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Abstract

Gene set analysis is widely used to facilitate biological interpretations in the analyses of differential expression from high
throughput profiling data. Wilcoxon Rank-Sum (WRS) test is one of the commonly used methods in gene set enrichment
analysis. It compares the ranks of genes in a gene set against those of genes outside the gene set. This method is easy to
implement and it eliminates the dichotomization of genes into significant and non-significant in a competitive hypothesis
testing. Due to the large number of genes being examined, it is impractical to calculate the exact null distribution for the
WRS test. Therefore, the normal distribution is commonly used as an approximation. However, as we demonstrate in this
paper, the normal approximation is problematic when a gene set with relative small number of genes is tested against the
large number of genes in the complementary set. In this situation, a uniform approximation is substantially more powerful,
more accurate, and less intensive in computation. We demonstrate the advantage of the uniform approximations in Gene
Ontology (GO) term analysis using simulations and real data sets.

Citation: Fang Z, Du R, Cui X (2012) Uniform Approximation Is More Appropriate for Wilcoxon Rank-Sum Test in Gene Set Analysis. PLoS ONE 7(2): e31505.
doi:10.1371/journal.pone.0031505

Editor: Momiao Xiong, University of Texas School of Public Health, United States of America

Received May 19, 2011; Accepted January 12, 2012; Published February , 2012

Copyright: � 2012 Fang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: XC is partially funded by NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases) P30DK07022 and NIAMS (The National Institute of
Arthritis and Musculoskeletal and Skin Diseases) P60AR048095. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: xcui@ms.soph.uab.edu

Introduction

High-throughput gene expression profiling technologies, such as

microarray and next generation sequencing, generate expression

measurements for thousands of genes simultaneously. One of the

most important applications for this technology is in identifying

differentially expressed genes across conditions/treatments/tissues.

This application often involves comparing the expression of each

gene in different conditions/treatments/tissues. To facilitate the

interpretation of the results, genes with same annotation attributes,

such as those in Gene Oncology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG), are often combined into gene sets

to infer the involvement of biological processes and pathways in

the comparison.

There are many methods and tools for gene set analysis, such as

those reviewed and compared previously [1–3]. According to [4],

these methods can be roughly separated into three categories,

‘‘competitive’’, ‘‘self-contained’’, and ‘‘hybrid’’ procedures based

on the hypotheses they are testing and the procedures for

obtaining significant thresholds. Most of the tools available these

days belong to ‘‘competitive’’ category as summarized by Huang

et. al. [2] and the publication based on this category of methods

keep growing more than those based on other categories due to its

simplicity [5].

For the ‘‘competitive’’ hypothesis testing category, Fisher’s

exact test based on a list of significant genes has been widely used

because of its simplicity. However, it is based on the

dichotomization of genes into significant and nonsignificant

groups and the results may vary depending on the threshold for

dichotomization. A natural replacement for Fisher’s exact test is

the Wilcoxon Rank-Sum (WRS) test, which is a rank based non-

parametric test for comparing two groups of observations

without the assumption of certain distribution [6]. It does not

require dichotomization of the genes. WRS has been imple-

mented in many packages and software for both ‘‘competitive’’

and ‘‘hybrid’’ gene set testing. These include the widely used

limma (R function geneSetTest, [7]), safe (R function safe [8]), and

GOstat (http://gostat.wehi.edu.au [9]). It has been shown

recently that WRS performs better as a gene-set level statistic

[3] based on controlled mutual coverage from different gene-set

level statistics when the null distribution was obtained using

sample permutation.

There are two ways to obtain the null distribution of the WRS

statistic, sample permutation and gene permutation. The sample

permutation is used in the ‘‘hybrid’’ methods [8,10]. It is

considered to be more desirable than gene permutation in

handling correlations among genes. However, sample permutation

can run into problems when the number of samples is small. For

example, a two group comparison of 4 versus 4 will only have 70

unique permutations, which will not provide a null distribution to

generate a p values less than 0.014. This scenario is common for

microarray and RNA-seq experiments intended for identifying

differential expression. Gene permutation is used in the ‘‘compet-

itive’’ hypothesis testing [4]. Although the exact null distribution

can be calculated, it is often too computationally intensive when

the numbers of observations in the two comparing groups are
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large. In practice, a normal distribution is used for approximation

as implemented in the standard software packages such as SAS,

STATA, Splus, and R [11]. In fact, SPSS and R use exact

computation for comparisons with 49 or less total observations at

the absence of ties. Bellera et. al. showed that normal distribution

can approximate the exact distribution well graphically even for

relatively small number of observations, such as 9 vs 5. However

they did not address the issue of imbalance between the two

comparing groups. From their results, it is obvious that the normal

approximation for a comparison of 5 vs 5 observations is much

better than a comparison of 8 vs 2 observations although the total

number of observations is the same in the two scenarios. Buckle

et. al. [12] showed that a uniform distribution is uniformly better to

approximate the null distribution of WRS statistic based on the

exact calculations of imbalanced groups with less than 50

observations in each group. In gene set analysis, this imbalance

is exacerbated. The small group, the set of genes to be tested, often

has less than 10 observations (genes) present in the data set while

the complementary group has thousands of observations (genes).

In this case the advantage of uniform approximation is expected

but the degree is not clear.

In this paper, we compare the uniform approximation and the

normal approximation for WRS statistic in the ‘‘competitive’’

hypothesis testing of gene set enrichment for microarrays and

RNA-seq data, where the number of genes in the gene set is small

while that the number of genes in the complementing group is

huge. Our simulation and real data analysis demonstrate that the

uniform approximation is a much better approximation for small

GO term analysis. It is much more powerful, more accurate, and it

requires less computational time.

Results

Uniform approximation is much more accurate in
extreme cases

Given the fact that the total number of genes is usually huge in

GO term tests, it is difficult to obtain the exact p values based on

permutation due to limitations of time and computational

capacity. Traditional normal approximation is employed in many

software packages. Although we cannot obtain exact p values to

assess the accuracy of approximation methods due to the

computation limitation, we can use some special cases as example

to demonstrate the problem of normal approximation. When the

local statistics in a gene set are either all greater or all smaller than

those in the complement of the gene set and there is no tie,

Table 1 shows p values obtained from the exact permutation, the

normal approximation, and the uniform approximation separate-

ly. These p values clearly indicate that the normal approximation

dramatically underestimates the significance. The uniform ap-

proximation is much more accurate.

False positive rate is under control for uniform
approximation

We used simulation to investigate the false positive rates of two

approximation methods. We directly generated local statistics for

each gene for WRS test in gene set analysis instead of gene

expression levels. The local statistics were randomly drawn from

normal distribution N(3,1) for gene sets with 5, 10, 15, 20, or 25

genes. The total number of genes inside and outside of the gene set

was set as 15,000 to be realistic. We conducted 100 simulations to

calculate the rate of false positive calls at three significance levels

(0.05, 0.01, and 0.001). The whole process was repeated 50 times

to obtain the mean false positive rate (Table 2). The results

indicate that the mean false positive rates of the uniform

approximation are very close to the specified significance level.

However, the normal approximation is too conservative for small

gene sets at more stringent significance levels (a= 0.01 and

a= 0.001), which are often used in practice when multiple testing

is applied for testing large number of gene sets.

Uniform approximation is more powerful
We also used simulation to compare the power of the two

approximation methods. The procedure is the same as that for

assessing the false positive except that an effect size d (from 0 to 2)

is added to the mean of the normal distribution from which

random numbers were drawn for the genes in the gene set. We

conducted 100 simulations to calculate the power at significance

level of 0.05 with Bonferroni correction. The whole process was

repeated 30 times to obtain the power. The results showed that the

uniform approximation has more power than the normal

approximation in all settings of gene set size (Figure 1). The

power improvement for gene sets with 5 genes is dramatic. The

improvement for gene sets with 10 genes is still substantial, but

the improvement decreases to negligible for gene sets with 25

genes.

Most GO terms are small in the microarray and RNA-seq
datasets

To examine the GO term sizes, we mapped the genes on the

microarray of the analyzed array datasets or those detected in the

RNA-seq datasets to GO terms. Figure 2 shows the distributions

of the sizes of GO terms. The largest fraction of the GO terms has

sizes between 2 and 8. Only a very small fraction has sizes greater

than 30. This justifies the need of good approximation to the null

distribution of the WRS test statistic.

Table 1. Exact and approximate p-values for some extreme
cases.

m 3 6 9 12 20

Exact 6.00e-12 7.21e-22 3.64e-31 4.82e-40 2.48e-62

Uniform 7.15e-12 2.46e-21 4.97e-30 3.02e-38 1.21e-58

Normal 1.35e-3 1.11e-05 1.32e-07 1.01e-09 5.06e-15

m, the number of genes in the gene set. Total number of genes is set as 10,000.
doi:10.1371/journal.pone.0031505.t001

Table 2. False positive rates comparison between uniform
and normal approximations to WRS test.

m 5 10 15 20 25

a= 0.05 Uniform 0.0478 0.0518 0.0494 0.0514 0.0476

Normal 0.0454 0.0510 0.0492 0.0510 0.0472

a= 0.01 Uniform 0.00915 0.01035 0.00925 0.0099 0.0108

Normal 0.00595 0.00875 0.00845 0.0093 0.0103

a= 0.001 Uniform 0.00095 0.00125 0.0014 0.0009 0.0011

Normal 0.0002 0.0007 0.0008 0.0007 0.001

Results are the mean of false positive rate from 50 rounds of simulations. m,
number of genes in gene set.
doi:10.1371/journal.pone.0031505.t002

Uniform Approximation for GO Term Wilcoxon Test
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Uniform approximation generally gives smaller p values
in real data analysis

For the purpose of comparing approximations, we focused on

GO terms with 2–30 genes. We examined the p values obtained

from analyzing GO terms in the microarray and RNA-seq datasets

when the two approximations were used for the null distribution of

WRS test. The results showed that the p values are similar

between the two approximation methods for GO terms with

relatively large p values, such as p values greater than 0.01

(Figure 3). However, for GO terms with smaller p values, uniform

approximation generally gives smaller p values than the normal

approximation for all datasets. For a given p value cutoff, there are

substantially more GO terms deemed as significant when uniform

approximation is used. For example, at significance level of 0.05

with Bonferroni correction (blue line in the plots), uniform

approximation detected 44 significant GO terms in the Marioni

microarray data (Figure 3a), while the normal approximation

only detected 20 of them. Similar results were obtained from the

Song microarray data (Figure 3c). For the Marioni RNA-seq

dataset, the uniform approximation detected 66 significant GO

terms while the normal approximation detected only 30 GO terms

at the same significance level (Figure 3b). Similar results were

also obtained from the Kim RNA-seq data (Figure 3d) except

that the significance level of 0.05 with Bonferroni correction seems

too stringent for this dataset and only several GO terms are

significant. However, the relationship of the p values from the two

approximations remains the same. Note that there are one or two

GO terms in (a)–(c), which are significant if normal approximation

is used and insignificant if uniform approximation is used.

However the sizes of these GO terms are actually large: the one

in (a) has size of 30; the one in (b) has size of 28 and the two GO

terms in (c) has equal size of 29.

The uniform approximation also reduces the computation time

substantially. The computations were carried out using one

2.80 GHz CPU with 8.00 GB installed memory on a Dell

Precision T1500 Desktop (64-bit operating system). For the

Marioni microarray dataset, the CPU time was 63 seconds for

the uniform approximation and 336 seconds for the normal

approximation for all GO terms in the microarray data. For the

Marioni RNA-seq dataset, the CPU time was 54 seconds and

259 seconds for the uniform and normal approximations,

respectively. It is worthwhile to point out that the function

‘‘wilcox.exact’’ in R package ‘‘exactRankTests’’ adopts the Shift-

Algorithm [13] to calculate the exact p value, but needs lengthy

computation. We used Marioni RNA-Seq data as an example and

found that typical CPU times were 16 minutes for wilcox.exact to

calculate the exact p value for one GO term with 6 genes and

3.5 hours for another GO term with 26 genes. The computational

time for all the 4081 GO terms would be unmanageable. This

function returns normally approximated p values if the exact

argument is specified as FALSE.

The effect of the local statistic
We also examined the effect of different local statistics on the

comparison of the two approximations for the null distribution of

WRS test in analyzing the real data. We evaluated fold change, the

difference of the mean expression levels (on log2 scale) in liver and

kidney samples, for the Marioni microarray data and likelihood

Figure 1. Power comparison between uniform and normal
approximations. Black, green, red, and blue lines represent gene sets
with 5, 10, 20, and 25 genes, respectively. Significance level is 0.05 with
Bonferroni correction. Total number of genes in the experiment were
set as 15000.
doi:10.1371/journal.pone.0031505.g001

Figure 2. The distributions of the sizes of GO terms in the microarray and RNA-seq datasets analyzed in this paper. Most GO terms are
small.
doi:10.1371/journal.pone.0031505.g002

Uniform Approximation for GO Term Wilcoxon Test
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ratio (LR) test statistic for the RNA-seq datasets, with the

assumption of Poisson (Poi) model or Negative Binomial (NB)

model for gene expressions, respectively. The results are shown in

Figure 4. The results look very similar to those in Figure 3
except that comparing to Figure 3(b), there are three extra points

in Figure 4(c) showing apparent smaller p values from the

normal approximation and significant but insignificant from the

uniform approximation. Two of these points correspond to GO

terms with size of 29 while the other point links to a GO term of

size 30. These results indicate that the choice of local statistic does

not have much impact on the relative performance of the two

approximations. The uniform approximation is more powerful.

Software
We have written a simple R function for the uniform

approximation of the null distribution for WRS test. It will be

available upon the publication of this paper at http://pub-

lichealth.lsuhsc.edu/wilcoxon.html.

Discussion

Based on both simulation and real data analyses, we

demonstrated that, compared with the conventionally used normal

distribution, the uniform approximation for Wilcoxon Rank-Sum

statistic has better controlled false positive rate, more power, and

more accurate p values in gene set enrichment analysis when the

number of genes in a GO term is less than 30. When the uniform

approximation is used for real datasets analysis, more GO terms

are detected as significant. Therefore, the uniform approximation

is a better choice for calculating p values for small gene sets should

one use WRS test for gene set enrichment analysis in competitive

hypothesis testing. For gene sets with 30 genes or more, normal

approximation performs well.

In Gene set enrichment analysis, the better approximation to

the null distribution of WRS statistic from the uniform

distributions lies in the fact that the uniform approximation gives

lower tailed probabilities than the normal approximation. Both the

sum of independent uniform random variables and the normal

random variable have symmetric densities. However, the normal

density has longer tails. The difference between two densities

becomes negligible when the number of genes in the gene set

approaches 30. In fact, by the central limit theorem, the sum of the

independent uniform random variables is approximately normally

distributed as the numbers of variables is equal or over 30.

Gene set analysis is an important step in understanding the

biological processes involved in the differential expression when

samples from different treatment/tissues are compared. Different

methods and tools for gene set analysis often test different

hypotheses as pointed out by Georman and Buhlmann [4]. It has

been pointed out that the sample based permutation in the self-

Figure 3. Comparison of p values obtained from normal and uniform approximations. The p values (negative base 10 logarithm) from the
normal approximation are plotted against those from the uniform approximation. The red line is the identity line and the two blue lines represent the
cut-off p value of 0.05 with Bonferroni correction. Panels (a) and (c) are for the two microarray datasets. Panels (b) and (d) are for the two RNA-Seq
datasets.
doi:10.1371/journal.pone.0031505.g003
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contained hypothesis testing and the hybrid procedures are more

appropriate in handling correlations among genes and reflecting

the natural replication units [1,4,14]. However, due to the

simplicity and limitation of sample sizes in many microarray

experiments, the gene permutation based competitive hypothesis

testing procedures are still used more than the sample permutation

based procedures in expression microarray data analyses [5]. For

RNA-seq data, the sample size is even smaller due to the cost of

the technology [15], which limits the use of sample permutation.

In this case, the gene permutation for ‘‘competitive’’ hypothesis

testing is the only practical way for the gene set analysis. When

competitive hypothesis is tested, it is commonly recognized that

WRS test is better than the Fisher’s exact test or the x2 test.

Therefore, studying the appropriate null distribution of WRS

statistic is still very much relevant to the current technology

applications. A better null distribution will provide more accurate

p values that directly affect the significance of pathways and GO

terms at a given significance level. The significant pathways and

GO terms are often further studied in follow-up research. More

broadly, this work is potentially also applicable to gene set analysis

in genome-wide association studies and rare variant analysis for

identifying pathways and biological processes underlying human

diseases.

Methods

Approximation to the null distribution of the Wilcoxon
Rank-Sum test

Assume a random sample fxigm
i~1 from the population X with

cumulative distribution function (CDF) F1(x), and another

random sample fyjgn
j~1 from the population Y with CDF F2(y),

with m and n as the number of items in X and Y, respectively.

Without normality assumption to F1 and F2, WRS Test is a

commonly used in practice to test hypothesis H0 : F1(x)~F2(x)
versus Ha1 : F1(x)=F2(x), or Ha2 : F1(x)ƒF2(x), or

Ha3 : F1(x)§F2(x), for all x, with strict inequality holding for at

least one x: The two-sided alternative hypothesis Ha1 indicates

that two population distributions are different, while one-sided

hypothesis Ha2(Ha3) indicates that X is stochastically larger

(smaller) than Y [16]. WRS test uses the sum of ranks of xi, in the

combined observations fxi,yjg, as the statistic WXY : When both

m, n are sufficiently large, the null distribution can be

approximated by a normal distribution with mean, mn=2, and

variance, mn(mznz1)=12: The mean and variance are adjusted

when ties occur. The function wilcox.test in R environment can be

used to calculate the exact p value or normally approximated p

value (default) of a WRS test. This function will automatically

Figure 4. Effect of local statistics on the comparison of the two approximation methods. The plot are of negative base 10 logarithm of the
p-value from normal approximation versus that of the p-value from uniform approximation when using fold change (microarray) and log likelihood
ratio (RNA-Seq) as local statistics. Panels (a) and (b) are two different microarray datasets. Panels (c) and (d) are the RNA-seq datasets with Poisson
assumption. Panels (e) and (f) are the RNA-seq datasets with Negative Binomial assumption.
doi:10.1371/journal.pone.0031505.g004
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return normally approximated p value should ties occur. WRS test

is equivalent to Mann-Whitney test in that WXY is m(mz1)=2
greater than the Mann-Whitney test statistic. Mann-Whitney test

statistic is defined as the count of pairs fxi,yjg with xivyj and its

value is reported by R function wilcox.test.

The normal approximation to WRS test performs well when

both m, n are sufficiently large (greater than 30), but is less

accurate when m is small and n is extremely large. The latter

situation is common in gene set analysis, where m, the number of

genes in a gene set (such as a GO term), is small, such as from 3

to 10, but n, the number of genes in the complement of the gene

set, is huge (usually n.10000 in high-throughput genomic data).

In this case, the uniform approximation proposed by Buckle et. al.

[12] is likely more appropriate. With G~mzn, they showed

that, as n goes to infinity, the null distribution of (WXY=G) is the

same as that of the sum of m random samples from uniform

distribution in (0, 1). Specifically, if w is the observed value of

WXY and Ui,i~1, . . . ,m, are independent uniform (0, 1) random

variables, the probability P(WXY ƒw) can be approximated by

P
Pm

1 Uiƒa(wz0:5)zb
� �

, where 0.5 is the continuity correction

and

a~ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(mznz1){

n(TF )

(mzn)(mzn{1)

s ,

b~
m

2
1{(mznz1)að Þ,

8>>>><
>>>>:

with TF being a quantity due to ties (zero if no tie occurs). If there

are d distinct values in the combined observations and that ti of

the G observations are equal to the ith smallest value,

i~1,2, � � � ,d: Then TF~
Pd

1 (t3
i {ti) [16].

The distribution of the sum of independent uniform (0, 1)

random variables is available in the literature. That is (see, for

example [17], for the density and [18] for the cumulative

distribution)

P
Xm

1
Uiƒu

� �
~
Xk

i~0

1

i!(m{i)!
({1)i(u{i)m,

where k~½u�, the largest integer not greater than u and 0ƒuƒm:
This probability gives an approximation to the one-sided (Ha3)
WRS test p value. The p value for the two-sided WRS test (Ha1) is

the twice of the smaller of two one-sided p values and it was used

for the real data analyses through out the paper.

Simulations
For each simulation, we generated two groups of normal data.

Group one has m random numbers from a normal distribution

N(m1,1) and group two has n random numbers from another

normal distribution N(m2,1). We used fixed total number of genes

G ( = m+n) and varied the number of genes in a gene set (m) over

{5, 10, 15, 20, 25}. The process was repeated 100 times to obtain

false positive rate. The simulated false positive rate was then

calculated as the percentage of times that the null hypothesis of

equal means was rejected by WRS test when m2~m1. The

simulations for assessing false positive rate are as follows.

1) Generate G (15000) random numbers from a normal

distribution N(3,1).

2) Randomly select m simulated data points from 1) as the local

statistics in a gene set. Obtain p-values by uniform and

normal approximation to WRS test separately for this gene

set.

3) Repeat step 2) 100 times and obtain the simulated false

positive rate, with significance levels of a~0:05, 0.01, and

0.001.

We repeated the process from 1) to 3) 50 times to account for

the randomness in the simulation and calculated the average false

positive rates. For assessing power, we set the effect size d= (0, 0.2,

0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2). For each gene set size m = (5,

10, 15, 20, 25).

1) Generate a group of m random number from N(3, 1) and

another group of (G – m) random number from N(3+d,1)

2) Obtain the p values for the data in 1) by uniform and normal

approximation separately.

3) Repeat steps 1) – 2) 100 times and calculate the simulated

power of each approximation method as the percentage of

times that the p value is lower than 0.0005.

We repeated the procedure 30 times and calculated the average

simulated power. Note the choice of normal mean in step 1) for

both simulation procedures is arbitrary and should not affect the

simulation results given the nonparametric nature of the WRS test.

Real datasets and processing
As shown in Figure 5, we first conducted data preprocessing

for each real data set. Gene-level test statistic is then calculated for

each gene. The gene-level test statistics were used to compute the

WRS statistic for each GO term by comparing the genes in the

GO term with the genes in the data set but outside of the GO

term. A p value was obtained for each GO term based on the null

distribution from a normal or uniform approximation.

Marioni Microarray dataset was generated for the comparing gene

expressions in human liver and kidney tissues [19]. Three

Affymetrix Human Genome U133 Plus 2.0 arrays were used to

profile gene expressions in liver and kidney samples separately.

Figure 5. Flowchart for the analysis of real data. The location for
null distribution approximation is highlighted with grey background.
doi:10.1371/journal.pone.0031505.g005

Uniform Approximation for GO Term Wilcoxon Test
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The microarray data were downloaded from Gene Expression

Omnibus (GEO) with accession number GSE11045.

Song microarray dataset was downloaded from GSE7869. Twenty

one Affymetrix Human Genome U133 Plus 2.0 arrays were used

to profile gene expressions on cysts of different sizes and minimally

cystic tissue (MCT) from five PKD1 (polycystic kidney disease)

human polycystic kidneys, and non-cancerous renal cortical tissue

from three nephrectomized kidneys with isolated renal cell

carcinoma [20]. They found that all cyst samples consistently

clustered as a single group (13 samples), while the MCT and

normal renal cortical samples clustered as a second group (8

samples). We compare these two groups for our gene set analysis.

After downloading the microarray datasets, we preprocessed the

raw data using the robust multiple-array analysis (RMA)

procedure [21] with quantile normalization (function ‘‘rma’’ in

the Bioconductor package ‘‘affy’’). The Affymetrix feature names

were mapped to Ensembl gene IDs using Bioconductor package

biomaRt. The expression level for each Ensembl gene ID was

calculated as the median of expression values (on log2 scale)

corresponding to the Affymetrix probe sets mapped to the same

Ensembl gene ID. Two-sample t statistic or simple mean fold

change was calculated as the local statistic for each gene in

microarray datasets.

Marioni RNA-seq dataset was generated using the Illumina genome

analyzer with each RNA sample being sequenced in seven lanes,

of which five lanes were at 3 pM concentration and two lanes at

1.5 pM concentration. The RNA-seq expression file was obtained

from the supplemental Table 2 in [19]. We only used the 3 pM

concentration lanes from liver and kidney. We first filtered out

genes not expressed in both liver and kidney samples. This results

in 22490 genes remaining for analysis.

Kim RNA-Seq dataset was also generated using the Illumina

genome analyzer [22]. RNA samples from 3 biological replicates

of pancreatic islets were compared between normal female and

pregnant female mice. The aligned data, after mapped to the

Refseq collection of mouse transcripts from mouse genome build

MM9/2007, were downloaded through GSE21860. For quanti-

fying gene expression, we discarded reads mapping to multiple

transcripts or having more than two mismatches.

For each gene in the RNA-seq datasets, a Wald-type statistic

was calculated as the local statistic. For example, if x, y are the

sums of sequence counts for a given gene in the liver and kidney

samples in the Marioni RNA-seq dataset, then the local statistic for

this gene is (x{y �Q)
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(xzy �Q2)
p

, where Q is the ratio of the

sum of total numbers of mapped reads in the two tissues. For

comparison, we also adopt likelihood ratio test statistic, under the

assumption of Poisson model or negative binomial model, as the

local statistic. LR statistics were obtained using R functions glmFit()

and glmLRT() in Bioconductor package edgeR [23]. We used the

common dispersion computed by the function estimateCommon-

Disp(). GO terms mapped to Ensembl genes or RefSeq genes were

extracted using Bioconductor package biomaRt.
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