03 NA 0.03 20.01 1.0E+00 0.74 14339

16 0.30 0.27 0.31 20.02 2.91E-03 0.03 0.02 0.03 0.01 1.0E+00 0.87 15269

17 0.44 0.57 0.39 0.29 0.00E+00 0.02 0.01 0.03 0.08 0.0E+00 0.20 11255

18 0.34 0.24 0.37 0.45 0.00E+00 0.03 0.00 0.03 0.28 0.0E+00 0.56 14873

19 0.34 0.35 0.33 20.15 2.01E-32 0.02 0.04 0.02 20.20 7.5E-54 0.79 6394

20 0.18 0.22 0.15 0.41 0.00E+00 0.03 0.03 0.03 20.01 1.0E+00 0.43 12398

21 0.29 0.18 0.29 NA NA 0.02 0.00 0.02 NA NA 0.78 7113

22 0.43 NA 0.43 0.37 0.00E+00 0.01 NA 0.01 0.23 0.0E+00 0.48 6161

Alle 0.32 0.30 0.32 20.02 2.2E-16 0.03 0.03 0.04 0.02 2.2E-16 0.33 489441

ap and q stands for short and long arm, respectively.
bPearson correlation between ROHF and FRA(±5 M).
cPearson correlation between the NCI-60 and HapMap ROHF, all p values less than 1e-10 after controlling for SNP density.
dNo SNP coverage on Affymetrix 500 k array.
eChromosome X and Y were excluded from analysis.
doi:10.1371/journal.pone.0031628.t001

Figure 1. NCI-60 and HapMap ROH pattern, and miRNA, FRA position. Red arrows on the right indicate the FRAs with average upper 95th

percentile ROHF larger than 0.5 in a 65 Mb vicinity. Red asterisks indicate high ROHF bands (average upper 95th percentile ROHF.0.6) without FRA
in 65 Mb vicinity. Rare FRAs are marked by red color. The gaps between the sections of the chromosomes (for example at 130 Mb nucleotides in
chromosome 1) contain the centromere. The top portion corresponds to p arm, and bottom portion corresponds to q arm.
doi:10.1371/journal.pone.0031628.g001
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young stratification is used). Both paired and un-paired t test

showed significant ROHF differences between adult and young

subgroups (p,1.1e-10 after Bonferroni adjustment) with an

average of 0.06% higher ROHF in adult subgroup over the

whole genome (3.36% in young, 3.42% in adults). Among the

1000 randomly generated adult datasets (following numbers in

parenthesis are by PLINK deduction), 662 (833) have ROHFdiff

.0 and 747 (743) have P,1027 (P,0.05 after Bonferroni

adjustment, two-tailed student t test). Among the 747 (743)

datasets with significance, 552 (686) have ROHFdiff.0. This

equals to a proportion of 73.9% (92.3%).

ROHF and FRAs
We did not observe a clear relationship between FRA and

ROHF on the whole genome scale, They exhibit negative

correlation in the NCI-60, and positive correlation in the HapMap

samples. Their correlations on different chromosomes also show

different directions (Table 1). Despite of this unclear relationship,

we indeed observed the co-occurence of several high ROHF bands

with FRAs. Among the 111 recognized FRAs, there are 30 bands

with an average upper 95th percentile ROHF higher than 0.5 (1.64

standard deviation above mean ROHF) in the vicinity of FRAs

(Table 2, 4th column). For these FRAs we see clear ROH bands

among the HapMap samples, and also among the NCI-60 samples

(with higher ROHFs) at the same physical location. Moreover, 4

FRAs have at least 0.5 ROHF difference between the NCI-60 and

HapMap samples (Table 2, 6th column, shown in red). Due to the

computational similarity between ROH and LOH, we compared

the ROHF with previously reported LOH frequency around

FRAs. For FRA16D [21,22], FRA7G [23] and several other FRAs

that were previously reported to have LOH in close vicinity,

similar findings were also observed in our data. Cell line specific

analysis showed 50% ROHF in renal cancer cell lines at FRA3B,

and 57.1% in ovarian at FRA6E, which is close to the reported

value of 69% in renal cell carcinoma for FRA3B [24], and 72% in

ovarian cancer for FRA6E [25].

Table 2. Average upper 95th percentile ROHF and number of miRNA genes around FRAs.

FRA Chr CytoPosa
ROHF
NCI-60b

ROHF
HapMapb

ROHF
(NCI-60-HapMap)

Num
miRNA (5 M)c

Num
miRNA (1 M)c

FRA1C 1 1p31.2 0.56 0.28 0.28 5 0

FRA2F 2 2q21.3 0.57 0.52 0.05 3 1

FRA4C 4 4q31.1 0.55 0.15 0.40 2 0

FRA5C 5 5q31.1 0.53 0.36 0.17 4 1

FRA5F 5 5q21 0.53 0.34 0.19 5 0

FRA7G 7 7q31.2 0.56 0.47 0.09 1 0

FRA9B 9 9q32 0.51 0.09 0.42 3 0

FRA9E 9 9q32 0.51 0.09 0.42 3 0

FRA9A 9 9p21 0.75 0.24 0.51 2 0

FRA9C 9 9p21 0.75 0.24 0.51 2 0

FRA10C 10 10q21 0.54 0.22 0.31 2 0

FRA10D 10 10q22.1 0.56 0.27 0.29 2 0

FRA10A 10 10q23.3 0.59 0.28 0.31 3 0

FRA11B 11 11q23.3 0.58 0.27 0.31 3 0

FRA11F 11 11q14.2 0.58 0.27 0.31 2 0

FRA11G 11 11q23.3 0.58 0.27 0.31 3 0

FRA12B 12 12q21.3 0.59 0.37 0.21 0 0

FRA13A 13 13q13.2 0.56 0.11 0.45 0 0

FRA13B 13 13q21 0.58 0.10 0.48 0 0

FRA13D 13 13q32 0.59 0.10 0.49 9 0

FRA13C 13 13q21.2 0.67 0.17 0.50 1 0

FRA14B 14 14q23 0.71 0.47 0.24 2 0

FRA14C 14 14q24.1 0.74 0.65 0.10 2 0

FRA16B 16 16q22.1 0.57 0.29 0.27 5 1

FRA16C 16 16q22.1 0.57 0.29 0.27 5 1

FRA17A 17 17p12 0.61 0.06 0.55 5 0

FRA17B 17 17q23.1 0.65 0.30 0.36 6 3

FRA18A 18 18q12.2 0.55 0.28 0.27 4 1

FRA22B 22 22q12.2 0.54 0.18 0.36 7 2

FRA22A 22 22q13 0.56 0.07 0.49 8 1

aCytogenetic position.
bAverage upper 95th percentile ROHF values in corresponding FRA region (Start and end position available in Table S2).
cNumber of miRNA genes within ±5 Mbs and ±1 Mbs range of FRAs.
doi:10.1371/journal.pone.0031628.t002
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Several high ROHF bands have no recognized FRAs in their

vicinity. Table 3 shows a total of eight top ROH bands with

average top 95th percentile ROHF ranging from 0.551 to 0.879

but no recognized FRAs nearby. The bands are also marked with

red asterisk in Figure 1. Two of these ROH bands are located at

the chromosome 16 centromere. A list of genes located in these

ROH bands is available in Table S1. On the other hand, we

observed that 81 out of 111 FRAs do not have associated

significant ROHF elevation in nearby regions (Table S2).

ROHF and miRNA
Calin G.A. et al. [12] proposed a possible association between

FRAs and miRNA location (incidence of 186 miRNA genes within

61 Mb of FRAs is 13 (ratio = 0.07)). To obtain a comprehensive

view of the relationship among FRA, miRNA and ROH banding,

we incorporated the miRNA data in this study. Among 955

miRNAs investigated in our study, 63 were within 61 Mb range

of FRA locations (ratio = 0.066). This number increased to 334

after expanding to 65 Mb range (ratio = 0.35). Pearson correla-

tion analysis shows no association between miRNA location

(61 M range) and ROHF levels (Figure 1, p.0.05 after

bonferroni correction). In addition, we investigated the co-

occurrence of miRNA and FRA with ROHF elevation. In the

65 Mb vicinity of FRAs with ROHFs higher than 0.5, the

average number of miRNAs is 3.30. This number is 2.94 for FRAs

with nearby ROHFs lower than 0.5.

Pathway Analysis
We analyzed the SNPs with the top ROHF differences (See

statistical analysis section for detail) between adult and young

subgroups, as well as between the NCI-60 and HapMap samples

(Figure S2). For the adult versus young subgroup, the top ranked

process is the chemotaxis process (Figure 2). The genes present in

this category are marked with solid red circles in Figure 2, and

tabulated in Table S3. For the NCI-60 versus the HapMap

samples, the top ranked process is G1_S cell cycle process (Figure

S3 and Table S4), which indicates a change in several known

oncogenes such as P53 and LATS2. For these two genes we see

ROHF elevations as high as 61% and 50% in the NCI-60 as

compared to HapMap samples.

Discussion

Studies in prokaryotes and eukaryotes [3–5] show that high

similarity genomic regions may induce homologous recombina-

tion, which was proposed as a cause of LOH in mammalian cell

[6] and has complex role in genomic stability [7,8]. In this study,

we interrogated the sequence similarity by detecting the ROH

status on 500 K array through basic-HMM model as well as

PLINK ROH module. Analysis on NCI-60 cancer cell lines and

HapMap trios show highly similar ROH patterns (Figure 1),

which differ only in strength. The current finding indicates that

the massive ROH observed in cancer cells might be an extension

of the lower levels ROH observed in healthy cells. We consider

the current finding has wide applicability for several reasons.

First, the present study is based on 60 different cancer cell lines,

which excluded the potential bias caused by the unique genetic

construct of a specific type of cancer. Second, rather than using

patient-matched control (germ-line) DNA samples obtained from

non-tumor tissue, the cases and controls are totally un-matched.

Thus their similarity in ROH pattern is not due to the presence

of the same genetic background, and may reflect a more general

condition of human genome. Finally, the NCI-60 cell lines used

for the current SNP array analysis have passage number below

30 [26]. This should minimize the potential effect of culture-

induced genomic alteration [27]. On the other hand, we

observed that adult subgroup has higher level of ROH than

those of young in HapMap Caucasian trios (p,1.1e-10 after the

stringent Bonferroni adjustment). Since 1) exactly the same

HMM model parameters are used to call ROH independently in

adult and young subgroups, and 2) it is groundless to hypothesize

that young should born with lower ROH level than adult, we

have to accept the alternative hypothesis and propose that an

ongoing ROH happened in adults from the time point of their

own zygotes formation to the zygotes formation of their child.

Worth mentioning is that cell lines rather than original

lymphocyte DNA were used in the HapMap SNP array analysis.

Thus one can’t rule out that the observed difference could be

caused by culture-induced mutation or different passage number.

However, the current observation is in agreement with reported

higher level of LOH in old cells in model organisms [28]. Similar

observation was also done in human by Moragoda et al. [29] who

described age-associated stomach mucosa LOH among healthy

people over 60 year of age. Nevertheless, further investigations

are required to elucidate whether the ROH level difference

observed in our study is resulted from aging, disease, or

epigenetic factors.

Our data show some co-occurrence of FRAs and high ROHF

band in the same genomic region. This observation is in

agreement with previous findings done in some genomics regions

[21,23]. It was proposed that the AT-rich nature of FRA

sequences might confer them a highly variable nature [30–32].

For some FRAs, our data did not reproduce the high ROHF band

as indicated in historical studies on single caner type. A possible

explanation is that the ability of FRAs to induce ROH is different

across cancer types. Since the inter-tissue ROH similarity heatmap

shows a unique pattern of ROH in several cancer tissue types

(Figure S4), thus probably only FRAs that can induce ROH across

different cell lines will show association with high ROHF.

However, no clear correlation could be observed at the genome-

wide level between FRAs and high ROHF. This suggests that

although FRAs can play a role in ROH formation, it is not the

only cause of ROH formation. More interestingly, when

comparing the NCI-60 to HapMap samples, the difference of

ROHF was found lower in FRA regions than in non-FRA regions.

Table 3. High ROHF bands without FRA in within 65 Mb.

Chromosome Positiona Start (Mb)b End (Mb)b ROHFc

1p 36030321 35 37 0.608

2p 83276616 82 85 0.551

3p 51216578 50 53 0.666

4p 33354084 32 36 0.726

11p 38675473 37 41 0.561

15q 43729998 42 46 0.66

16p 34923039 34 36 0.879

16q 47735030 46 49 0.755

aPhysical position of SNP locus with maximum ROHF in the range. The
middle one was used if multiple SNP loci have equal maximum value.

bApproximate start and end position in Mega base pair.
cAverage upper 95th percentile ROHF in ±5 Mb vicinity around
‘‘Position’’.

doi:10.1371/journal.pone.0031628.t003
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These observations could be related to the incompleteness of

current FRA database, or might suggest that FRAs could protect

against ROH. In the latter case the FRA may function as a repair

spot for restoration of accidentally mis-segregated chromatid

during mitosis.

Pathway analysis on SNPs with higher ROHF in the adult

versus young subgroups implicates a change in chemotaxis

related genes. The genes in which these SNPs occur are marked

with solid red circles in Figure 2. Currently it is not clear how

ROH may qualitatively/quantitatively influence these genes.

However, this observation is in consistent with a progression of

metastatic tumor cells towards higher chemotaxis ability [33–35],

which is correlated with their potential for invasion, intravasa-

tion, and metastasis and responsible for the attraction of

carcinoma cells to blood vessels. The majority of the genes

identified here, including but not limited to CCR1 [36], CCR2

[37], CCR3 [38], ENA78 [39], GPCR [40], GRO1 [41],

GRO2/GRO3 [42], IP10 [43], IL-8 [44], NAP-2 [45], PF-4 [46]

have been recently shown to associate with the progression of

various types of cancer. We postulate that these genes might

partly account for oncogenesis in the progression from low

ROHF in healthy cell to high ROHF in cancer state. On the

other hand, analysis of SNPs with high ROHF differences

between the NCI-60 and HapMap samples shows a change in

cell cycle and translation initiation related process, which might

result from the progression of normal cells to cancerous cells

towards autonomy and faster replication. Thus, these pathway

analysis results may present a series of alterations leading to

oncogenesis. However, additional evidence is still needed to fill

the gap between the changes of genes in chemotaxis and cell cycle

process, and the onset of oncogenesis.

The large number of ROH regions found in the NCI-60

cancer cell lines, and its significant association with the

HapMap samples suggests a vital association of the ROH

events with neoplastic progression. Importantly, the observation

of higher ROHF in adults than in young, and the involvement

of onco-related chemotaxis genes may provide a clue to

understand the higher cancer incidence rate among older

people. Together, these observations imply that the significant

increase homozygotes in cancer cells might be a progression

from changes started early in healthy state. Further investigation

on the causal relationship between ROH and cancer will have

to be conducted to shade light on the mechanisms leading to

high ROH.

Figure 2. Genes involved in chemotaxis. Pathway analysis on SNPs with top ROHF difference between adult and young subgroups show the
involvement of chemotaxis process. Red solid circles show genes covering SNPs with top change (see statistics section for details).
doi:10.1371/journal.pone.0031628.g002
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Supporting Information

Figure S1 NCI-60/HapMap ROHF correlation at geno-
mic regions with different levels of HapMap ROHF. The

plot shows an increase in NCI-60/HapMap ROHF correlation

coefficient (left axis, from 0.34 to 0.5), and NCI-60 ROHF (right

axis, from 0.33 to 0.44) in genomic regions with increased levels of

ROHF (from .0.1 to .0.95 quantile) in HapMap samples.

(TIF)

Figure S2 Processes involved in SNPs with top ROHF
differences. Processes involved in SNPs with top ROHF

difference between a) adult and young subgroups, and b) the

NCI-60 and HapMap samples (see statistics section for details).

(TIF)

Figure S3 Cell cycle G1_S phase. Pathway analysis on SNPs

with top ROHF difference between NCI-60 and HapMap show

the involvement of Cell cycle G1_S phase. Red solid circles show

genes covering SNPs with top change (see statistics section for

details).

(TIF)

Figure S4 Pair wise ROH similarity. a) Intra tissue, b) Inter

cell line (clustering based on pair-wise ROH similarities), and c)

Inter tissue pair wise ROH similarity in the NCI-60 cancer cell

lines

(TIF)

Table S1 Genes in High ROHF bands without FRA in
±5 Mb vicinity (Regions identified in Table 3).

(XLS)

Table S2 Average upper 95th percentile ROHF and
number of miR genes around FRAs.

(XLS)

Table S3 Genes with ROHF elevation in parent involved
in chemotaxis process (Shown in Figure 2).

(XLS)

Table S4 Genes with high ROHF difference between
NCI-60 and HapMap involved in cell cycle G1_S process.

(XLS)

Table S5 PLINK ROH module parameters setting.

(XLS)
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