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Abstract

Radioligands for DAT and VMAT2 are widely used presynaptic markers for assessing dopamine (DA) nerve terminals in
Parkinson disease (PD). Previous in vivo imaging and postmortem studies suggest that these transporter sites may be
regulated as the numbers of nigrostriatal neurons change in pathologic conditions. To investigate this issue, we used in vitro
quantitative autoradioradiography to measure striatal DAT and VMAT2 specific binding in postmortem brain from 14
monkeys after unilateral internal carotid artery infusion of 1-Methyl-4-Phenyl-1,2,3,6-tetrahydropyridine (MPTP) with doses
varying from 0 to 0.31 mg/kg. Quantitative estimates of the number of tyrosine hydroxylase (TH)-immunoreactive (ir)
neurons in substantia nigra (SN) were determined with unbiased stereology, and quantitative autoradiography was used to
measure DAT and VMAT2 striatal specific binding. Striatal VMAT2 and DAT binding correlated with striatal DA (rs = 0.83,
rs = 0.80, respectively, both with n = 14, p,0.001) but only with nigra TH-ir cells when nigral cell loss was 50% or less
(r = 0.93, n = 8, p = 0.001 and r = 0.91, n = 8, p = 0.002 respectively). Reduction of VMAT2 and DAT striatal specific binding sites
strongly correlated with each other (r = 0.93, n = 14, p,0.0005). These similar changes in DAT and VMAT2 binding sites in the
striatal terminal fields of the surviving nigrostriatal neurons demonstrate that there is no differential regulation of these two
sites at 2 months after MPTP infusion.
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Introduction

Selective degeneration of dopaminergic neurons in the substan-

tia nigra pars compacta (SNpc) combined with striatal DA

deficiency produces the major motor manifestations of idiopathic

PD [1,2]. Reduction of dopaminergic neurons in PD patients and

animal models of parkinsonism leads to substantial loss of the pre-

synaptic markers DAT, TH and VMAT2. However, there are

discrepancies in the magnitude of the changes in these presynaptic

markers, and differential regulation of these sites may account for

these discrepancies [3–5].

Previous studies have used in vitro or in vivo methods to measure

the effects of nigrostriatal deficiency on loss of striatal DAT and

VMAT2. One in vitro autoradiographic study from PD patients

revealed greater striatal loss of DAT than VMAT2 specific binding

sites [3]. However, studies with MPTP-treated rodents have

produced conflicting data on the extent of reduction of striatal

DAT and VMAT2. Some studies reported greater loss of striatal

DAT compared to VMAT2 [4], whereas others reported no

significant difference in loss of these specific binding sites [6]. In vivo

radiotracer imaging studies of VMAT2 and DAT have revealed

conflicting results as well. Some report greater loss of striatal DAT

[5] while others found greater loss of VMAT2 in PD patients [7]. In

addition, there are discrepancies in nonhuman primate models of

PD [8] with variable changes in DAT and VMAT2 loss [8–10].

A number of factors complicate interpretation of data from

human studies including studying subjects at different clinical

stages of disease, disparities in length of drug treatment and

differences in radiotracer specificity. Animal models of PD have

been used to overcome many of these problems; however,

differences in experimental methodology including limited range

of severity of neurotoxin-induced neuronal loss, varying specificity

of radioligands and insufficient time after neurotoxin delivery to

achieve a stable course may account for varying results.
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The purpose of the present study, therefore, was to examine the

changes of DAT and VMAT2 binding sites in adult male monkeys

who had no other exposure to experimental drugs after unilateral

internal carotid artery infusion of MPTP with doses varying from

0 to 0.31 mg/kg. This infusion schedule produced a wide range of

severity of unilateral stable hemi-parkinsonism while minimizing

exposure of the contralateral hemisphere to MPTP [11–13].

[3H]WIN 35,428 was chosen to label DAT [14] and (+)-[3H]

dihydrotetrabenazine (DTBZ) was used for VMAT2 [15,16]. This

experimental design permitted comparison of changes in DAT

and VMAT2 binding sites in a full spectrum of nigrostriatal

neuronal loss induced by MPTP. Finally, we also determined the

relationship of DAT and VMAT2 binding to stereologic counts of

nigral neurons and striatal DA.

Methods

Ethics Statement
We used the minimum number of animals necessary for this

research and followed all relevant national and international

guidelines. In accordance with the recommendations of the

Weatherall report ‘‘The use of non-human primates in research,’’

we took all steps to ameliorate suffering in our work with non-

human primates. The welfare of the animals conformed to the

requirements of National Institutes of Health (NIH), and we

followed the guidelines prescribed by the NIH Guide to

Laboratory Animal Care. This work was conducted at the

Nonhuman Primate Facility of Washington University in St.

Louis with approval from its Institutional Animal Care and Use

Committee (IACUC). The protocol number is 20110161, last

approved on 8 July 2011. All animals were housed in the same

room in cages meeting or exceeding the stipulated size

requirements. Animals were maintained in facilities with 12-hour

dark and light cycles, given access to foold and water ad libitum;

all animals were equally engaged with a variety of psychologically

enriching tasks such as watching movies or playing with

appropriate toys. No animal was knowingly exposed to potential

infection. Humane endpoints were pre-defined in this protocol and

applied as a measure if necessary to reduce any discomfort.

Subjects
Fourteen male macaques (Macaca fascicularis and Macaca

nemestrina), between the ages of 3.5 and 6.5 years old

(mean = 5.461.0), served as subjects.

MPTP infusion
MPTP (Sigma, St. Louis, MO) was administered as described

by Tabbal et al., [13]. A single MPTP dose of 0 (normal saline

with no MPTP) to 0.31 mg/kg was infused into the right internal

carotid artery. Location was confirmed through angiograms before

and after MPTP infusion [17]. After the procedure, animals were

continuously observed until able to care for themselves. Animals

received no dopaminergic drugs at any time.MPTP and

potentially toxic metabolites were decontaminated and discarded

as follows. At the end of the MPTP infusion, all work surfaces and

equipment were decontaminated immediately with a 2.5%

solution of hypochlorite bleach; any unwanted remaining solution

of MPTP, plastic products (syringes, tubing, etc.), and dry waste

were treated with bleach, and disposed as hazardous chemical

waste through Washington University in St. Louis Environment,

Health and Safety (EHS) chemical waste disposal program. After

administration of MPTP, trained staff lined the base of the cage

and the drop pan with plastic-backed absorbent pads; sprayed

these pads and drop pans with bleach, allowed them to soak for

10 min, then disposed this biohazardous waste daily for 5 days

post MPTP.

Tissue Processing
The monkeys were euthanized two months after MPTP infusion

with a lethal overdose of pentobarbital (100 mg/kg, i.v.) (Butler

Schein Animal Health, Dublin, OH). The brains were removed

within 10 minutes, and the hemispheres and midbrain were

separated. Standard punch biopsies were taken from caudate and

putamen, quickly frozen on dry ice snow and saved at 280uC for

DA and DA metabolite quantification. A coronal slab from each

hemisphere was rapidly frozen in liquid nitrogen vapor and then

stored at 280uC for autoradiography. Coronal sections, 20 mm

thick, were cut on a cryostat (Microm HM 550 series, Thermo

Fisher Scientific Inc, Waltham, MA), mounted on superfrost plus

glass slides (Thermo Fisher Scientific, Waltham, MA), and stored

at 280uC until used in quantitative autoradiography. The entire

midbrain was post-fixed for 7 days in 4% paraformaldehyde in

0.1 M phosphate-buffered saline (PBS) before transfer to 30%

sucrose for 7 days, and then cut on a freezing microtome into

serial, free-floating 50 mm-thick transverse sections. A random

series of every 6th section was processed for TH immunocyto-

chemistry.

TH Immunohistochemistry
We used TH-immunostaining to identify dopaminergic neu-

rons. Sections were treated for 20 minutes in 0.3% hydrogen

peroxide (Fisher Scientific, Fair Lawn, NJ), washed 3 times in PBS,

and blocked in PBS with 2% normal goat serum and 0.3% Triton

X-100 for 2 hours prior to overnight incubation at 4uC with rabbit

anti-TH (1:1000; Chemicon International, Inc., Temecula, CA) .

After washes with PBS (5 min, 3 times), the sections were reacted

at room temperature for 60 minutes with biotin-conjugated

universal secondary antibody provided in Universal Vectastain

(1:200; Vector Laboratories, Burlingame, CA). After subsequent

washes in PBS, the sections were incubated in streptavidin-biotin

complex (Vector Laboratories, Burlingame, CA) for 60 min at

room temperature. Following thorough rinsing with PBS, staining

was visualized by incubation in 3, 39-diaminobenzidine solution

with nickel enhancement (Vector Laboratories, Burlingame, CA).

After immunostaining, floating tissue sections were mounted on

gelatin-coated glass slides and counterstained with cresyl violet.

Sections without primary antibody served as negative controls.

Unbiased stereologic counting of nigrostriatal neurons
We applied unbiased stereology to the immunostained sections

to quantify the number of dopaminergic neurons. Procedures

followed those defined by Gunderson, et al., [18,19] using an

Olympus BX41 Microscope with a proscan stage kit and DP70

digital camera. The SN was defined as the region ventral to the

medial leminiscus, dorsal to the cerebral peduncle and lateral to

the third cranial nerve (Figure 1). The computer-assisted

stereology (CAST, version 3.2.10.0; Visiopharm, Hoersholm,

Denmark) was utilized to achieve a random sampling of 5.22%

(frame length/step length) of the total region of interest area with

an 80680 mm2 counting frame and height of 22 mm with a 3 mm

top guard zone. TH-ir cells were identified; total tissue thickness

ranged from 25 to 30 mm due to shrinkage during processing.

Weighted thickness averaging was applied to the calculations to

compensate for differences in tissue thickness. An injected/control

No Differential Regulation of DAT and VMAT2
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ratio was calculated for cell number to control for any possible

differences in staining intensity/antibody penetration between the

different animals and inter-subject variability.

Quantitative autoradiography
Tissue preparation for [3H] DTBZ autoradiogra-

phy. Procedures were adapted from Frey K et al., [20].

Thawed tissue sections were pre-incubated for 5 minutes at

25uC in potassium phosphate buffer with EDTA at pH 8.0 and

then incubated for 30 minutes at 25uC in potassium phosphate

buffer containing 7 nM (+)-[3H] DTBZ (American Radiolabled

Chemicals, Inc., St. Louis, MO; specific activity 20 Ci/mmol) in

the presence (nonspecific binding) or absence (total binding) of

10 mM unlabeled ‘‘cold’’ tetrabenazine. Sections were rinsed 3

times in fresh potassium phosphate buffer and once briefly in

distilled water at 4uC to remove buffer salts. The slides were air-

dried overnight and analyzed on a Beta Imager (BioSpace, Paris,

France) for 24 hours in the presence of [3H] standards (American

Radiolabled Chemicals, Inc., St. Louis, MO).

Tissue preparation for [3H] WIN 35,428 autoradiogra-

phy. Tissue sections were pre-incubated for 20 min at 4uC in

phosphate buffer with EDTA at pH 7.4. Sections were then

incubated for 1 hr at 4uC in buffer containing 5 nM [3H] WIN

35,428 (New England Nuclear/Perkin Elmer, Boston, MA;

specific activity 85.9 Ci/mmol) in the presence (nonspecific

binding) or absence (total binding) of 10 mM nomifensine (Sigma

Chemical, St. Louis, MO). Sections were rinsed twice in fresh

phosphate buffered saline at 4uC and air-dried overnight and

analyzed on a Beta Imager for 24 hours in the presence of [3H]

standards [21].

Quantitative analysis. Quantitative analysis was performed

with the program b-Vision Plus (BioSpace, Paris, France) to

demarcate the anatomical regions of interest and measure

radiolabeled uptake in tissue in cpm/mm2. A reference curve

was obtained with each Bioimager analysis using [3H] standards

containing known amounts of radioactivity. This permitted

conversion of the tissue sections measures from cpm/mm2 to

nCi/mg tissue. The specific activity of each radioligand was used

to convert these measures to femtomoles per milligram tissue.

Specific binding was determined by subtracting nonspecific

binding values from the total binding values, measured in

adjacent sections.

For [3H] WIN 35,428 and [3H] DTBZ, saturation binding

analyses were conducted over a range of radioligand concentra-

tions between 0.25 and 15 nM. Linear regression analysis of the

data was used to determine the equilibrium dissociation constant

(Kd) and the maximum number of binding sites (B max) using

Scatchard analysis for each radioligand. Since Kd for each

radioligand did not change between control and severely affected

tissues at the highest dose of MPTP, we subsequently used a single

concentration (5 nM for [3H] WIN 35,428 and 7 nM for [3H]

DTBZ) that was about 3 times the Kd of [3H] WIN 35,428

(1.5 nM) and of [3H] DTBZ (2.7 nM). We then could calculate

Bmax from these data having demonstrated that Kd remained

constant.

Quantification of DA
Striatal level of DA was measured using high performance

liquid chromatography with electrochemical detection (HPLC-

EC) [22]. The HPLC system consisted of an ESA Coulochem III

electrochemical detector (ESA, Dionex Company, Chelmsford,

MA) with ESA model 584 HPLC pump. The conditioning cell was

ESA model 5021A set at 2450 mV, and the microdialysis cell was

model 5014B set at 400 mV. The optimal electrode potentials for

each compound were determined by current-voltage curves.

Sample preparation consisted of homogenizing the previously

frozen striatal tissue in glass homogenizers on ice in 450 ul of cold

0.1 M perchloric acid containing 0.4 mM sodium metabisulfite,

0.1 mM ethylenediaminetetraacetic acid (EDTA) and 50 ml of 3,4

dihydroxybenzylamine as an internal standard. The samples were

centrifuged for 10 minutes at 15006 g at 4uC. The supernatant

was filtered using a 0.22 micron filter spun at 15,0006 g for

5 minutes and 20 ml of the filtrate was injected onto the HPLC for

analysis. The internal standard permitted quantification of DA.

The values were expressed as ng/gm of brain tissue.

Statistical analysis
Results were analyzed using SPSS for Windows, version 18.0.2

(IBM, Chicago. IL). All in vitro measures of VMAT2 Bmax, DAT

Bmax, SN cell counts and striatal DA were expressed as a ratio

between the values obtained on the MPTP lesioned side and that

of the contralateral side (injected/control side) to minimize the

effect of biological variability among animals. We compared the

residual binding density of VMAT2 and DAT with Wilcoxon

signed ranks test since these data were not normally distributed

demonstrated by Shapiro-Wilks test of normality [23]. The

relationships of VMAT2 Bmax, DAT Bmax, and striatal DA

among each other and to nigral cell counts were determined with

Spearman correlations due to a non-normal distribution of data

with some clustering near zero in severely affected animals. In a

separate analysis, we excluded the clustered data to permit analysis

with Pearson correlations in the remaining 8 monkeys. A two-

tailed P value of less than 0.05 was considered significant.

Results

All 14 monkeys completed the study protocol successfully and

were euthanized at 56 to 60 days after MPTP infusion. Animals

were always able to care for themselves despite not receiving any

anti-parkinsonian drugs for the duration of the study. Animals

manifested a wide range of severity of parkinsonism from none in

controls to severe unilateral parkinsonism with the highest doses of

MPTP.

Striatal DAT and VMAT2 and nigral DA neuron
distribution in control and MPTP-treated brain

We performed DAT and VMAT2 autoradiography in brain

tissue from all animals. The binding patterns of [3H] WIN 35,428

reflecting DAT and [3H] DTBZ reflecting VMAT2 control

animals appeared consistent with previous reports in monkey and

human brain. [24–27] (Figure 2A and E). The dorsal portions of

Figure 1. SN outlined on a TH-immunostained transverse slice
with 26 magnification. Typical pictures were taken on the left (A)
and right (B) side of the same slice separately with SN and ventral
tegmental area (VTA) outlined. SN lies ventral and lateral to VTA. The 3rd

cranial nerve fibers are indicated by arrows. Scale bar: 1 cm.
doi:10.1371/journal.pone.0031439.g001

No Differential Regulation of DAT and VMAT2
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both the caudate and the putamen exhibited the highest binding

densities, whereas ventral striatal regions, including the nucleus

accumbens, displayed lower binding densities. The general striatal

binding patterns of the two radioligands in MPTP treated

monkeys also appeared similar to that of controls (Figure 2 B–D

and F–H) although the specific binding densities were variably

reduced. Nonspecific binding was minimal for both radioligands

(,10% of total binding).

We utilized stereology to quantify TH-ir neuron count in SNpc

in 13 monkeys. One animal was excluded from the nigral cell

count measures since the nigral tissue was damaged during

processing. The distribution of TH-ir SNpc neurons did not

appear to change as a function of MPTP dose, although the

number of TH-ir SNpc neurons decreased.

Relationship between VMAT2 and DAT binding density
and SNpc TH neurons

Examination of the distribution of the data in Figure 3 reveals a

flooring effect for the VMAT2 and DAT binding density in

animals with more than 50% nigral cell loss. Excluding those

animals with more than 50% nigral cell loss revealed a significant

correlation between the cell count ratio and Bmax ratio (injected/

control side) for VMAT2 and DAT in the remaining animals

(r = 0.93, n = 8, p = 0.001and r = 0.91, n = 8, p = 0.002 respectively).

Correlation between VMAT2 and DAT binding density
and striatal DA

Six animals with greater than 50% neuronal cell loss had near

zero striatal dopamine measures similar to their striatal VMAT2

and DAT specific binding. The data from the other 8 animals had

a broad distribution permitting a Pearson correlation analysis

despite clustering of the other values near zero. There was a strong

significant correlation between residual striatal DA and VMAT2

as well as with DAT specific binding with or without the 6

clustered data points. (Spearman’s correlation with all data:

rs = 0.83, n = 14, p,0.0005 and rs = 0.80, n = 14, p = 0.001

respectively; Pearson’s correlation without the clustered points:

r = 0.94, n = 8, p = 0.001 and r = 0.95, n = 8, p,0.0005 respectively)

(Figure 4).

Similar loss of the DAT and VMAT2 binding after MPTP
treatment

The loss of striatal DAT and VMAT2 binding sites was similar

following a wide range of MPTP doses and was not statistically

different from each other (Wilcoxon signed ranks test

z(14) = 20.089, p = 0.93). There was a strong, significant correla-

tion between Bmax of VMAT2 and DAT with or without the data

clustered near zero (Spearman’s correlation with all data: rs = 0.93,

n = 14, p,0.0005; Pearson’s correlation without the clustered

points: r = 0.98, n = 8, p,0.0005) (Figure 5).

Discussion

The present study demonstrates that DAT and VMAT2

striatal binding sites do not have differential regulation across a

wide range of nigral cell loss. Our data differ from the findings of

postmortem studies in PD patients [3], which report greater loss

of striatal DAT than VMAT2 radioligand binding. In vivo studies

with molecular imaging methods such as positron emission

tomography (PET) can permit direct comparisons of DAT and

VMAT2 binding. Numerous PET studies have compared some

combination of fluorine-18-L-dihydroxyphenylalanine (FD), re-

flecting aromatic amino-acid decarboxylase activity and DA

storage, a DAT and a VMAT2 radioligand in the same PD

patients [5,7,28,29] with inconsistent findings. Interpretation of

data from human studies can be complex. Differences in subject

selection criteria, the presence of other disorders, wide disparities

in length of drug exposure, limited spatial resolution of PET,

effects of postmortem delay on measures of dopamine [30,31]

and variable specificity of radioligands can all influence the

findings. It has, therefore, been difficult to discern the exact

nature of regulation of different dopaminergic markers in

humans.

Nonhuman primate models, nevertheless, have the connectivity

and structural complexity homologous to the human brain [32]

and offer significant advantages. Indeed the animal model allowed

us to make measurements of presynaptic dopaminergic markers

and neuronal counts in SNpc at different severities of nigrostriatal

injury in a more controlled manner than would be possible in

humans. In addition, the unilateral infusion strategy permitted use

of an internal control thereby minimizing the effects of inter-

subject variability. The major limitation of the MPTP model is

that MPTP pathophysiology is not identical to idiopathic PD [32].

Although there may be some similarities in mechanism of cell

death [33] (such as mitochondrial energy defects [34], free radical

damage [35]) or possibly excitotoxicity [36]; MPTP may

preferentially damage terminal fields since its toxic metabolite 1-

methyl-4-phenyl-2,3-dihydropyridium ion (MPP+) is taken up by

DA neurons via DAT [37]. However, preferential terminal loss in

striatum compared to DA cell body loss in SNpc has been

described in humans with PD [38] as well as with MPTP treated

animals [39,40]. Thus, conservatively one could view MPTP as

primarily a model of dopaminergic cell loss rather than as a model

of the pathophysiology of human PD. Nevertheless, this model is

well-suited for the purpose of this study, to investigate whether

differential regulation of DAT and VMAT2 occurs across a wide

range of degrees of dopaminergic cell loss. All animals were

subjected to the same psychologically enrichment tasks as required

for care of nonhuman primates [41]. It is unknown whether any of

the tasks that we employed could have induced neurogenesis, as

some tasks may or may not have this effect [42,43]. However, in

our animal model system such effect would not alter the

relationship between VMAT2 and DAT. Furthermore such an

Figure 2. Representative autoradiograms of [3H] WIN 35,428
and [3H] DTBZ. [3H] WIN 35,428 binding to DAT (top row) (A–D), [3H]
DTBZ binding to VMAT2 (bottom row) (E–H) in coronal sections from
the injected side of control (A and E) and MPTP-treated monkeys (B–D
and F–H). Images represent total binding, according to the pseudo-
color bar on the right side of each image. Scale bar: 0.5 cm.
doi:10.1371/journal.pone.0031439.g002

No Differential Regulation of DAT and VMAT2
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effect, if it occurred, was not sufficient to interfere with the dose-

dependent effect of MPTP that we found.

We found a strong correlation between VMAT2 and DAT

binding densities and postmortem measures of striatal DA levels

but only with the number of SNpc dopaminergic neurons as long

as the degree of SNpc neuronal loss was limited. The correlation

with striatal DA agrees with other studies (for VMAT2 [6] and for

DAT [44]). The loss of TH-ir SNpc DA neurons correlated well

with reduction in striatal DAT and VMAT2 binding density as

long as at least 50% of nigral cells were preserved; greater loss

appears to be associated with a flooring effect for DAT or

VMAT2. This greater degree of terminal field loss exceeding

nigral cell body loss suggests that destruction of terminals fields

may precede cell body loss, but we do not have time-dependent

measures to prove this. We found no evidence consistent with

axonal sprouting containing additional DAT or VMAT2 sites that

would potentially reduce the preferential loss of terminal field

markers compared to SNpc DA cell bodies [45,46]; the

Figure 3. Relationship between VMAT2 (A) or DAT (B) Bmax and residual SNpc TH-ir neurons. The value for each monkey was expressed
as the ratio of the injected side to the control side in 13 monkeys.
doi:10.1371/journal.pone.0031439.g003

No Differential Regulation of DAT and VMAT2
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compensatory responses that others reported for the acute loss of

the TH-ir fibers and terminals include increased synthesis of TH,

increased DA release and turnover, and decreased DA uptake.

Interestingly, one previous study also investigated the relation-

ship between striatal FD uptake and stereologic counts of nigral

dopaminergic neurons in animals with graded MPTP lesions [47].

That study limited analysis to those animals that had no more than

a 35% loss of nigral neurons and found a significant correlation

between FD uptake and striatal dopamine content, but no

significant correlation to nigral cell counts. The limited nigrostri-

atal injury and poor distribution of data included in that study may

contribute to the discrepancy with our study that included a wider

range of injury.

In summary, our data demonstrate no differential regulation of

striatal DAT compared to VMAT2 specific binding sites across a

wide range of severity of nigrostriatal neuronal loss in MPTP-

Figure 4. Relationship between VMAT2 (A) or DAT (B) Bmax and residual striatal dopamine content. The values for each monkey were
expressed as the ratio of the injected side to the contralateral side, and the line is the linear fit of the data.
doi:10.1371/journal.pone.0031439.g004

No Differential Regulation of DAT and VMAT2
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treated monkeys. This raises important questions about interpre-

tation of molecular imaging studies in humans that compare

different radiotracers of nigrostriatal neurons in disorders such as

idiopathic PD or other neurodegenerative conditions that affect

nigrostriatal pathways. Do differential results with different

radiotracers reflect differences in noise properties or biases of the

imaging techniques [48–50]; are there differential effects from

previous drug exposures or differences in timing of changes in

these different molecular targets? Our data strongly suggest that

differential regulation of these sites is not a likely cause of disparate

findings with the different radiotracers. We only examined

changes in DAT and VMAT2 at 2 months after MPTP-induced

injury; however, we previously demonstrated that the clinical

effects of the lesions in this animal model are stable for as long as

1K years [12] making it less likely that our findings would change

with longer observation times. Short-term studies, on the other

hand, could determine whether there is lack of differential

regulation earlier in the course of nigrostriatal injury as well as

whether terminal fields are damaged prior to nigral cell bodies.

This will be important for extending the applicability of these

different radiotracers as potential biomarkers of nigrostriatal

neurons.
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