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Introduction

Complexity is an intricate and versatile concept that 1is
associated with the design and configuration of any system [1,2].
For example, complexity can be measured and characterized by
quantitative measures often called indices [3-5]. When studying
the concept of complexity, information theory has been playing a
pioneering and leading role. Prominent examples are the theory of
communication and applied physics where the famous Shannon
entropy [6] has extensively been used. To study issues of
complexity in natural sciences and, in particular, the influence
and use of information theory, see [7].

In this paper, we deal with an important aspect when studying
the complexity of network-based systems. In particular, we
establish relations between information-theoretic complexity
measures [3,8-11]. Recall that such entropic measures have been
used to quantify the information content of the underlying
networks [8,12]. Generally, this relates to exploring the complexity
of a graph by taking its structural features into account. Note that
numerous measures have been developed to study the structural
complexity of graphs [5,8,13-22]. Further, the use and ability of
the measures has been demonstrated by solving interdisciplinary
problems. As a result, such studies have led to a vast number of
contributions dealing with the analysis of complex systems by
means of information-theoretic measures, see, e.g., [8,13-22].
Figure 1 shows a classification scheme of quantitative network
measures exemplarily.

The main contribution of this paper is to study relations
between entropy measures. We will tackle this problem by means
of inequalities involving network information measures. In
particular, we study so-called umplicit information inequalities which
have been introduced by Dehmer et al. [23,24] for studying graph
entropies using information functionals. Generally, an implicit
information inequality involves information measures which are
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present on either side of the inequality. It is important to
emphasize that relatively little work has been done to investigate
relations between network measures. A classical contribution in
this area is due to Bonchev et al. [25]. Here, the relatedness
between information-theoretic network measures has been inves-
tigated to detect branching in chemical networks. Further, implicit
information inequalities have been studied for hierarchical graphs
which turned out to be useful in network biology [26].

We first present closed form expressions of graph entropies
using the graph classes, stars and path graphs. Further, we infer
novel information inequalities for the measures based on the j-
sphere functional. The section “Implicit Information Inequalities”
presents our main results on novel implicit inequalities for
networks. We conclude the paper with a summary and some
open problems. Before discussing our results, we will first present
the information-theoretic measures that we want to investigate in
this paper.

Methods

In this section, we briefly state the concrete definitions of the
information-theoretic complexity measures that are used for
characterizing complex network structures [3,6,9,27]. Here we
state measures based on two major classifications namely partition-
based and partition-independent measures and deal mainly with
the latter.

Given a simple, undirected graph G=(V,E), let d(u,v) denote
the distance between two vertices u and v, and let
p(G)=max{d(u,v) :u,ve V}. Let Sj(u; G) denote the j-sphere
of a vertex u defined as Sj(u; G)={xe V : d(u,x)=/}. Through-
out this article, a graph G represents a simple undirected graph.

Definition 1 Let G=(V,E) be a graph on n vertices and let X be a
graph invariant of G. Let o be an equivalence relation that partitions X into k
subsets X1,X2, ... Xy, with cardinality |X;| for 1<i<k. The total
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Figure 1. A classification of quantitative network measures.
doi:10.1371/journal.pone.0031395.9001

structural information content of G is given by

k

1(G)=|X|log, |X|— > | Xi| log, | Xil. (1)
i=1

Definition 2 Lt G=(V,E) be a graph on n vertices and let
pi=|Xi|/|1X|, for L <i<k be the probability value for each partition. The

mean information content of G s

1(G)= — k log, pi= — - Xil o, X 2
m(G) = E pilogy pi= E 08y 7o - (2)
P — |X] |X]

In the context of theory of communication, the above equation
is called as Shannon equation of information [28].
Definition 3 Let G=(V,E) be a graph on n vertices. The quantity

S
POD= i (3)
V=S
is a probability value of vie V. f: V—>R™ is an arbitrary information
Junctional that maps a set of vertices to the non-negative real numbers.
Remark 1 Observe that, p(-) defines a probability distribution over the
set of vertices as it satisfies 0 <p(v;) <1, for every vertex v;, 1 <i<n and
n
> pOvi)=1.
i=1
Using the resulting probability distribution associated with G
leads to families of network information measures [3,9].
Definition 4 The graph entropy of G given representing ils structural
information content:

L(G)==>"pw)log pr)=—>_ %
=l i=1 4aj= j

S (i)
1 = |-
Og2 (Z;‘_ lf(vj)>
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In order to define concrete graph entropies, we reproduce the
definitions of some information functionals based on metrical
properties of graphs [3,9,27].

Definition 5 Parameterized exponential information functional using j-
spheres:

2D ¢15701:6)
Fnlr)=adi=1 95, (s)

where >0 and ¢, >0 for 1 <k <p(G).
Definition 6 Parameterized linear information functional using j-

spheres:

n

fp(vi)= Z cilSi(vi; G, (6)

j=

where ¢ >0 for 1 <k < p(G).
Remark 2 Observe that, when either =1 or the cj are all equal, the
Junctional fp and fp becomes a constant_function and, hence, the probability

1
on all the vertices are equal. That is py(v) = - Jorve V. Thus, the value of

the entropy attains its maximum value, Ir(G) = log, (n). Thus, in all our
proofs, we only consider the non-trivial case, namely a1 and/or at least_for
two coefficients holds c; # cy.

Next, we will define the local information graph to use local
centrality measures from [9]. Let Lg(v,j) be the subgraph induced
by the shortest path starting from the vertex v to all the vertices at
distance j in G. Then, Lg(v;j) is called the local information graph
regarding v with respect to j, see [9]. A local centrality measure that
can be applied to determine the structural information content of a
network [9] is then defined as follows.

Definition 7 The closeness centrality of the local information graph is
defined by

1
S do) @

xeLg(vy))

B(v; Lo(vy))=

Remark 3 Note that centrality s an important concept that has been
introduced for analyzing social networks [29,30]. Many centrality measures
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have been contributed [30], and in particular, various definitions for closeness
centrality [30-32]. We remark that the above definition has been firsily
defined by Sabidussi [31] for arbitrary graphs. However, we use the measure
as a local invariant defined on the subgraphs induced by the local information
graph [9].

Similar to the j-sphere functionals, we define further functionals
based on the local centrality measure as follows.

Definition 8 Parameterized exponential information functional using
local centrality measure:

N BOELGO)
Selv) =adai=1 SPOEEGD) (8)

where a>0, ¢, >0 for 1 <k <p(G).
Definition 9 Parameterized linear information functional using local
centrality measure:

n

[e)=>_ ¢Bvi; Le(vis)), ©)

j=1
where ¢ >0, for 1 <k <p(G).

Note that the coefficients ¢x can be chosen arbitrarily. However,
the functionals become more meaningful when we choose the
coeflicients to emphasize certain structural characteristics of the
underlying graphs. Also, this remark implies that the notion of
graph entropy is not unique because each measure takes different
structural features into account. Further, this can be understood by
the fact that a vast number of entropy measures have been
developed so far. Importantly, we point out that the measures we
explore in this paper are notably different to the notion of graph
entropy introduced by Kérner [21]. The graph entropy due to
Korner [21] is rooted in information theory and based on the
known stable set problem. To study more related work, survey
papers on graph entropy measures have been authored by
Dehmer et al. [3] and Simonyi [33].

Results and Discussion

Closed Form Expressions and Explicit Information

Inequalities

When calculating the structural information content of graphs,
it is evident that the determination of closed form expressions
using arbitrary networks is critical. In this section, we consider
simple graphs namely trees with smallest and largest diameter and
compute the measures defined in the previous section. By using
arbitrary connected graphs, we also derive explicit information
inequalities using the measures based on information functionals
(stated in the previous section).

Star graphs, S(n), have been of considerable interest
because they represent trees with smallest possible diameter
(p(S(n))=2) among all trees on n vertices.

Now, we present closed form expressions for the graph entropy
by using star graphs. For this, we apply the information-theoretic
measures based on information functionals defined in the
preliminaries section.

Theorem 4 Let S(n) be a star on n vertices. Let f € {fp.f" p.fc.f c}
be the information functionals as defined before. The information measure is

guven by

Stars.

I(S(n) = —xlog, x—(1—x)log, (I_—X) (10)

n—1

where X is the probability of the central vertex of S(n):
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1
T = D

(11)

if f=fp.

e (12
itf=f.
1
x: 1+ (=1t (ZD) v () ()
it f=fc.
x= a (14)

— 2 ’
a+0-1P)+e ((;’n_lg )

if=fc.

Proof:
pS) .
e Consider f(v)=fp(v)= aZ/:1 G155
x>0 for 1 <k <p(S(n)).

, where «>0 and
We get,

if v is the central vertex, (15)

f | (n—1)
=< ) .

) o1 tea=2) otherwise.
Therefore,

Z f) =1 D14+ (-1 2= D=D] . (16)

ve V(S(n))
Hence,
1 o
—e if v is the central vertex,
1+ (n—Dolc2—cDr
pr(n)= aler—epn=2) (17)

otherwise.

1+ (n—1)ol2=cDr=2"

By substituting the value of py(v) in Ir(S(n)) and simplifying, we
get
1—x
I (S(m)=—xlogy x—(1—x)logy { - — ).
B 1
AR R SRR

p(S())
e Consider f(n)=fp(m)= > ¢|S;(v; S(n))|, where ¢x>0 for
1 <k <p(S(n)). j=1

We get,

a(n—1),
C1 +62(l’l—2),

if v is the central vertex,

(18)

otherwise.

f)= (
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Therefore,
3 fO)=m-D2e+en-2). (19)
ve V(S(n))
Hence,
2c1+CC421(n—2)’ if v is the central vertex,
pr(v)= c1+e(n—2) (20)

otherwise.

(n—D2e1 +c2(n—2)]°

By substituting the value of ps(v) in Ir(S(n)) and simplifying, we get

C1
2c1+c(n—2)°

I1(S(n)) = — xlog, x— (1 —x) log, Cl:’l‘) x=

e Consider the case f(v)=fc(v)= ocz a0 LsoD -y here
0>0, ¢ >0 for 1 <k <p(Sn)).

1
L N= ———————— 21
B(; Lsny(v:))) S o)’ (21)
xELS(n)(v,j)
denotes the closeness centrality measure.
Then, we yield
1
o 1G=1, if v is the central vertex,
fm=9 (22)
a1t =3 otherwise.
Therefore,

Z f(v)=oc"1(ﬂlTl) +(n— 1o toly), (23)

ve V(S(n))
Hence,
— ; if v is the central vertex,
1+ (n— Do 1G=D 2=
pr(v)= =D+ (24)
otherwise.

1+ (n—1)o! G=D+al=y

By substituting the value of ps(v) in Ir(S(n)) and simplifying, we
obtain

1—
I(S(n) = —xlog, x— (1 —x)log, (HT’IC) .

where x=

1+(n— l)acl( Doy

e Consider f(v)=f"c(v)= Z ¢;B(v; L) (v4)), where ¢ >0 for
1<k<p(S(n)). pis deﬁned via Equation (18). We get,

al—
1= -l

c1 +62(—2n73

), if v is the central vertex,
(25)
), otherwise.
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Therefore,

1+(n—1) -1
> f(V)=Cl< +’§n_l )>+cz<2nn_3>. (26)

ve V(S(n))
Thus,
1) if v is the central
2
a(l+mn—1) )+cz(";n 1y" vertex,
)= c1+c(s——=) @7
1+ ez otherwise.

e (Lro=1? 1)2 )+ ea(4= 3)

n—1

By substituting the value of ps(v) in I;(S(n)) and simplifying,

we get
1—x
1) = ~xlogs x—(1-nlows (1=7). (29
where x= “ TR
A +— 1)+ a1
2n—3

By choosing particular values for the parameters involved, we
get concrete measures using the above stated functionals. For
example, consider the functional f'=fp and set

¢ =p(Sn)=2and ¢; : =p(Sn))—1=1. (29)
If we plug in those values in Equations (10) and (11), we easily
derive

2 n+2 n
I, (S(n))= n+210g2( 3 ) +

n+2)(n—1)
n+210g2( . ) (30)

Paths. Let P, be the path graph on n vertices. Path graphs
are the only trees with maximum diameter among all the trees on
n vertices, i.c., p(P,)=n—1. We remark that to compute a closed
form expression even for path graphs, is not always simple. To
illustrate this, we present the concrete information measure
I1,,(P,) by choosing particular values for its coefficients.

Lemma 5 Let P, be a path graph and consider the functional f f P
defined by Equatzon (6). We set ¢y : =p(P))=n—1, c;:=
p(P,)— =1. We yield

(21 +n(2r— )—2r(r—1)
P 32( St )

r=1
2n(n—1)(2n—1)
log, (3n2+3n(2r—3) “6r(r— 1))‘

31)

Proof: Let P, be a path graph trivially labeled by vy, va,...,v,
(from left to right).

Given f(v)=fr(v)= Zf’:’
I1<j<n—1.

By computing f, when ve {v,,v, 11—}, for 1 <r<]— ], we infer

llcj|Sj(V§Pn)| with ¢;j=n—j for

r—1 n—r
f»= ZZCj-l- ch, (32)
j=1 j=r
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r—1 n—

=2 (n=j)+ Y (n=j), (33)
j=1

Jj=r

= % (1?4 n2r—3)—=2r(r—1)]. (34)

Therefore,
n n—1 1
D S0)=2) (n=je=n(i—D2n=1),  (35)
i=1 j=1

and, hence,

3 +n(2r—=3)=2r(r—1)
PO = a1

(36)

n
where ve{v,, 41—}, for ISI’STE—\. By substituting these

quantities into Ir(P,) yields the desired result.

Note that when using the same measure with arbitrary
coeflicients, its computation is intricate. In this regard, we present
explicit bounds or information inequalities for any connected
graph if the measure is based on the information functional using
J-spheres. That is, either f=fp or f =fp.

General connected graphs. Theorem 6 Guen any connected
graph G=(V ,E) on n vertices and let f = fp given by Equation (5). Then,
we wnfer the following bounds:

o¥ log, (m-a®), if a>1,
If(G)S{ o e : (37)
o~ log, (ma™), if a<l.
N
oX log, (n-a¥), if(;)Xgocgl,
1
(G =4 o= log, (n-a—*), if 1<a<nx, (38)
1
N\x 1
0, l'f0<rxs(z)Xoro¢2nX
where X = (Cmax — Cmin)(n—1), (38)
with cmax=max{c; : 1 <j<p(G)}, (40)
and  cmin=min{¢; : 1 <j<p(G)}. (41)
) S 618056
Proof: Consider f(v)=fp(v)=asw-1 7" , where >0 and

>0 for 1<k<p(G). Let ¢max=max{c;: 1<j<p(G)} and
cmin=min{¢; : 1 <j<p(G)}. Recall (see Remark (2)) that, when
either «=1 or when all the coeflicients (cx) are equal, the
information functional becomes constant and, hence, the value of
I7(G) equals log, n. In the following, we will discuss the cases o> 1
and a <1, and we also assume that not all ¢ are equal.

Case 1: a>1: We first construct the bounds for p(v) as shown
below:

p(G)
D ¢ISi6)|
f)=o/=! (42)
Sa("—l)t‘max. (43)
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Similarly,

F ()= o~ Demin, (44)

Therefore, from the Equations (43) and (44), we get

716"~ Démin < Zf(v) < pg"— Demax (45)
veV

Hence,

o= Demin o= Demax

<pr(»< (46)

70— Demax 700" — Demin

Let X= (l’l_ 1)[Cmax - Cmin}

rewritten as,

Then, the last inequality can be

X

1 o
— < <. 4
==’ (47)

Upper bound for Ir(G):
Since X'>0 and a>1, we have — <1. Hence, we have
n-o

1 1
— 10g2m >0 and 0< —log, pr(v)< — log, e Thus we

get,

o 1
- 1 <——log,—. 48
pr(n)logy pr(v) < ——-logy -~ (48)
By adding over all the vertices of V, we obtain
1
(G~ log, —r =¥ logy (ro"). (49)

Lower bound for I;(G):
We have to distinguish two cases, either a¥ <n or a¥ >n.
X
Case 1.1: 1 <a<n'/%. We yield — log, pr(v)> — logza— >0.
Therefore, "

1 aX
- 1 (V> — —=log, —. 50
pr(log pr(n)=—-—log— (50)
By adding over all the vertices of V', we get
I(G)= ! lo Gl = ¥ log, (ma~¥) (51)
'f = O(X j25) n - 2> .
Case 1.2: a>nl/X. X X

In this case, we obtain log, a >0 and log, pr(v) <0< log, a
n n

Therefore, by using these bounds in Equation (4), we infer
1;(G)>0.

Case 2: a<1:

Consider Equation (42). We get the following bounds for f(v):

o= Demax <fn< o= Demin (52)

Therefore,
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nol"Demax < N £ (v) <ol Demin. (53)
veV
Hence,
(= Demax o= Demin
70— Demin SP/‘(V)S n-on—Demax (54)
Set X =(n—1)[¢max — Cmin]- Then, the last inequality can be

rewritten as,

aX 1
—<pf(v)< . & (55)

Upper bound for Ir(G): ¥
Since X >0 and a<1, we have (X—SI. Hence, we have
X n X

— log, % >0and 0 < — log, pr(v) < — log, %. Thus, we obtain,
1 oX
—pr()logy pr(v) < — Ing (56)
By adding over all the vertices of V, we get
1 LA -X

Lower bound for Ir(G):

1
Again, we consider two cases, either ¥ <—ora¥>-
n n

1
Case 2.1: 0<oc£(7)1/X4

In this case, we have 10g2 + =0 and log, pr(v) <0<
1

log, — . Therefore, by substltutmg these bounds in the Equation
no

(4), we obtain I;(G)>0.
1
Case 2.2: (E)I/X<oz< 1.

We have — log, py(v)> — log2 + >0. Therefore,

oX 1
—pr(log, pr(v)> — W log, ok (58)

By adding over all the vertices of V', we get

1
1;(G) > —a* logy — =a* log, (no™). 59
[1(G) = —o gzn-aX o log, (mo™) (59)
Hence, the theorem follows.
In the next theorem, we obtain explicit bounds when using the
information functional given by Equation (6).

Theorem 7 Given any connecled graph G = (V' ,E) on n vertices and let
f=f"p be given as in Equation (6). We yield

[(G) < M og, (" Cm“), (60)
ml min
0, if n< i'ﬂ
(6= . - (61)
Cmin lng (” Cmm) . if n> Cmax ,
Cmax Cmax Cmin

@ PLoS ONE | www.plosone.org
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With cmax =max{¢; : 1 <j<p(G)}, (62)

and cmin=min{c¢; : 1 <j<p(G)}. (63)

p(G)
Proof: Consider f(v)=f"p(v)= >_ ¢;|S;(v; G)|, where ¢ >0
j=1
for 1<k<p(G). Let ¢max=max{¢;: 1 <j<p(G)} and ¢pin=
min{c¢; : 1 <j<p(G)}. We have,

p(G)
FM=>_ ¢80 O <(1—1)emax. (64)
j=1
Similarly,
SO = —1)cmin. (65)

Therefore, from the Equations (64) and (65), we get

n(n—1eyin < Zf(v) <n(m—1)cmax- (66)
velV
Hence,
— <pr(n) < —— 67
" Cmax pf( )= n cmin ( )

Upper bound for Ir(G):

Since <1, we have —log, min_ >0 and 0<
" Cmax o 1" Cmax
— log, pr(v) < — log, T Hence,
N Cmax
Cmax Cmin
—prlog pr(V) < — log : (68)
N Crin N*Cmax

By adding over all the vertices of V, we obtain

Cmi C, n-c
1/ (G)< — Cmax log, min__ Cmax log, max (69)
Cmin " Cmax Cmin Cmin

Lower bound for Ir(G):
Let us distinguish two cases:
Case 1: cmaXZM-Cmm

We have log2 >0 and log,pr(v) <0< log2 Cmax
1" Cmin 1 Cmin’
Therefore, by applying these bounds to Equation (4), we obtain
1;(G)>0.
Case 2: Cmax <M'Cmin-
In this case, we have — log, ps(v)> — 10g2 Cimax >0. There-
fore, min
—py()logy py ()= — Moy B (70)
N°Cmax 1 Cmin

By adding over all the vertices of V, we obtain the lower bound for

1;(G) given by
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I/(G) > gmin logz Cmax _ Cmin 10g2 1 Cmin ) (71)

‘max M Cmin  Cmax Cmax

Hence, the theorem follows.

Implicit Information Inequalities

Information inequalities describe relations between information
measures for graphs. An implicit information inequality is a special
type of an information inequality where the entropy of the graph is
estimated by a quantity that contains another graph entropy
expression. In this section, we will present some implicit
information inequalities for entropy measures based on informa-
tion functionals. In this direction, a first attempt has been done by
Dehmer et al. [23,24,26]. Note that Dehmer et al. [23,26] started
from certain conditions on the probabilities when two different
information functionals f and f* are given. In contrast, we start
from certain assumptions which the functionals themselves should
satisfy and, finally, derive novel implicit inequalities. Now, given
any graph G=(V,E),|V|=n. Let I5(G) and I1,(G) be two mean
information measures of G defined using the information
functionals f; and f; respectively. Let us further define another
functional f(v)=cf1(v)+ c2f2(v), ve V. In the following, we will
study the relation between the information measure Ir(G) and the
measures 17, (G) and I5,(G).

Theorem 8 Suppose f1(v) <fo(v), for all vE V', then the information
measure 1r(G) can be bounded by Iy, (G) and I1,(G) as_follows:

‘ (ci+e)dr o adi, olat+a)d
5= 2 G- oy, U - 2 (7
p&< 9T 610, 2B, )

where A=c1A1+ 24z, A=Y, /i), and Ay =3 fo(»).
velV

Ve

Proof: Given f(v)=c1f/i(v)+c2/2(v). Let A1 =Y, . f1(v) and
Ar=>", .y o(v). Therefore Y, f(V)=c141+c2A>=: A. The

information measures of G with respect to f; and f> are given by

I;(G) == p;(nlog py (), (74)
veV
_ A0 A
e M= T A
I(G) == p,("log, pr, (v, (75)
velV
where py, (v) = SO L0

Yer () A

Now consider the probabilities,

pi(v)= S0 _afim+ah)
! Zve Vf(v) A ’

(76)

_adrpy (V4 c2Adrpp (v)
- v ;

(77)

_late)drp,()

< Y ,since 41pr (V) <A2pp(v).  (78)
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Using Equation (77) and based on the fact that ps(v) <1, we get

c1Aypr, (v)+c2drpr, (v)

—log, pr(v)=— logz< gl Y 72 ) >0. (79)
Thus,

(c1+c2)A2pr,(v)

~prlogspy )< - ()
(80)
c1d1py (V) + 242 pp, (v)
log, Y ,

and

—pr(»log, pr(v) < [%}

A
[*sz (v log, pr, (V) —pr, (v) log, %}

B (61+62)A2P/2(V))1 | adip (v)
( A e\ )

(81)

Since the last term in the above inequality is positive, we get

—pr()log, pr(v) < {%}
)
|:_pf2 v 10g2 pfz(v) —Ds, v 10g2 LzAfz .

By adding up the above inequalities over all the vertices of V', we
get the desired upper bound. From Equation (77), we also get a
lower bound for ps(v), given by

(c1+e2)Arp (v)

pr(v)= Y

,since A]'pjl(V)SAz'pfz(V). (83)

Now proceeding as before with the above inequality for py(v), we
obtain

9 , A D,
—pr(Mlogy pr(v) > — ((Ll +62)A - (V))

N (8
log, (" 1P (V) +eds sz(v)).

A

~pO)logp =[]

A
|1 0ok, )=y 0110w 5 (s

B ((m +czZ41pf1 (v)> log, <1 N C2A2p_f2(v))'

c1dipy (v)
By using the concavity property of the logarithm, that is,

X 1 x
log, (14+ =)< ———(—), we yield
B4 22 (G wey
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~plogspy )= E2A

141

{—Pf] (v)log, pr, (V) —py, (v) log, CT (86)

_(c1+ ) dop(v)
A amQ

By adding the above inequality over all the vertices of V', we get
the desired lower bound. This proves the theorem.

Corollary 9 The information measure Ir(G), for f=f1+f2, is
bounded by I, (G) and I1,(G) as_follows:

2A45log, e

= A+ Ay

(87)

2A1 Al
I —1 —
o (@10 )

245 A
o= =2 (Ifz(G) longszAz). (88)

Proof: Set ¢; =c; in Theorem (8), then the corollary follows.
Corollary 10 Given {wo information functionals, fi, fo such that
f1(v)<fo(v), Vve V. Then

Az A

1 G< o
f]() Al g2A1+A2

Ay
Ifz(G)“l‘ logzm
89
+A210g2e (89)
4,

Proof: Follows from Corollary (9).

The next theorem gives another bound for Iy in terms of both
I and Iy, by using the concavity property of the logarithmic
function.

Theorem 11 Let f1(v) and f2(v) be two arbitrary functionals defined

on a graph G. If f(v)=c1f1(v) + c2f2(v) for all ve V', we infer

14y 14 A
16> 24 16~ log, 1+ 22
(90)
A>
Ir,(G)— log, —— Y —log, e.
and
1@< 2 16 tog 4] 4 22
o1

A4
106~ 1o, 257,

where A=c1A1+ 243, A1 = Zfl(v) and Ay = Zfz(v)
velV velV
Proof: Starting from the quantities for py(v) based on Equation

(77), we obtain

Aypp () +c2Ar py
pr(v)log, pr(v)= (Cl 1pfl(V)Ac2 2sz("))

1Ay Py, (V) + CzAz‘pf (V)
log, ( L 1 2 >

(92)
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c1Aypr (v A v cr Ay pr, (v
141p7, ( )10g2 (1 1[7/1()) 1.2 2pp, (V)

A A C1A1'pf1(v)
N c2Ad2pp, (v)

HAUM CZAZsz(V) 14 A ()
A & adyp,() |

a1 dipy (v) adirpr(v) 2 Aa>pp, (v)
1 1 1+ ——=
1 0g; I + logy | 1+ ClAl'Pfl(V)

Ay pr, (v) Ay pr, (v) c1drpy (v)
+ A — 10g2 A + 10g2 1 + c2A2~pf2 (V) 5

(94)

c1A4 A
= % {Pf] (v)1log, pry () +py, (v) log, %}

A A
+ 22 {0 1om ) ) lor 2

c1Aipy, (v) A2 pr, (v) (95)
+ ———log, | 1+ ———=——
A adipg(v)

L@ 2[712(1’)10 1 adrpy (v) .
A c2Aa2pp, (v)

Since each of the last two terms in Equation (93) is positive, we get
a lower bound for ps(v)log, ps(v), given by

141 A4
108700 L4 Ly 0110wy 01+, 010w 5

A

A
+ 1 {Pf‘z(v)logzpf-z(v)+pf2(v)10&%}

(96)

Applying the last inequality to Equation (4), we get the upper
bound as given in Equation (91). By further applying the inequality

X 1 x
log, (14 =)< ——(=) to Equation (95), we get an upper bound
2+ D=156 q (95), we g pp
for py(v)1og, pr(v), given by

14 a4
) logyp (<= {pf1 () logy py () +py, (V) log, %}

A A
+ 22 L oomp 0 tpa0lon 22 (o7
C]A]])fl(v) CzAzp/Z(V) CzAzp/Z(V) C]A]'pfl (V)
A 1n(2) C A 1]7/1 (V) A 111(2) 52A2'[7f2 (V) '

Therefore,

A4 14
pr(v)log pr(v) < =% {pfl (v)logy py, () +py, (V) log, %}

62A2 2A2
+ 2 L 0or () (0o 2

1 cdipy () +cadop, (v)
nQ) 4 '

(98)
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Finally, we now apply this inequality to Equation (4) and get the
lower bound as given in Equation (90).

The next theorem is a straightforward extension of the previous
statement. Here, an information functional is expressed as a linear
combination of k arbitrary information functionals.

Theorem 12 Lot k>2 and f1(v).f2(v), ... fx(V) be arbitrary
Sunctionals defined on a graph G. I;(G)I;(G),... I (G) are the
corresponding information contents. If f(v)=cifi(v)+crfa(W)+ -+ +
cifi(v) for all ve V, we infer

fcid; cidi
()2 ) 3= | 1(G)—logy —

i=1

} } —(k—1)logye, (99)

and

[ cid;
1(G) < Z{c - {I/;(G)flogz

i=1

4 } } (100)

ciA;j
A

where A= Zf-;l cidi, Aj= > fi(v) for 1 <j<k.
veV

Union of Graphs. In this section, we determine the entropy
of the union of two graphs. Let Gy =(V1,E1) and G, =(V>,E>) be
two arbitrary connected graphs on 711 and 7, vertices, respectively.
Let f be an information functional defined on these graphs
denoted by fg,, f6, and let Ir(Gy) and I(G») be the information
measures on G; and Gy respectively.

Theorem 13 Let G=(V,E)=G1\UG; be the disjoint union of the
graphs Gy and Ga. Let [ be an arbitrary information functional. The
information measure Ir(G) can be expressed in terms of Ir(Gy) and Ir(G»)
as_follows:

1@)=% (560~ 10w 5 4 52 (16— 10w, ). (101

where A=A+ Ay with A=Y, fGl(V) and A=Y sz(v).
vely vely

Proof: Let f be the given information functional. Let
A= 3 fg,(v) and A= > fg,(v). The information measures

ve V) ve s
of Gy and G, are given as follows:

I(G)=—>_ pa,(log, pg, (v), (102)
vely
where pGl(v)=fG;1(v), and
1
I(G)=— > pa,(log, pG,(v), (103)
Ve V2
where pg, (v):ijl(v) .ForveV,
2
: Jo,(v), ifveln,
JW= {sz(v), if ve V5. (104)

Hence,
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DSO=DF0)+ D f)=Ai+A=:4.  (105)
velV vely vely
o [P e,
pem==2Y___ 106
R YITIC R WA U (109
, ifvels.
A
A .
j-pgl(v), if ve 17,
=4 4 (107)
72~p62(v), if ve V5.
Using these quantities to determine I;(G), we obtain
Arpg, (v) Arpg, (v)
LG == % ——logy(——)
ve (108)
oy Axpa, (v) log (AZ'PGz(V))
vely A ? A ’
and
A A
5=~ 5 (rey () 108y 0406, () o2 ()
vel
) o (109)
2 Y (rea om0+ o) 108 5.
Ve Vo

Upon simplification, we get the desired result.

Also, we immediately obtain a generalization of the previous
theorem by taking k-disjoint graphs into account.

Theorem 14 Let G =(V1 JE) ), Gy =(V2,E2), .G I(Vk,E/()
be k arbitrary connected graphs on ny,ny, . . . Ny vertices, respectively. Let f
be an information functional defined on these graphs denoted by
f6,JGys - oG- Lt G=(V,E)=G1\UG U --- UGy be the disjoint
union of the graphs G1,Ga, ..., Gy for k=2. The information measure
I(G) can be expressed in terms of 1r(G1),1r(G2), . . ., I(Gx) as follows:

k . .
o= Y% (re-reg) a0

i=1

where A= A1+ Ay + -+ - + Ay with Aj= Y f6,(v) for 1<i<k.
vel

Join of Graphs. Let Gy =(V1,E1) and Gy =(V>,E>) be two
arbitrary connected graphs on 71 and n; vertices, respectively. The
join of the graphs G| + G is defined as the graph G=(V,E) with
vertex set V=V1UV,; and the edge set E=E;|UEU
{(x,y) : xe V1,ye Va}. Let f=fp be the information functional
(given by Equation (5)) based on the j-sphere functional
(exponential) defined on these graphs and denoted by fg,, fo,-
Let Iy(Gy) and Ir(Ga) be the information measures on G1 and G,
respectively.

Theorem 15 Let G=(V,E)=G1+ Gy be the join of the graphs
Gy =(V1,E1) and Gy=(V,Ep) with ny +ny vertices. The information
measure It (G) can then be expressed in terms of Ir(G1) and 17(G») as follows:
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Ao Ao
5@)= 22 (16010, %)

Ao Arof12 (111)
2 2
+ A <If(G2)_ log, T) s

pH) oo
where fir()=o2=1=1 T G H € (G1GrGY, >0 and A=

A2 + Aro 1" with Ay =, v, J6,(v) and Ay = e v, 6, (7).
Proof: Let G=Gj+ Gy be the join of two connected graphs
Gi and G. Here, p(G)=max{p(G1),p(G2)}. Let fu(v)=

otzf:‘ PGSO 1o the information functional defined by using
the j-sphere functional on H €{G,G1,G2}. Let A= Y fg,(v)

ve V)
and A= Y fc,(v). The information measures of G| and G, are
veV,
given as follows:

(G ==Y p,(»log, pc, (v, (112)

vely

f,(v)
Ay

where pg, (v)=" and

I(G)=— > p6,(log, pe,(v),

velV,

(113)

Jo,(v)
A

where sz(v)z .ForveVl,

p(Gy)
ciny+ . ¢ S:(v;Gy) .
o 12 ijl 7o) 1’ if ve 13,

J)= (114)

p(Gy)
cyny+ . ¢;S;(v;G: .
o 1 Zf:l 75/¢ 2), if ve V.

_ { w12, (), if ve V1, 15)

al"f,(v), ifvel,.
Hence,

S SM=Y S+ D f()=A10" + A1 = : A, (116)

velV velry vely

WG ()
oy )4 e
— = 117
pG(V) Zve Vf(v) OCClnlfGZ (v) ) ( )
— if ve V5.

"1”2A
L e, (), ifve
A 1
- (118)

aClﬂlA .
Y 2~p62(v), if ve 15.
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Using those entities to determine Ir(G), we infer

w12 Ay-pg, (v) w12 41pg, (v)

R T T
VEI
) ) 119
g ) e )
VE7, A 5] A 5
and

O(("lnzA O(ClnzA
e =42 1Z(pGl(v)logngl(v)-i-pgl(v)logz( " 1))

ve V]

a1 4 of1™ A4
- (p@(v) 102 96, (1) + P, (v) log, — 2>.
vel,

(120)

Upon simplification, we get the desired result.

If we consider the linear j-sphere functional f”p (see Equation
(6)), to infer an exact expression for the join of two graphs as in
Theorem (15) is an intricate problem. By Theorem (16) and
Theorem (17), we will now present different bounds in terms of
Iy, (Gy) and Iy (G2).

Theorem 16 Let G=(V,E)=G\+ Gy be the join of the graphs
Gy =(V1,E1) and Gy =(V2,E») on ny +ny vertices. Then, we yield

A Ay A> A
Ir(G) = Vi (If(Gl) — log, j) T ([/(Gz) — log, 7)
(121)
. 261111}’12

Aln(2)’

where fr1(v) = 007 ¢;8,(v; H) for H€{G1.G.GY, ;>0 and A=

2c1nny+A1+ Ay with Ay = Zve 2 fGI (V) and A» = Zve szgz(v).
Proof: Let A1 = Y fg,(v)and A2= > f;,(v). The informa-
velV; velV,
tion measures of G; and Gy are given as follows:

Ij(Gl): - Z PGI (V) logZPGl (V)9 (122)
vely
G (v
where pg, (v)=w, and
A
L(G)=— ) pc,(v)1og; pg, (v), (123)
vely
where pg,(v)= ijzm. ForveV,
p(Gy)
am+ Y ¢Si(v;Gy), if vely,
j=1
f0)= o (124)
cm+ Y. ¢Si(v;Gy), if vels.
j=1
ciny+ v), ifvelq,
_Jam+fe () . 1 (125)
cln1+f02(v), if ve Vs.
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Hence,
D fe =D fe)+ D fo(r)=2cimm+ 41+ 4;=: A.
velV ve V) velVy
(126)
am+fe (v) .
———, ifvely,
v
patn=2 A (127)
Zve VfG(V) C1n1+sz(V) .
— if ve V5.
A . >
Apa0) am ey,
= 4 A (128)
Ar60) | am ey,
A 4’ >
Since 177’12 nd 17’11 are positive, we get a lower bound for pg(v)
given as
v)-A
L‘(A) L itver,
> 129
pa(n)z pG,(v)Ax (129)
— if ve V5.

To infer a lower bound for the information measure I;(G), we
start from the Equations (128), (129) and obtain

—pc(v)1og, pe(v)
e, ()44 PG, (VA1 +cin
—( 1 log, 1 , ifvelq, (130)
PG, (v) A2 Pe,(V)Ar+ein\ .
—( 2A )log2< 2 y , ifvels.
A1pg, (v) A1pg, (v) c1ny .
— lo 1 1+ , ifveln,
I Aipe, (V) !
) e [Ape0) 13y
2PGy\V 2PGy\V cn .
— lo 1+ , ifveTs.
R < Aszz(v)ﬂ 2
A
RL v)log, pg, (v) +pa, (v )logz A
A
P Gl A6 000 (1 ) ey,
A1pg, (v)
-1 . (132)
2
- % (pe >log2p62 9)+p0y () lows 5 )
- szz =) e,
Axpc, (v)

(f) and perform-

By using the inequality log, <1 )

ing simplification steps, we get,
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—pc(v)log, pe(v) >
A, A ciny
v <P01 (v)log, pg, () + P, (v) log, 7) T An()’

if ve 17, (133)

A, A ciny
_2 1 log,— ) —
Y (sz(v) ngpcz(\)) +P62(V) 08 A) Aln(2)’

if ve Vs

By adding up the above inequality system (across all the vertices of
V) and by simplifying, we get the desired lower bound.
Further, an alternate set of bounds can be achieved as follows.
Theorem 17 Let G=(V,E)=G\+ Gy be the join of the graphs
G1=(V1,E1) and Gy=(V2,E») on ny +ny vertices. Then, we infer

A Ay A A>
16) <% (1601085 )+ 5 (16— 1083

C]i’llnzl C%I’l]l’lz (134)
' 08> 1
and
A Ay A> A,
I — | 7 log, — log, —
16) =% (1G0-10 % ) + % (116 - 1o %} )
C]I’lll’lzl C%nll’lz 1 (135)
- A 08> A2 - ng(e),

where f (V)= S0 ¢;S;(vi H) for He{G1,G2.G}, ¢;>0 and A=
2eomm+ A+ A, with Av=3 . " J6,(v) and Ay = e szGz(V)'

Proof: Starting from Theorem (16), consider the value of pg(v)
given by Equation (128). By using the quantities for pg(v) to
calculate Ir(G), we get

G =-% (AI'PGI(;)Hmz) og, (Al'pcl(v)Jrclnz)

vely A
Ay pe, (V) +cin Ay pe,(v)+cin
B Z( 206,V +¢1 1>log2( 2P6,(V)+c 1>,
veVy A A
(136)
and
A A
16)= =% 3 (pa 0)1oespy )6y ) 10
vely

ZPG ) log 4 Gm
VGV] 1 2 Al’pGl(v)

c1my ciny PG, (V)Al))
-— log,—— + log, [ | + ————
1 veV1< 2 1 gz( -

A y (137)
23 pes0) g2y () + 10w
velp
A2 cing
pe, V) logy | 1+ ———
1621;2 2 2( Az'pcz(v)>

_am cim PG, (V)4
Y <log2 I + log, (1 + o .
veV,
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By simplifying and performing summation, we get

6= 4 (1160 =108, ) + 22 (16~ 100, 2

o cinny log C%}’lll’lz
A Ve
A1 cinp
rG (V) logy | 14+ ———
V;I 1 2( AI‘PGI (V)>

(138)

_am p6, ()41 )
log, ( 1+
VEZVI gg( ciny
c1n
I+ ——
( AZ'sz(V)>
sz(V)A2
c1ny ’

An upper bound for the measure Ir(G) can be derived as follows:

A
Z 16, (v)log,
velry

C|}’ll Zl

velr,

Ay A, Ay A,
1 <—| I — log, — — | [ — log, —
6<% (160 - 1o 40 ) + 22 (116 - 10w )

2
cininy
A2 7

(139)
. cinny

A

log,

since each of the remaining terms in Equation (138) is positive.
Finally, we infer the lower bound for Ir(G) as follows. By applying

1
inequality log, <1 + ) <) (g) to Equation (138), we get

A Ay Ay Ay
1 >— | [ 1 — | 7 log, —
1(G)=— (f(Gl) ngA)+ yi (f(G2) 0g, A)
cininy clnlnz c1ny
- log Ol ey
4 L z;l ! 2)-A1p, (v)
cim 6, (04 an
_ o 26,0 | o
P PO ( e >>
c1m PGz(V
A l€V2 ln( ) c1n1 (140)
Upon simplification, we get
Al A1 A2 A2
1;(G) = 7 (If(Gl)— log, j) T (I/(Gz)— log, 7)
(141)
cinny o c%nlng 1
4 BT Ty

Putting Inequality (139) and Inequality (141) together finishes the
proof of the theorem.

References

1. Basak SC (1999) Information-theoretic indices of neighborhood complexity and
their applications. In: Devillers J, Balaban AT, eds. Topological Indices and
Related Descriptors in QSAR and QSPAR, Gordon and Breach Science
Publishers, Amsterdam, The Netherlands. pp 563-595.

@ PLoS ONE | www.plosone.org 12

Information Inequalities for Networks

Summary and Conclusion

In this article, we have investigated a challenging problem in
quantitative graph theory namely to establish relations between
graph entropy measures. Among the existing graph entropy
measures, we have considered those entropies which are based on
information functionals. It turned out that these measures have
widely been applicable and useful when measuring the complexity
of networks [3].

In general, to find relations between quantitative network measures
is a daunting problem. The results could be used in various branches
of science including mathematics, statistics, information theory,
biology, chemistry and social sciences. Further, the determination of
analytical relations between measures is of great practical importance
when dealing with large scale networks. Also, relations mvolving
quantitative network measures could be fruitful when determining
the information content of large complex networks.

Note that our proof technique follows the one proposed in [23]. It
is based on three main steps: Firstly, we compute the information
functionals and in turn, we calculate the probability values for every
vertex of the graph in question. Secondly, we start with certain
conditions for the computed functionals and arrive at a system of
inequalities. Thirdly, by adding up the corresponding inequality
system, we obtain the desired implicit information inequality. Using
this approach, we have inferred novel bounds by assuming certain
information functionals. It is evident that further bounds could be
inferred by taking novel information functionals into account.
Further, we explored relations between the involved information
measures for general connected graphs and for special classes of
graphs such as stars, path graphs, union and join of graphs.

At this juncture, it is also relevant to compare the results proved
in this paper with those proved in [23]. While we derived the
implicit information inequalities by assuming certain properties for
the functionals, the implicit information inequalities derived in
[23] are based on certain conditions for the calculated vertex
probabilities. Interestingly, note that by using Theorem (11) and
Theorem (17), the range of the corresponding bounds is very
small. We inferred that the difference between the upper and
lower bound equals log, e~ 1.442695.

As noted earlier, relations between entropy-based measures for
graphs have not been extensively explored so far. Apart from the
results we have gained in this paper, we therefore state a few open
problems as future work:

® To find relations between I (G) and Iy(H ), when H is an induced
subgraph of G and f is an arbitrary information functional.

e To find relations between Iy(G) and {I/(Th).I/(T>),...,
I:(Ty,)}, where T;, 1<i<n are so-called generalized trees,
see [34]. Note that it is always possible to decompose an
arbitrary, undirected graph into a set of generalized trees [34].

® To find relations between measures based on information
functionals and the other classical graph measures.

® To derive information inequalities for graph entropy measures
using random graphs.

® To derive statements to judge the quality of information
inequalities.

Author Contributions
Wrote the paper: MD LS. Performed the mathematical analysis: MD LS.

2. Wang J, Provan G (2009) Characterizing the structural complexity of real-world
complex networks. In: Zhou J, ed. Complex Sciences, Springer, Berlin/
Heidelberg, Germany, volume 4 of Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering. pp 1178-1189.

February 2012 | Volume 7 | Issue 2 | 31395



. Dehmer M, Mowshowitz A (2011) A history of graph entropy measures.

Information Sciences 181: 57-78.

. Li M, Vitanyi P (1997) An Introduction to Kolmogorov Complexity and Its

Applications Springer.

. Mowshowitz A (1968) Entropy and the complexity of graphs: I. an index of the

relative complexity of a graph. Bulletin of Mathematical Biophysics 30: 175-204.
Shannon CE (1948) A mathematical theory of communication. Bell System
Technical Journal 27: 379-423 and 623-656.

. Bonchev D, Rouvray DH (2003) Complexity in chemistry: Introduction and

Fundamentals. Mathematical and Computational Chemistry 7. New York: CRC
Press.

. Bonchev D (1983) Information Theoretic Indices for Characterization of

Chemical Structures. Research Studies Press, Chichester.

. Dehmer M (2008) Information processing in complex networks: graph entropy

and information functionals. Appl Math Comput 201: 82-94.

. Emmert-Streib F, Dehmer M (2007) Information theoretic measures of UHG

graphs with low computational complexity. Appl Math Comput 190:
1783-1794.

. Mehler A, Weil} P, Liicking A (2010) A network model of interpersonal

alignment. Entropy 12: 1440-1483.

. Bonchev D (2003) Complexity in Chemistry. Introduction and Fundamentals.

Taylor and Francis. Boca Raton, FL, USA.

. Anand K, Bianconi G (2009) Entropy measures for networks: Toward an

information theory of complex topologies. Phys Rev E 80: 045102.

. Costa LdF, Rodrigues FA, Travieso G, Boas PRV (2007) Characterization of

complex networks: A survey of measurements. Advances in Physics 56: 167-242.

. Kim J, Wilhelm T (2008) What is a complex graph? Physica A: Statistical

Mechanics and its Applications 387: 2637-2652.

. Balaban AT, Balaban TS (1991) New vertex invariants and topological indices of

chemical graphs based on information on distances. Journal of Mathematical
Chemistry 8: 383-397.

. Bertz SH (1983) A mathematical model of complexity. In: King R, ed. Chemical

applications of topology and graph theory, Elsevier, Amsterdam. pp 206-221.

. Basak SC, Magnuson VR, Niemi GJ, Regal RR (1988) Determining structural

similarity of chemicals using graph-theoretic indices. Discrete Applied
Mathematics 19: 17-44.

@ PLoS ONE | www.plosone.org

13

21.

22.

23.

28.

29.

30.

31.
32.

33.

34.

Information Inequalities for Networks

. Bonchev D, Rouvray DH (2005) Complexity in chemistry, biology, and ecology.

Mathematical and Computational Chemistry. New York: Springer. pp xx+344.
doi:10.1007/b136300. URL http://dx.doi.org/10.1007/b136300.

. Claussen JC (2007) Offdiagonal complexity: A computationally quick complexity

measure for graphs and networks. Physica A: Statistical Mechanics and its
Applications 375: 365-373.

Koérner J (1973) Coding of an information source having ambiguous alphabet
and the entropy of graphs. Trans 6th Prague Conference on Information
Theory. pp 411-425.

Butts C (2001) The complexity of social networks: Theoretical and empirical
findings. Social Networks 23: 31-71.

Dehmer M, Mowshowitz A (2010) Inequalities for entropy-based measures of
network information content. Applied Mathematics and Computation 215:
4263-4271.

. Dehmer M, Mowshowitz A, Emmert-Streib F (2011) Connections between

classical and parametric network entropies. PLoS ONE 6: ¢15733.

. Bonchev D, Trinajstic N (1977) Information theory, distance matrix, and

molecular branching. The Journal of Chemical Physics 67: 4517-4533.

5. Dehmer M, Borgert S, Emmert-Streib F (2008) Entropy bounds for hierarchical

molecular networks. PLoS ONE 3: ¢3079.

Skorobogatov VA, Dobrynin AA (1988) Metrical analysis of graphs. MATCH
Commun Math Comp Chem 23: 105-155.

Shannon C, Weaver W (1997) The Mathematical Theory of Communication.
University of Illinois Press, Urbana, IL, USA.

Freeman LC (1977) A set of measures of centrality based on betweenness.
Sociometry 40: 35-41.

Freeman LC (1978) Centrality in social networks conceptual clarification. Social
Networks 1: 215-239.

Sabidussi G (1966) The centrality index of a graph. Psychometrika 31: 581-603.
Emmert-Streib F, Dehmer M (2011) Networks for systems biology: Conceptual
connection of data and function. IET Systems Biology 5: 185-207.

Simonyi G (1995) Graph entropy: A survey. In: Cook W, Lovasz L, Seymour P,
eds. Combinatorial Optimization, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, volume 20. pp 399-441.

Emmert-Streib F, Dehmer M, Kilian J (2006) Classification of large graphs by a
local tree decomposition. In:, , et al HRA, editor (2006) Proceedings of
DMIN’05, International Conference on Data Mining, Las Vegas, USA. pp
477-482.

February 2012 | Volume 7 | Issue 2 | 31395



