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Gene set analysis is widely used to facilitate biological interpretations in the analyses of differential expression from high
throughput profiling data. Wilcoxon Rank-Sum (WRS) test is one of the commonly used methods in gene set enrichment
analysis. It compares the ranks of genes in a gene set against those of genes outside the gene set. This method is easy to
implement and it eliminates the dichotomization of genes into significant and non-significant in a competitive hypothesis
testing. Due to the large number of genes being examined, it is impractical to calculate the exact null distribution for the
WRS test. Therefore, the normal distribution is commonly used as an approximation. However, as we demonstrate in this
paper, the normal approximation is problematic when a gene set with relative small number of genes is tested against the
large number of genes in the complementary set. In this situation, a uniform approximation is substantially more powerful,
more accurate, and less intensive in computation. We demonstrate the advantage of the uniform approximations in Gene
Ontology (GO) term analysis using simulations and real data sets.
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Introduction

High-throughput gene expression profiling technologies, such as
microarray and next generation sequencing, generate expression
measurements for thousands of genes simultaneously. One of the
most important applications for this technology is in identifying
differentially expressed genes across conditions/treatments/ tissues.
This application often involves comparing the expression of each
gene in different conditions/treatments/tissues. To facilitate the
interpretation of the results, genes with same annotation attributes,
such as those in Gene Oncology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG), are often combined into gene sets
to infer the involvement of biological processes and pathways in
the comparison.

There are many methods and tools for gene set analysis, such as
those reviewed and compared previously [1-3]. According to [4],
these methods can be roughly separated into three categories,
“competitive”, “self-contained”, and “hybrid” procedures based
on the hypotheses they are testing and the procedures for
obtaining significant thresholds. Most of the tools available these
days belong to “competitive” category as summarized by Huang
et. al. [2] and the publication based on this category of methods
keep growing more than those based on other categories due to its
simplicity [5].

For the “competitive” hypothesis testing category, Fisher’s
exact test based on a list of significant genes has been widely used
because of its simplicity. However, it is based on the
dichotomization of genes into significant and nonsignificant
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groups and the results may vary depending on the threshold for
dichotomization. A natural replacement for Fisher’s exact test is
the Wilcoxon Rank-Sum (WRS) test, which is a rank based non-
parametric test for comparing two groups of observations
without the assumption of certain distribution [6]. It does not
require dichotomization of the genes. WRS has been imple-
mented in many packages and software for both “competitive”
and “hybrid” gene set testing. These include the widely used
limma (R function geneSetTest, [7]), safe (R function safe [8]), and
GOstat  (http://gostat.wehi.edu.au [9]). It has been shown
recently that WRS performs better as a gene-set level statistic
[3] based on controlled mutual coverage from different gene-set
level statistics when the null distribution was obtained using
sample permutation.

There are two ways to obtain the null distribution of the WRS
statistic, sample permutation and gene permutation. The sample
permutation is used in the ‘“hybrid” methods [8,10]. It is
considered to be more desirable than gene permutation in
handling correlations among genes. However, sample permutation
can run into problems when the number of samples is small. For
example, a two group comparison of 4 versus 4 will only have 70
unique permutations, which will not provide a null distribution to
generate a p values less than 0.014. This scenario is common for
microarray and RNA-seq experiments intended for identifying
differential expression. Gene permutation is used in the “compet-
itive” hypothesis testing [4]. Although the exact null distribution
can be calculated, it is often too computationally intensive when
the numbers of observations in the two comparing groups are
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large. In practice, a normal distribution is used for approximation
as implemented in the standard software packages such as SAS,
STATA, Splus, and R [11]. In fact, SPSS and R use exact
computation for comparisons with 49 or less total observations at
the absence of ties. Bellera et. al. showed that normal distribution
can approximate the exact distribution well graphically even for
relatively small number of observations, such as 9 vs 5. However
they did not address the issue of imbalance between the two
comparing groups. Irom their results, it is obvious that the normal
approximation for a comparison of 5 vs 5 observations is much
better than a comparison of 8 vs 2 observations although the total
number of observations is the same in the two scenarios. Buckle
et. al. [12] showed that a uniform distribution is uniformly better to
approximate the null distribution of WRS statistic based on the
exact calculations of imbalanced groups with less than 50
observations in each group. In gene set analysis, this imbalance
is exacerbated. The small group, the set of genes to be tested, often
has less than 10 observations (genes) present in the data set while
the complementary group has thousands of observations (genes).
In this case the advantage of uniform approximation is expected
but the degree is not clear.

In this paper, we compare the uniform approximation and the
normal approximation for WRS statistic in the ‘“competitive”
hypothesis testing of gene set enrichment for microarrays and
RNA-seq data, where the number of genes in the gene set is small
while that the number of genes in the complementing group is
huge. Our simulation and real data analysis demonstrate that the
uniform approximation is a much better approximation for small
GO term analysis. It is much more powerful, more accurate, and it
requires less computational time.

Results

Uniform approximation is much more accurate in
extreme cases

Given the fact that the total number of genes is usually huge in
GO term tests, it is difficult to obtain the exact p values based on
permutation due to limitations of time and computational
capacity. Traditional normal approximation is employed in many
software packages. Although we cannot obtain exact p values to
assess the accuracy of approximation methods due to the
computation limitation, we can use some special cases as example
to demonstrate the problem of normal approximation. When the
local statistics in a gene set are either all greater or all smaller than
those in the complement of the gene set and there is no tie,
Table 1 shows p values obtained from the exact permutation, the
normal approximation, and the uniform approximation separate-
ly. These p values clearly indicate that the normal approximation
dramatically underestimates the significance. The uniform ap-
proximation is much more accurate.

Table 1. Exact and approximate p-values for some extreme
cases.

m 3 6 9 12 20

Exact 6.00e-12 7.21e-22 3.64e-31 4.82e-40 2.48e-62
Uniform  7.15e-12 2.46e-21 4.97e-30 3.02e-38 1.21e-58
Normal 1.35e-3 1.11e-05 1.32e-07 1.01e-09 5.06e-15

m, the number of genes in the gene set. Total number of genes is set as 10,000.
doi:10.1371/journal.pone.0031505.t001
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False positive rate is under control for uniform
approximation

We used simulation to investigate the false positive rates of two
approximation methods. We directly generated local statistics for
each gene for WRS test in gene set analysis instead of gene
expression levels. The local statistics were randomly drawn from
normal distribution N(3,1) for gene sets with 5, 10, 15, 20, or 25
genes. The total number of genes inside and outside of the gene set
was set as 15,000 to be realistic. We conducted 100 simulations to
calculate the rate of false positive calls at three significance levels
(0.05, 0.01, and 0.001). The whole process was repeated 50 times
to obtain the mean false positive rate (Table 2). The results
indicate that the mean false positive rates of the uniform
approximation are very close to the specified significance level.
However, the normal approximation is too conservative for small
gene sets at more stringent significance levels (¢=0.01 and
o =0.001), which are often used in practice when multiple testing
is applied for testing large number of gene sets.

Uniform approximation is more powerful

We also used simulation to compare the power of the two
approximation methods. The procedure is the same as that for
assessing the false positive except that an effect size 8 (from 0 to 2)
is added to the mean of the normal distribution from which
random numbers were drawn for the genes in the gene set. We
conducted 100 simulations to calculate the power at significance
level of 0.05 with Bonferroni correction. The whole process was
repeated 30 times to obtain the power. The results showed that the
uniform approximation has more power than the normal
approximation in all settings of gene set size (Figure 1). The
power improvement for gene sets with 5 genes is dramatic. The
improvement for gene sets with 10 genes is still substantial, but
the improvement decreases to negligible for gene sets with 25
genes.

Most GO terms are small in the microarray and RNA-seq
datasets

To examine the GO term sizes, we mapped the genes on the
microarray of the analyzed array datasets or those detected in the
RNA-seq datasets to GO terms. Figure 2 shows the distributions
of the sizes of GO terms. The largest fraction of the GO terms has
sizes between 2 and 8. Only a very small fraction has sizes greater
than 30. This justifies the need of good approximation to the null
distribution of the WRS test statistic.

Table 2. False positive rates comparison between uniform
and normal approximations to WRS test.

m 5 10 15 20 25
a=0.05 Uniform  0.0478 0.0518 0.0494 0.0514  0.0476
Normal 0.0454 0.0510 0.0492 0.0510  0.0472
a=0.01 Uniform 0.00915 0.01035  0.00925 0.0099 0.0108
Normal 0.00595  0.00875 0.00845 0.0093  0.0103
=0.001 Uniform  0.00095  0.00125 0.0014 0.0009  0.0011
Normal 0.0002 0.0007 0.0008 0.0007  0.001

Results are the mean of false positive rate from 50 rounds of simulations. m,
number of genes in gene set.
doi:10.1371/journal.pone.0031505.t002
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Figure 1. Power comparison between uniform and normal
approximations. Black, green, red, and blue lines represent gene sets
with 5, 10, 20, and 25 genes, respectively. Significance level is 0.05 with
Bonferroni correction. Total number of genes in the experiment were
set as 15000.

doi:10.1371/journal.pone.0031505.g001

Uniform approximation generally gives smaller p values
in real data analysis

For the purpose of comparing approximations, we focused on
GO terms with 2-30 genes. We examined the p values obtained
from analyzing GO terms in the microarray and RNA-seq datasets
when the two approximations were used for the null distribution of
WRS test. The results showed that the p values are similar
between the two approximation methods for GO terms with
relatively large p values, such as p values greater than 0.01
(Figure 3). However, for GO terms with smaller p values, uniform
approximation generally gives smaller p values than the normal
approximation for all datasets. For a given p value cutoff, there are
substantially more GO terms deemed as significant when uniform
approximation is used. For example, at significance level of 0.05
with Bonferroni correction (blue line in the plots), uniform
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approximation detected 44 significant GO terms in the Marioni
microarray data (Figure 3a), while the normal approximation
only detected 20 of them. Similar results were obtained from the
Song microarray data (Figure 3c). For the Marioni RNA-seq
dataset, the uniform approximation detected 66 significant GO
terms while the normal approximation detected only 30 GO terms
at the same significance level (Figure 3b). Similar results were
also obtained from the Kim RNA-seq data (Figure 3d) except
that the significance level of 0.05 with Bonferroni correction seems
too stringent for this dataset and only several GO terms are
significant. However, the relationship of the p values from the two
approximations remains the same. Note that there are one or two
GO terms in (a)—(c), which are significant if normal approximation
is used and insignificant if uniform approximation is used.
However the sizes of these GO terms are actually large: the one
in (a) has size of 30; the one in (b) has size of 28 and the two GO
terms in (c) has equal size of 29.

The uniform approximation also reduces the computation time
substantially. The computations were carried out using one
2.80 GHz CPU with 8.00 GB installed memory on a Dell
Precision T1500 Desktop (64-bit operating system). For the
Marioni microarray dataset, the CPU time was 63 seconds for
the uniform approximation and 336 seconds for the normal
approximation for all GO terms in the microarray data. For the
Marioni RNA-seq dataset, the CPU time was 54 seconds and
259 seconds for the uniform and normal approximations,
respectively. It is worthwhile to point out that the function
“wilcox.exact” in R package “‘exactRankTests” adopts the Shift-
Algorithm [13] to calculate the exact p value, but needs lengthy
computation. We used Marioni RNA-Seq data as an example and
found that typical CPU times were 16 minutes for wilcox.exact to
calculate the exact p value for one GO term with 6 genes and
3.5 hours for another GO term with 26 genes. The computational
time for all the 4081 GO terms would be unmanageable. This
function returns normally approximated p values if the exact
argument is specified as FALSE.

The effect of the local statistic

We also examined the effect of different local statistics on the
comparison of the two approximations for the null distribution of
WRS test in analyzing the real data. We evaluated fold change, the
difference of the mean expression levels (on log2 scale) in liver and
kidney samples, for the Marioni microarray data and likelihood
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Figure 2. The distributions of the sizes of GO terms in the microarray and RNA-seq datasets analyzed in this paper. Most GO terms are

small.
doi:10.1371/journal.pone.0031505.9g002
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Figure 3. Comparison of p values obtained from normal and uniform approximations. The p values (negative base 10 logarithm) from the
normal approximation are plotted against those from the uniform approximation. The red line is the identity line and the two blue lines represent the
cut-off p value of 0.05 with Bonferroni correction. Panels (a) and (c) are for the two microarray datasets. Panels (b) and (d) are for the two RNA-Seq

datasets.
doi:10.1371/journal.pone.0031505.g003

ratio (LR) test statistic for the RNA-seq datasets, with the
assumption of Poisson (Poi) model or Negative Binomial (NB)
model for gene expressions, respectively. The results are shown in
Figure 4. The results look very similar to those in Figure 3
except that comparing to Figure 3(b), there are three extra points
in Figure 4(c) showing apparent smaller p values from the
normal approximation and significant but insignificant from the
uniform approximation. Two of these points correspond to GO
terms with size of 29 while the other point links to a GO term of
size 30. These results indicate that the choice of local statistic does
not have much impact on the relative performance of the two
approximations. The uniform approximation is more powerful.

Software

We have written a simple R function for the uniform
approximation of the null distribution for WRS test. It will be
available upon the publication of this paper at http://pub-
lichealth.lsuhsc.edu/wilcoxon.html.

Discussion

Based on both simulation and real data analyses, we
demonstrated that, compared with the conventionally used normal
distribution, the uniform approximation for Wilcoxon Rank-Sum
statistic has better controlled false positive rate, more power, and
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more accurate p values in gene set enrichment analysis when the
number of genes in a GO term is less than 30. When the uniform
approximation is used for real datasets analysis, more GO terms
are detected as significant. Therefore, the uniform approximation
is a better choice for calculating p values for small gene sets should
one use WRS test for gene set enrichment analysis in competitive
hypothesis testing. For gene sets with 30 genes or more, normal
approximation performs well.

In Gene set enrichment analysis, the better approximation to
the null distribution of WRS statistic from the uniform
distributions lies in the fact that the uniform approximation gives
lower tailed probabilities than the normal approximation. Both the
sum of independent uniform random variables and the normal
random variable have symmetric densities. However, the normal
density has longer tails. The difference between two densities
becomes negligible when the number of genes in the gene set
approaches 30. In fact, by the central limit theorem, the sum of the
independent uniform random variables is approximately normally
distributed as the numbers of variables is equal or over 30.

Gene set analysis is an important step in understanding the
biological processes involved in the differential expression when
samples from different treatment/tissues are compared. Different
methods and tools for gene set analysis often test different
hypotheses as pointed out by Georman and Buhlmann [4]. It has
been pointed out that the sample based permutation in the self-
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Figure 4. Effect of local statistics on the comparison of the two approximation methods. The plot are of negative base 10 logarithm of the
p-value from normal approximation versus that of the p-value from uniform approximation when using fold change (microarray) and log likelihood
ratio (RNA-Seq) as local statistics. Panels (a) and (b) are two different microarray datasets. Panels (c) and (d) are the RNA-seq datasets with Poisson
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doi:10.1371/journal.pone.0031505.g004

contained hypothesis testing and the hybrid procedures are more
appropriate in handling correlations among genes and reflecting
the natural replication units [1,4,14]. However, due to the
simplicity and limitation of sample sizes in many microarray
experiments, the gene permutation based competitive hypothesis
testing procedures are still used more than the sample permutation
based procedures in expression microarray data analyses [5]. For
RNA-seq data, the sample size is even smaller due to the cost of
the technology [15], which limits the use of sample permutation.
In this case, the gene permutation for “competitive” hypothesis
testing is the only practical way for the gene set analysis. When
competitive hypothesis is tested, it is commonly recognized that
WRS test is better than the Fisher’s exact test or the %° test.
Therefore, studying the appropriate null distribution of WRS
statistic 1s still very much relevant to the current technology
applications. A better null distribution will provide more accurate
p values that directly affect the significance of pathways and GO
terms at a given significance level. The significant pathways and
GO terms are often further studied in follow-up research. More
broadly, this work is potentially also applicable to gene set analysis
in genome-wide association studies and rare variant analysis for
identifying pathways and biological processes underlying human
diseases.

@ PLoS ONE | www.plosone.org

Methods

Approximation to the null distribution of the Wilcoxon
Rank-Sum test

Assume a random sample {x;}"" | from the population X with
cumulative distribution function (CDF) Fij(x), and another
random sample {y;}/_; from the population ¥ with CDF F>(y),
with m and 7 as the number of items in X and Y, respectively.
Without normality assumption to F; and F», WRS Test is a
commonly used in practice to test hypothesis Hy : F1(x) = F>(x)
versus  Hy : Fi(x)#Fy(x), or Hp: Fi(x)<F(x), or
Hy3 : Fi(x)=F>(x), for all x, with strict inequality holding for at
least one x. The two-sided alternative hypothesis H,i indicates
that two population distributions are different, while one-sided
hypothesis H,(H,3) indicates that X is stochastically larger
(smaller) than Y [16]. WRS test uses the sum of ranks of x;, in the
combined observations {x;,y;}, as the statistic Wxy. When both
m, n are sufficiently large, the null distribution can be
approximated by a normal distribution with mean, mn/2, and
variance, mn(m+n+1)/12. The mean and variance are adjusted
when ties occur. The function wilcox.test in R environment can be
used to calculate the exact p value or normally approximated p
value (default) of a WRS test. This function will automatically
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return normally approximated p value should ties occur. WRS test
is equivalent to Mann-Whitney test in that Wyy is m(m—+1)/2
greater than the Mann-Whitney test statistic. Mann-Whitney test
statistic 1s defined as the count of pairs {x,—,y_,—} with x; <y; and its
value is reported by R function wilcox.test.

The normal approximation to WRS test performs well when
both m, n are sufficiently large (greater than 30), but is less
accurate when m is small and n is extremely large. The latter
situation is common in gene set analysis, where m, the number of
genes in a gene set (such as a GO term), is small, such as from 3
to 10, but n, the number of genes in the complement of the gene
set, 1s huge (usually 2>10000 in high-throughput genomic data).
In this case, the uniform approximation proposed by Buckle et. al.
[12] is likely more appropriate. With G=m+n, they showed
that, as n goes to infinity, the null distribution of (Wxy/G) is the
same as that of the sum of m random samples from uniform
distribution in (0, 1). Specifically, if w is the observed value of
Wxy and U;,i=1,...,m, are independent uniform (0, 1) random
variables, the probability P(Wyxy <w) can be approximated by
P(X1' Ui<a(w+0.5)+b), where 0.5 is the continuity correction
and

a= 1
n(TF)
\/n(m—i-n—i— h- (m+n)(m+n—1)
b=""(1—(m+n+1a),

2

with TF being a quantity due to ties (zero if no tie occurs). If there
are d distinct values in the combined observations and that #; of
ith
i

the G observations are equal to the smallest value,

i=12,---.d. Then TF= Y4 ( -1, [16].

The distribution of the sum of independent uniform (0, 1)
random variables is available in the literature. That is (see, for
example [17], for the density and [18] for the cumulative
distribution)

k
m 1 i I
P(E . Ui3u>= E:Om(_l) (u—10)",

where k = [u], the largest integer not greater than « and 0 <u<m.
This probability gives an approximation to the one-sided (H,3)
WRS test p value. The p value for the two-sided WRS test (H,) is
the twice of the smaller of two one-sided p values and it was used
for the real data analyses through out the paper.

Simulations

For each simulation, we generated two groups of normal data.
Group one has m random numbers from a normal distribution
N(u,1) and group two has n random numbers from another
normal distribution N(p,1). We used fixed total number of genes
G (=m+n) and varied the number of genes in a gene set (m) over
{5, 10, 15, 20, 25}. The process was repeated 100 times to obtain
false positive rate. The simulated false positive rate was then
calculated as the percentage of times that the null hypothesis of
equal means was rejected by WRS test when p,=p;. The
simulations for assessing false positive rate are as follows.

1) Generate G (15000) random numbers from a normal
distribution N(3,1).

2)  Randomly select m simulated data points from 1) as the local
statistics in a gene set. Obtain p-values by uniform and
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normal approximation to WRS test separately for this gene
set.

3)  Repeat step 2) 100 times and obtain the simulated false
positive rate, with significance levels of «=0.05, 0.01, and
0.001.

We repeated the process from 1) to 3) 50 times to account for
the randomness in the simulation and calculated the average false
positive rates. For assessing power, we set the effect size 6 = (0, 0.2,
0.4,0.6,0.8, 1, 1.2, 1.4, 1.6, 1.8, 2). For each gene set size m = (5,
10, 15, 20, 25).

1)  Generate a group of m random number from M3, 1) and
another group of (G — m) random number from M3+9,1)

2)  Obtain the p values for the data in 1) by uniform and normal
approximation separately.

3)  Repeat steps 1) — 2) 100 times and calculate the simulated
power of each approximation method as the percentage of
times that the p value is lower than 0.0005.

We repeated the procedure 30 times and calculated the average
simulated power. Note the choice of normal mean in step 1) for
both simulation procedures is arbitrary and should not affect the
simulation results given the nonparametric nature of the WRS test.

Real datasets and processing

As shown in Figure 5, we first conducted data preprocessing
for each real data set. Gene-level test statistic is then calculated for
each gene. The gene-level test statistics were used to compute the
WRS statistic for each GO term by comparing the genes in the
GO term with the genes in the data set but outside of the GO
term. A p value was obtained for each GO term based on the null
distribution from a normal or uniform approximation.

Marioni Microarray dataset was generated for the comparing gene
expressions in human liver and kidney tissues [19]. Three
Affymetrix Human Genome U133 Plus 2.0 arrays were used to
profile gene expressions in liver and kidney samples separately.

Microarray data
RNA-sea data

v

Preprocessing

v

Local statistic for differential
expression at each gene

|
v

Gene set Wilcoxon
Rank-Sum test

v

Null distribution
approximation

v

Gene set p values

Gene-level

Gene-sei-level

Figure 5. Flowchart for the analysis of real data. The location for
null distribution approximation is highlighted with grey background.
doi:10.1371/journal.pone.0031505.g005
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The microarray data were downloaded from Gene Expression
Omnibus (GEO) with accession number GSE11045.

Song microarray dataset was downloaded from GSE7869. Twenty
one Affymetrix Human Genome U133 Plus 2.0 arrays were used
to profile gene expressions on cysts of different sizes and minimally
cystic tissue (MCT) from five PKD1 (polycystic kidney disease)
human polycystic kidneys, and non-cancerous renal cortical tissue
from three nephrectomized kidneys with isolated renal cell
carcinoma [20]. They found that all cyst samples consistently
clustered as a single group (13 samples), while the MCT and
normal renal cortical samples clustered as a second group (8
samples). We compare these two groups for our gene set analysis.

After downloading the microarray datasets, we preprocessed the
raw data using the robust multiple-array analysis (RMA)
procedure [21] with quantile normalization (function “mma” in
the Bioconductor package “affy”). The Affymetrix feature names
were mapped to Ensembl gene IDs using Bioconductor package
biomaRt. The expression level for each Ensembl gene ID was
calculated as the median of expression values (on log2 scale)
corresponding to the Affymetrix probe sets mapped to the same
Ensembl gene ID. Two-sample ¢ statistic or simple mean fold
change was calculated as the local statistic for each gene in
microarray datasets.

Mariont RNA-seq dataset was generated using the Illumina genome
analyzer with each RNA sample being sequenced in seven lanes,
of which five lanes were at 3 pM concentration and two lanes at
1.5 pM concentration. The RNA-seq expression file was obtained
from the supplemental Table 2 in [19]. We only used the 3 pM
concentration lanes from liver and kidney. We first filtered out
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