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Abstract

Heparanase (HPA), an endo-h-D-glucuronidase that cleaves the heparan sulfate chain of heparan sulfate proteoglycans, is
overexpressed in majority of human cancers. Recent evidence suggests that small interfering RNA (siRNA) induces
transcriptional gene silencing (TGS) in human cells. In this study, transfection of siRNA against 29/+10 bp (siH3), but not
2174/2155 bp (siH1) or 2134/2115 bp (siH2) region relative to transcription start site (TSS) locating at 101 bp upstream of
the translation start site, resulted in TGS of heparanase in human prostate cancer, bladder cancer, and gastric cancer cells in
a sequence-specific manner. Methylation-specific PCR and bisulfite sequencing revealed no DNA methylation of CpG islands
within heparanase promoter in siH3-transfected cells. The TGS of heparanase did not involve changes of epigenetic markers
histone H3 lysine 9 dimethylation (H3K9me2), histone H3 lysine 27 trimethylation (H3K27me3) or active chromatin marker
acetylated histone H3 (AcH3). The regulation of alternative splicing was not involved in siH3-mediated TGS. Instead, siH3
interfered with transcription initiation via decreasing the binding of both RNA polymerase II and transcription factor II B
(TFIIB), but not the binding of transcription factors Sp1 or early growth response 1, on the heparanase promoter. Moreover,
Argonaute 1 and Argonaute 2 facilitated the decreased binding of RNA polymerase II and TFIIB on heparanase promoter,
and were necessary in siH3-induced TGS of heparanase. Stable transfection of the short hairpin RNA construct targeting
heparanase TSS (29/+10 bp) into cancer cells, resulted in decreased proliferation, invasion, metastasis and angiogenesis of
cancer cells in vitro and in athymic mice models. These results suggest that small RNAs targeting TSS can induce TGS of
heparanase via interference with transcription initiation, and significantly suppress the tumor growth, invasion, metastasis
and angiogenesis of cancer cells.
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Introduction

Heparanase is an endo-h-D-glucuronidase that has the ability to

cleave the heparan sulfate chain of heparan sulfate proteoglycans

[1], and facilitates the invasion and metastasis of tumor cells by

deteriorating the basement membrane (BM) and extracellular

matrix barriers [2]. Heparanase also contributes to angiogenesis

by releasing and activating various heparan sulfate-binding growth

factors [3,4]. Moreover, high expression of heparanase is

frequently observed in an increasing number of primary human

tumors, such as prostate cancer, bladder cancer and gastric cancer,

and the heparanase-facilitated invasion and metastasis induce poor

outcomes in cancer patients [5–8]. These studies suggest that

heparanase may be served as a molecular target for cancer

therapy.

Silencing of gene expression using small interfering RNA

(siRNA) represents a potential strategy for therapeutic product

development [9]. In addition to posttranscriptional gene silencing

in a wide variety of organisms, siRNA can interact with DNA

methyltransferase 3A (DNMT3A) and direct transcriptional gene

silencing (TGS) in human cells [10]. Promoter-targeted siRNAs

induce the CpG island methylation of ubiquitin C gene [11],

human immunodeficiency virus type 1 long terminal repeat [12],

Ras association domain family 1A [13], and interleukin-2 [14] in

human cells. In addition, exogenous siRNAs trigger TGS in

human cells through heterochromatin formation at target

promoter, involving recruitment of chromatin-modifying enzymes

to result in dimethylation of histone H3 at lysine 9, trimethylation

of histone H3 at lysine 27, and histone deacetylation [10,11,12].

Moreover, siRNAs targeting intronic or exonic sequences close to
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an alternative exon can increase the dimethylation of histone H3

at lysine 9 and trimethylation of histone H3 at lysine 27 at the

target site, resulting in differential splicing of that exon [15]. These

studies suggest that siRNAs affect not only transcription but also

splicing process of target gene, implying a feasible approach to

develop gene-specific therapeutics.

Transcription start sites (TSS) are essential switches for

converting recognition of DNA genome into active synthesis of

RNA copies [16]. Vlodavsky et al. identified the TSS of heparanase

gene at the nucleotide position 99 bp upstream of the translation

start site (ATG) by a traditional rapid amplification of cDNA ends

(RACE) assay [17]. By using the modified RLM-RACE method to

selectively amplify the DNA fragment from capped full-length

mRNA, Jiang et al. reported the accurate TSS at 101 bp upstream

of the ATG [18]. Alternative larger heparanase transcript has also

been noted in human immune system, however, the exact location

and upstream promoter of its TSS remain largely unknown [19–

21]. In the current study, we showed that small RNAs targeting

heparanase TSS locating at 101 bp upstream of the translation

start site [18], including siRNA and short hairpin RNA (shRNA),

induced TGS of heparanase via interfering with transcription

initiation, but not through inducing heterochromatin formation or

epigenetic changes, and attenuated the proliferation, invasion,

metastasis and angiogenesis of different kinds of cancer cells in vitro

and in vivo.

Results

siRNA-induced TGS of heparanase
To examine whether siRNA could induce TGS of heparanase,

we designed and synthesized three siRNAs targeting TSS (locating

at 101 bp upstream of the ATG) or more upstream regions of

heparanase promoter, 2174/2155 (siH1), 2134/2115 (siH2),

and 29/+10 bp (siH3) (Fig. 1A and Fig. S1). The siRNA targeting

the encoding region +1496/+1515 bp (siH4) was applied as a

control (Fig. 1A). Cell lines of most common human cancers,

including prostate cancer (PC-3), bladder cancer (EJ) and gastric

cancer (SGC-7901), were chosen as models for this study.

Transfection of siH3 and siH4, but not of siH1, siH2 or negative

control siRNA (siNC), attenuated the heparanase expression in

PC-3, EJ and SGC-7901 cells (Fig. 1B). In addition, transfection of

siH3, but not of siNC or scrambled siRNA (siSCb), abolished the

transcriptional and translational levels of heparanase in a dose-

dependent manner (Fig. 1C). The siH3-induced silencing of

heparanase lasted up to 5 days, and partially recovered at day 7

(Fig. 1D). Transfection of siM31 and siM32, two mismatched

siRNAs of siH3, did not abolish the heparanase expression

(Fig. 1E), demonstrating that the interference was executed by

siH3 in a sequence-dependent manner. The failure of siM32 to

inhibit transcription also indicated that partial complementarity to

the 59-terminus of mRNA was not sufficient for heparanase

silencing (Fig. 1E). DNA duplexes analogous to siH3 did not

inhibit expression, indicating that recognition must be mediated by

RNA (Fig. 1E). Promoter reporter-luciferase assay showed that

transfection of siH3, but not siScb, siM31 or siM32, suppressed the

heparanase promoter activity and transcription (Fig. 1F), suggest-

ing that the reduced heparanase expression was due to

transcriptional inhibition by siH3. Moreover, the expression of

non-downstream genes of heparanase, proliferating cell nuclear

antigen (PCNA) and cyclin D1, was not affected by transfection of

siH3 (Fig. S2). These results indicated that siH3 selectively

targeted the TSS and induced TGS of heparanase in a

sequence-specific manner in human cancer cells.

siRNA-induced inhibition of transcription initiation of
heparanase

Since TGS is associated with epigenetic changes of promoter,

such as DNA methylation, histone methylation, and histone

deacetylation [10,11,12], we first analyzed the epigenetic status of

upstream regions of heparanase promoter. The CpG islands were

unmethylated in untransfected PC-3, EJ and SGC-7901 cells

(mock) and in those transfected with siNC (data not shown).

Transfection of siH1, siH2 or siH3, did not induce the methylation

of CpG islands of heparanase promoter in cancer cells (Fig. 2A

and Fig. 2B). The expression and DNA binding of histone H3

lysine 9 dimethylation (H3K9me2) and histone H3 lysine 27

trimethylation (H3K27me3) on the heparanase promoter, two

repressive epigenetic marks involved in TGS [10], did not change

upon transfection of siH2, siH3, siH4 or siScb (Fig. S3 and

Fig. 2C). Moreover, the binding of acetylated histone H3 (AcH3),

a marker of transcriptionally active chromatin [22], was unaffected

by transfection with these siRNAs (Fig. 2C). Meanwhile, there

were no PCR products for ‘‘no-antibody’’ control in chromatin

immunoprecipitation (ChIP) assay (Fig. 2C). The binding of

H3K9me2 and H3K27me3 was enriched on the promoter of

transcriptionally silenced genes p16 and retinoic acid receptor beta

2 (RARb2) [23], when compared to that on heparanase promoter

in PC-3 cells (Fig. 2D), and the binding of AcH3 on the

heparanase promoter significantly increased after the pan histone

deacetylases (HDAC) inhibitor trichostatin A (TSA) treatment

(Fig. 2E), confirming the adequacy of ChIP assay conditions. In

addition, treatment of cancer cells with the DNMT inhibitor 5-

aza-29-deoxycytidine (5-Aza-CdR) or TSA did not affect hepar-

anase silencing, indicating that DNMTs and HDACs were

unlikely to be involved in this process (Fig. 2F). Furthermore,

ChIP assay revealed no changes in the binding of transcription

factors early growth response 1 (EGR1) and Sp1 on the

heparanase promoter region surrounding the siH3-targeted site,

ruling out their potential roles in the siH3-induced TGS of

heparanase (Fig. 2G). However, the decreased binding of RNA

polymerase II (RNA Pol II) on heparanase promoter was noted in

siH3-transfected cells, but not in siH2-, siH4- or siScb-transfected

cells (Fig. 2H). Moreover, the binding of transcription factor II B

(TFIIB) that directs RNA Pol II to the core promoter, was also

decreased in siH3-transfected cells (Fig. 2H). ChIP data on RNA

Pol II or TFIIB binding were confirmed by real-time quantitative

PCR (qPCR) with primers spanning the TSS (Fig. 2H). Decreased

RNA Pol II or TFIIB binding was seen up to 7 days after

transfection (Fig. 2I). In addition, the relative inclusion-to-

exclusion ratio of the first exon of heparanase, which was an

alternative exon near the siH3-targeted site, did not change after

transfection of siH2, siH3, siH4 or siScb in cancer cells (Fig. 2J),

suggesting that the regulation of alternative splicing was not

involved in siH3-mediated TGS. These results demonstrated that

transcription initiation of heparanase was interfered by the siH3

targeting TSS.

Involvement of Ago1 and Ago2 in siH3-induced
transcriptional inhibition of heparanase

Since previous studies indicated the involvement of RNA

interference (RNAi) machinery in TGS, we further explored the

influence of Argonaute 1 (Ago1) and Argonaute 2 (Ago2), two

integral components of the RNAi pathway [24,25], on siH3-

induced TGS of heparanase. As shown in Fig. 3A and Fig. 3B,

knocking down of Ago1 or Ago2 suppressed the siH3-induced

TGS of heparanase. Moreover, transfection of siH3, but not of

siScb, increased the association of Ago1 and Ago2 on the

Small RNAs Interfere in Heparanase Transcription

PLoS ONE | www.plosone.org 2 February 2012 | Volume 7 | Issue 2 | e31379



Small RNAs Interfere in Heparanase Transcription

PLoS ONE | www.plosone.org 3 February 2012 | Volume 7 | Issue 2 | e31379



heparanase promoter, which was respectively abolished by

knocking down of Ago1 and Ago2 (Fig. 3C and Fig. 3D). In

addition, Ago1 or Ago2 silencing increased the binding of RNA

Pol II and TFIIB on heparanase promoter, whereas transfection of

siNC did not have any effect (Fig. 3E). Nuclear run-on assay

further demonstrated that the upstream transcribed mRNA

(containing Exon 1) presented at a low level compared to total

heparanase mRNA, and transfection of siH3 attenuated the

nascent transcription of total heparanase mRNA, but not the

mRNA initiated from upstream alternative TSS, which was also

restored by knocking down of Ago1 or Ago2, indicating that the

reduced heparanase expression was due to inhibition on the

transcription initiated from the downstream TSS (Fig. 3F). These

results indicated that Ago1 and Ago2 were necessary for siH3-

induced transcriptional inhibition of heparanase in human cancer

cells.

RNAi machinery interacted indirectly with transcription
preinitiation complex in siH3-induced TGS of heparanase

Since recent evidence shows an intricate interaction between the

RNAi machinery and RNA Pol II in heterochromatic silencing in

Drosophila [26], we hypothesize that Ago1 or Ago2 may directly

interact with RNA Pol II or TFIIB to participate in siH3-induced

TGS of heparanase. Consistent with previous studies [27,28], co-

immunoprecipitation analysis indicated that RNA Pol II interact-

ed with TFIIB in cultured cells. Transfection of siH3 did not

attenuate the interaction between RNA Pol II and TFIIB (Fig. 4A).

However, anti-RNA Pol II or anti-TFIIB antibodies did not co-

immunoprecipite Ago1 or Ago2 from siH3-transfected cells

(Fig. 4A), which was further evidenced by co-immunoprecipitation

analysis with pull-down by anti-Ago1 or anti-Ago2 antibodies

(Fig. 4B). Combining with above evidence that Ago1 and Ago2

influenced the binding of RNA Pol II and TFIIB on heparanase

promoter, these results indicated that RNAi machinery and

transcription preinitiation complex were associated, but not

directly interactive, in siH3-induced TGS of heparanase in human

cancer cells.

Heparanase TSS-targeted shRNA attenuated the
proliferation, adhesion, invasion and angiogenesis of
cancer cells in vitro

Because recent studies indicate the feasibility of shRNA-

mediated TGS in mammalian cells [29,30], in order to further

investigate the effects of heparanase TSS-targeted siRNA on

cancer cells, the shRNA constructs were established and

transfected into PC-3, EJ and SGC-7901 cells (Fig. S4A). Stable

transfection of shP3 (29/+10 bp) and shCd (+1496/+1515 bp),

but not of shP2 (2134/2115 bp) or scrambled shRNA (shScb),

resulted in attenuated mRNA and protein levels of heparanase

(Fig. S4B, and Fig. S4C), and decreased in vitro proliferation of

cancer cells (Fig. 5A, Fig. 5B and Fig. 5C). Transwell analysis

showed that the cells transfected with shP3 or shCd, but not with

shP2 or shScb, presented an impaired invasion capacity (Fig. 5D

and Fig. 5E). In addition, cancer cells transfected with shP3 or

shCd, but not with shP2 or shScb, exhibited markedly reduced

abilities in adhesion to the precoated matrigel (Fig. 5F). The tube

formation of endothelial cells was suppressed by treatment with

the medium preconditioned by stable transfection of cancer cells

with shP3 or shCd, but not with shScb (Fig. 5G and Fig. 5H).

Moreover, the release of basic fibroblast growth factor (bFGF)

from cancer cells was attenuated after stable transfection of shP3

or shCd, but not of shScb (Fig. 5I). These results indicated that

stable transfection of heparanase TSS-targeted shRNA remark-

ably decreased the proliferation, adhesion, invasion and angio-

genesis of cancer cells in vitro.

Heparanase TSS-targeted shRNA inhibited the growth,
metastasis and angiogenesis of cancer cells in vivo

We next investigated the efficacy of shP3 against tumor growth,

metastasis and angiogenesis in vivo. Stable transfection of shP3 or

shCd into PC-3 cells, resulted in decreased growth and weight of

subcutaneous xenograft tumors in athymic nude mice (Fig. 6A). In

addition, stable transfection of shP3 or shCd resulted in decrease

in CD31-positive microvessels and mean vessel density within

tumors (Fig. 6B). Moreover, the expression of heparanase

downstream genes within tumors, vascular endothelial growth

factor (VEGF) and matrix metallopeptidase 9 (MMP-9), was also

reduced by stable transfection of shP3 or shCd (Fig. 6C and

Fig. 6D).

In the peritoneal metastasis studies, nude mice that received

injection of PC-3 cells stably transfected with shCd or shP3

showed comparatively fewer nodules (2269 and 1767, respec-

tively) than empty vector (mock) group (106631) (Fig. 6E). In the

experimental metastasis studies, PC-3 cells stably transfected with

shP3 or shCd established statistically fewer lung metastatic

colonies than mock group (Fig. 6F). Combined with the similar

findings in EJ and SGC-7901 cells (data not shown), these results

suggested that heparanase TSS-targeted shRNA could inhibit the

growth, metastasis and angiogenesis of cancer cells in vivo.

Discussion

The TGS pathway was initially reported in tobacco plants, as

the state of methylation and expression of genes were demon-

strated to be affected by RNAs [31]. Recently, RNAs have been

reported to mediate TGS in mammalian cells via DNA CpG

methylation and heterochromatin formation [10,11,12,32]. The

silent-state epigenetic modifications cause the loss of transcription

factors recruitment [12,33]. Meanwhile, siRNAs targeting internal

gene regions of human fibronectin 1 can inhibit internal

elongation and subsequently affect splice site selection [15]. The

human heparanase promoter is consisted of a minimal basic region

that spans 300–700 bp proximally to the TSS locating at 101 bp

Figure 1. TSS-targeted siRNA abolishes the heparanase expression in cancer cells. A, scheme of siRNAs targeting TSS (locating at 101 bp
upstream of the translation start site), upstream promoter and encoding regions of heparanase, including siH1 (2174/2155 bp), siH2 (2134/
2115 bp), siH3 (29/+10 bp) and siH4 (+1496/+1515 bp). Automated nucleotide basic local alignment search tool (BLAST) searches demonstrated
that there was no sequence similar to siH1, siH2, or siH3 in the transcribed sequence of heparanase. B, 72 hrs post-transfection of siRNAs into PC-3, EJ
and SGC-7901 cells, 100 nmol/L siH3 or siH4, but not of siH1, siH2 or siNC, attenuated the heparanase expression in cancer cells. C, 72 hrs post-
transfection of siH3, but not of siNC or siScb, resulted in abolished heparanase expression of cancer cells in a dose-dependent manner. D, siH3
(100 nmol/L)-induced gene silencing of heparanase in cancer cells lasted up to 5 days, and partially restored at day 7. E, 72 hrs post-transfection of
100 nmol/L DNA duplexes analogous to siH3, siM31 or siM32 (two mismatched siRNAs of siH3), did not abolish the heparanase expression in cancer
cells. F, dual-luciferase reporter assay indicated that 72 hrs post-transfection of siH3, but not of siScb, siM31 or siM32, suppressed the heparanase
promoter activity and transcription in cancer cells. The symbols (# and D) indicate a significant decrease from untransfected control (mock) and a
significant increase from pGL3/Basic, respectively.
doi:10.1371/journal.pone.0031379.g001
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upstream of ATG, which is characterized by high GC contents,

observed/expected CpG ratio, and the binding sites for several

groups of transcription factors [18]. Transcription factor EGR1 is

related to the inducible transcription of heparanase gene in T cells

[34], whereas the ubiquitous transcription factor Sp1 is associated

with its basal transcription [18]. In this study, we designed three

siRNAs targeting the heparanase promoter region containing

CpG loci and Sp1 binding site, while the siH3-targeted region

(29/+10 bp surrounding heparanase TSS locating at 101 bp

upstream of ATG) was also adjacent to the binding site of EGR1.

However, our evidence showed that transfection of these siRNAs

induced neither methylation of CpG nor heterochromatin

formation on heparanase promoter. ChIP analysis further ruled

out the changes in the binding of Sp1 and EGR1 on heparanase

promoter, and splice variant analysis ruled out the differential

splicing of the closest exon.

In fact, siRNAs targeting promoter regions fail to induce TGS

in certain instance [35]. Recent studies show that antigene RNAs

(agRNAs) targeting the TSS can block gene transcription of

human progesterone receptor (PR) [36,37], androgen receptor

(AR) [37], and huntingtin [37], suggesting that TSS in

chromosomal DNA provides predictable targets for inhibiting

gene expression with RNAs. In the current study, we demonstrat-

ed that siRNA and shRNA targeting the TSS induced TGS of

heparanase in human cancer cells, while the small RNAs targeting

the upstream promoter region containing CpG loci did not

suppress the expression of heparanase, suggesting that the loci they

targeted might not be susceptible to TGS. Moreover, we also

noted the similar efficiencies of siH3 and encoding region-targeted

siH4 in attenuating the expression and function of heparanase.

These results indicate the valuable role of TSS-targeted small

RNAs in the regulation of gene expression by TGS, especially

when the RNAs targeting upstream promoter region fail to

produce a marked effect.

A mechanism rather than genetic and epigenetic regulation

underlines the TGS of heparanase induced by TSS-targeted

siRNA in human cancer cells. Similarly, no methylation is

observed surrounding the TSS of AR and PR [34], and

agRNAs-mediated TGS occurs regardless of whether the promot-

er contains a TATA box [36,37]. Previous studies indicate that

TFIIB binds the core promoter DNA and directs RNA Pol II to

the TSS, promoting assembly of the functional transcription

preinitiation complex (PIC) [38]. In this study, we showed that

siRNAs targeting the TSS locating at 101 bp upstream of ATG

interfered with transcription initiation of heparanase, and the

concomitant loss of TFIIB and RNA Pol II suggested that the

siRNAs reduced the assembly of PIC formation at this TSS. It has

been indicated that when mammalian RNA polymerase binds to

DNA at TSS, it forms an open complex in which bases 29 to +2

are accessible to chemical agents that modify single-stranded

DNA, suggesting that TSS may be accessible to hybridization

[36,37]. Recent studies have indicated the presence of noncoding

promoter-associated RNA (pRNA) and the consequences of their

targeting by siRNAs in human cells [39,40]. Low-copy pRNAs are

recognized by the antisense strand of the siRNA and function as a

recognition motif to direct epigenetic silencing complexes to the

corresponding targeted promoters to mediate TGS in human cells

[39]. In addition, the formation of siRNA-pRNA complex with the

contribution of Ago2 is responsible for the reduced assembly of

functional PIC and blockade of transcription initiation in the c-

myc promoter [40]. Thus, whether pRNA exists to direct siH3-

induced TGS of heparanase warrants our further investigation.

Because an open complex is formed during the transcription of

every gene, it is feasible to directly design agRNAs to any gene that

has a characterized TSS [41]. Therefore, we believe that the TGS

strategy via TSS-targeted siRNA may also be applied to other

genes, which warrants our further investigation.

Ago protein complexes containing single-stranded small RNAs

are called mature RNA-induced silencing complex (RISC) [42].

Ago proteins have positively charged surfaces that are well suited

for binding siRNA and aligning it with the complementary target

sequence, suggesting that Ago proteins may play a central role in

the formation of RNA-induced initiation of TGS complex that

initiates the heterochromatin formation [37]. In this study, we

demonstrated that Ago1 and Ago2 were necessary to attenuate the

binding of RNA Pol II and TFIIB on heparanase promoter during

siH3-induced TGS of heparanase. Recent evidence indicates that

the interaction between RNA Pol II and the small RNA

machinery (Ago1, Ago2, piwi) affects heterochromatic silencing

in Drosophila [26]. In human cells, Ago1 associates with RNA Pol II

via protein-protein interactions and is required for dimethylation

of histone H3 at lysine 9 and TGS [32]. In this study, our data did

not show any direct protein-protein interaction between the RISC

(Ago1 and Ago2) and PIC (RNA Pol II and TFIIB) components

during siH3-induced TGS of heparanase, suggesting that different

association between RISC and PIC might be involved in variable

siRNA-induced TGS.

In experimental models, the cells expressing heparanase possess

a high potential for extravasation of tumor cells in vascular vessels

and are susceptible to develop a lung metastasis [43]. Apart from

its direct involvement in BM invasion by endothelial cells,

heparanase elicits an indirect angiogenic response through

releasing angiogenic growth factors, such as bFGF and VEGF

[3,4]. Thus, heparanase may facilitate tumor cell invasion and

neovascularization, both critical steps in tumor progression. In the

current study, we further demonstrated that TSS-targeted shRNA

Figure 2. siRNA induces transcription initiation arrest, but not DNA methylation or histone deacetylation, of heparanase promoter.
A and B, bisulfite sequencing and MSP revealed that transfection of siRNAs (100 nmol/L), siH1, siH2 and siH3, did not induce the methylation of CpG
islands of heparanase promoter in cancer cells. C, 72 hrs post-transfection, ChIP with distinct primer sets indicated that there were no PCR products
for ‘‘no-antibody’’ (No Ab) control, and the binding of H3K9me2, H3K27me3 and AcH3 on the heparanase promoter did not change after transfection
of siH2, siH3, siH4 or siScb in cancer cells. D, The binding of H3K9me2 and H3K27me3 was enriched on the promoter of p16 and RARb2 compared to
that on heparanase promoter in PC-3 cells, respectively. E, treatment of siH3- or siScb-transfected cancer cells with TSA (200 nmol/L), resulted in a
significant increase in the binding of AcH3 on the heparanase promoter, when compared to those treated with DMSO solvent control. F, cancer cells
were transfected with siRNAs and treated with 5-Aza-CdR (5 mmol/L) or TSA (200 nmol/L), resulting in no changes in siH3-induced heparanase
silencing. G, 72 hrs post-transfection, ChIP assay indicated that the binding of Sp1 and EGR1 on the heparanase promoter, did not change after
transfection of siH2, siH3, siH4 or siScb in cancer cells. H, ChIP assay with distinct primer sets indicated the decreased binding of RNA Pol II and TFIIB
on heparanase promoter in siH3-transfected cancer cells, but not in siH2- or siH4-transfected cells. I, ChIP assay indicated that the decreased RNA Pol
II or TFIIB binding was seen reproducibly and up to 7 days post-transfection of siH3 in cancer cells. J, qRT-PCR detection demonstrated that the
relative inclusion-to-exclusion ratio of the first exon of heparanase did not change after transfection of siH2, siH3, siH4 or siScb in cancer cells. The
symbol (#) indicates a significant decrease from untransfected control (mock) or siScb. The symbol (m) indicates a significant increase from the
binding on heparanase promoter. The symbol (D) indicates a significant increase from DMSO control.
doi:10.1371/journal.pone.0031379.g002
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significantly inhibited heparanase expression and suppressed the

invasion, metastasis and angiogenesis of cancer cells in vitro and in

vivo. Our findings suggest that induction of TGS by TSS-targeted

shRNA is a promising approach for the suppression of heparanase

gene function as well as illustrating its application in cancer

therapy.

In summary, in this study, we have shown that small RNAs

(siRNA or shRNA) targeting the TSS locating at 101 bp upstream

of the translation start site can significantly suppress transcription

initiation, but not induce epigenetic changes, to mediate TGS of

heparanase and attenuate the invasion, metastasis and angiogen-

esis of human cancer cells in vitro and in vivo. The consistent

findings in cell lines originating from different cancer types imply

the generality of this strategy in cancer therapy. Although low

levels of alternative upstream transcribed heparanase transcript

were also noted in this study, its exact TSS location, 59-flanking

region and promoter sequence still remain exclusive so far. Until

these items have been elucidated, the effects of siRNAs targeting

this TSS and promoter can be further investigated. We believe

that TSS-targeted small RNAs have the potential to be developed

into a useful approach for inhibition of metastatic growth of

human cancer.

Materials and Methods

Cell culture
Human bladder cancer cell line EJ (MGH-U1) was obtained

from the Institute of Urology, Peking University (Beijing, China).

Human prostate cancer cell line PC-3 (CRL-1435) and endothelial

cell line HUVEC (CRL-1730) were purchased from American

Type Culture Collection (Rockville, MD). Human gastric cancer

cell line SGC-7901 was obtained from the Type Culture

Collection of Chinese Academy of Sciences (Shanghai, China).

The cells were grown in RPMI1640 medium (Life Technologies,

Inc., Gaithersburg, MD) supplemented with 10% fetal bovine

serum (FBS, Life Technologies, Inc.), and applied for transcfection

or treatment with 5-Aza-CdR (Sigma, St. Louis, MO) or TSA

(Sigma) as previously described [44,45].

siRNA transfection
Three 21-nucleotide siRNAs targeting TSS (locating at 101 bp

upstream of ATG) or more upstream regions of heparanase

promoter, siH1 (2174/2155 bp), siH2 (2134/2115 bp) and

siH3 (29/+10 bp), were designed according to the TSS site, CpG

loci and transcription factor binding sites within heparanase

promoter. These siRNAs were chemically synthesized and

transfected with Genesilencer Transfection Reagent (Genlantis,

San Diego, CA) according to the suggested concentrations of

manufacturer (RiboBio Co. Ltd, Guangzhou, China). The siH4

(+1496/+1515 bp) targeting the encoding region of heparanase

served as a positive control [46]. The siNC and siSCb were

applied as controls. The untransfected cells were applied as a mock

control. For knocking down of Ago1 and Ago2, the cells were co-

transfected with the corresponding siRNAs. The nucleotide

sequences of these siRNAs were shown in Table S1.

shRNA constructs and stable transfection
Three sets of oligonucleotides encoding shRNAs complemen-

tary to TSS (locating at 101 bp upstream of ATG), upstream

promoter and encoding regions of heparanase were subcloned into

pGenesil-1 (Genesil Biotechnology, Wuhan, China). Annealed

Figure 3. Ago1 and Ago2 are involved in TGS of heparanase induced by TSS-targeted siRNA. A and B, knocking down of Ago1 or Ago2
restored the siH3-induced TGS of heparanase in cancer cells, respectively. C and D, ChIP assay indicated that 72 hrs post-transfection of siH3, but not
of siScb, the association of Ago1 and Ago2 on the heparanase promoter increased in cancer cells, which was abolished by knocking down of Ago1
and Ago2, respectively. E, ChIP assay indicated that silencing of Ago1 or Ago2 restored the binding of RNA Pol II and TFIIB on heparanase promoter in
cancer cells. F, nuclear run-on assay indicated that the upstream transcribed mRNA (containing Exon 1) presented at a low level compared to total
heparanase mRNA, and the nascent transcription of total heparanase mRNA, but not the mRNA initiated from upstream alternative TSS, decreased
after transfection of siH3 into cancer cells for 72 hrs, which was restored by knocking down of Ago1 or Ago2. The symbols (# and D) indicate a
significant decrease and a significant increase from siScb, respectively. The symbol (*) indicates a significant decrease from siNC.
doi:10.1371/journal.pone.0031379.g003

Figure 4. RNAi machinery interacts indirectly with transcription
preinitiation complex in siH3-induced TGS of heparanase. A,
co-immunoprecipitation analysis with pull-down by anti-RNA Pol II or
anti-TFIIB antibodies indicated that siH3 or siScb did not attenuate the
interaction between RNA Pol II and TFIIB in cancer cells. In addition,
Ago1 or Ago2 did not directly interact with either RNA Pol II or TFIIB in
siScb- and siH3-transfected cancer cells. B, co-immunoprecipitation
analysis with pull-down by anti-Ago1 or anti-Ago2 antibodies did not
co-immunoprecipite RNA Pol II or TFIIB from siScb- and siH3-transfected
cancer cells.
doi:10.1371/journal.pone.0031379.g004
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oligonucleotides were cloned downstream of U6 promoter as

shown in Table S1. The plasmids shP2 (2134/2115 bp), shP3

(29/+10 bp), shCd (+1496/+1515 bp) and shScb were verified by

DNA sequencing and transfected into cancer cells with Genesi-

lencer Transfection Reagent (Genlantis). Stable cancer cell lines

transfected with shRNA were screened by administration of G418

(Invitrogen, Carlsbad, CA).

Dual-luciferase reporter assay for heparanase promoter
activity

The human heparanase promoter-luciferase reporter constructs

containing a series of deletion fragments from the 59-flanking

region of heparanase promoter, pGL3/HPA-3.5, pGL3/HPA-0.7

and pGL3/HPA-0.3, were kindly provided by Dr. Xiulong Xu

(Department of General Surgery, Rush University Medical

Center, Chicago, IL) [18]. Dual-luciferase reporter assay was

performed according to the manufacturer’s instructions (Promega,

Madison, WI). The luciferase activity was measured with a

luminometer (Lumat LB9507, Berthold Tech., Bad Wildbad,

Germany).

RT-PCR and real-time quantitative RT-PCR
RT-PCR was performed as previously described [46], with

PCR primers shown in Table S2. Real-time quantitative RT-PCR

(qRT-PCR) with SYBR Green PCR Master Mix (Applied

Biosystems, Foster City, CA) was performed using ABI Prism

7700 Sequence Detector (Applied Biosystems). The fluorescent

signals were collected during extension phase, Ct values of the

samples were calculated, and the transcript levels were analyzed by

22DDCt method. For splice variant analysis [15], primers were

designed to amplify the transcripts containing the first exon of

heparanase, and the relative inclusion-to-exclusion ratio of the first

exon (Exon 1+/Exon 12) was determined by measuring relative

abundance of Exon 1 to the remaining total heparanase transcripts

that did not contain Exon 1.

Western blot
Western blot was performed as previously described [46], with

antibodies specific for heparanase (InSight Company, Rehovot,

Israel), Sp1 (Abcam, Cambridge, MA), H3K9me2, H3K27me3,

AcH3, RNA Pol II (Upstate Biotechnology, Temacula, CA), Ago1,

Ago2 (Cell Signaling Technology, Inc., Danvers, MA), EGR1,

TFIIB, and GAPDH (Santa Cruz Biotechnology, Santa Cruz,

CA).

Methylation analysis of promoter CpG islands
Genomic DNA was extracted with the DNeasy Tissue Kit

(Qiagen Inc., Valencia, CA) according to the manufacturer’s

instructions. Sodium bisulfite modification of genomic DNA was

performed as previously described [5,6]. The methylation-specific

PCR (MSP) was undertaken to analyze the methylation of

heparanase promoter with primers spanning the CpG islands

(Table S1). The PCR products amplified with a pair of universal

primers were resorted to direct bisulfite sequencing (TakaRa Bio.,

Inc., Shiga, Japan).

Chromatin immunoprecipitation
ChIP assay was performed according to the manufacture’s

instructions of the EZ-ChIP kit (Upstate Biotechnology). The PCR

primers were designed by Premier Primer 5.0 software to amplify

three adjacent regions (Table S2), 2183/+13, 2137/+52 and

26/+283, surrounding the heparanase TSS (locating at 101 bp

upstream of ATG). qPCR with SYBR Green PCR Master Mix

(Applied Biosystems) was performed using ABI Prism 7700

Sequence Detector (Applied Biosystems). The amount of immu-

noprecipitated DNA was calculated in reference to a standard

curve and normalized to input DNA.

Nuclear run-on assay
Nuclear run-on assays were performed based on the incorpo-

ration of biotin-16-uridine- 59-triphosphate (biotin-16-UTP) in

nascent transcripts as previously described [47]. Briefly, 56106

nuclei of siRNA-transfected cells were isolated and consequently

incubated in a reaction buffer containing rNTPs and biotin-16-

UTP (Roche, Indianapolis, IN, USA) at 30uC for 45 min. The

reaction was stopped by adding RNase-free DNase I (Sigma), and

the nuclei were lysed and treated with proteinase K (Sigma). Total

RNA was extracted using Trizol (Invitrogen), and biotinylated

nascent RNA was purified using agarose-conjugated streptavidin

beads (Invitrogen). Beads were then eluted, and biotinylated RNA

was isolated for RT-PCR and qRT-PCR assays.

Co-immunoprecipitation
Co-immunoprecipitation was performed as previously described

[48], with antibodies specific for RNA Pol II, TFIIB, Ago1, Ago2

or unspecific IgG (Santa Cruz Biotechnology). The bead-bound

proteins were released by boiling the protein A-Sepharose beads

(Santa Cruz Biotechnology) in 16SDS-PAGE loading buffer and

analyzed by western blot.

Cell viability, colony formation, adhesion and invasion
assay

Cell viability was monitored by 2-(4,5-dimethyltriazol-2-yl)-2,5-

diphenyl tetrazolium bromide (MTT, Sigma) colorimetric assay

[46]. Colony formation ratios and cell adhesion on 96-well plates

precoated with matrigel (BD Biosciences, Franklin Lakes, NJ) were

measured as previously described [46]. The Boyden chamber

technique (transwell analysis) with matrigel-coated filters was

performed for cell invasion assay [42].

In vitro angiogenesis assay
The endothelial tube–like formation assay of HUVEC cells was

performed as previously described [46]. The bFGF levels were

examined with an enzyme-linked immunosorbent assay kit

(Cusabio Biotech Co., Ltd, China).

Figure 5. Stable transfection of heparanase TSS-targeted shRNA attenuates the proliferation, adhesion, invasion and angiogenesis
of cancer cells in vitro. A, MTT colorimetry indicated that stable transfection of shP3 or shCd, but not of shP2 or shScb, attenuated the proliferation
of PC-3, EJ and SGC-7901 cells. B and C, colony formation assay indicated that transfection of shP3 and shCd, but not of shP2 or shScb, attenuated
the in vitro proliferation of PC-3, EJ and SGC-7901 cells. D and E, transwell analysis indicated that the PC-3, EJ and SGC-7901 cells transfected with
shP3 or shCd, but not with shP2 or shScb, possessed an impaired invasion capacity. F, in the adhesion assay, PC-3, EJ and SGC-7901 cells transfected
with shP3 or shCd, but not with shP2 or shScb, exhibited markedly reduced ability in adhesion to the precoated matrigel. G and H, endothelial cells
were treated with the medium preconditioned by stable transfection of PC-3, EJ and SGC-7901 cells with shP3 or shCd, but not with shScb, resulting
in suppressed tube formation on matrigel. I, the release of bFGF from PC-3, EJ and SGC-7901 cells was attenuated after transfection of shP3 or shCd,
but not of shScb. The symbol (#) indicates a significant decrease from empty vector-transfected cells (mock).
doi:10.1371/journal.pone.0031379.g005
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In vivo metastasis assay
All animal experiments were approved by the Animal Care

Committee of Tongji Medical College (approval number:

Y20080290). For the in vivo tumor growth studies, 2-month-old

male nude mice (n = 6 per group) were injected subcutaneously in

the lower back with 16106 cancer cells stably transfected with

shRNAs. One month later, mice were sacrificed and examined for

tumor weight, gene expression, and angiogenesis. The peritoneal

metastasis (36106 cancer cells per mouse) and experimental

metastasis (0.46106 cancer cells per mouse) studies were

performed with 2-month-old male nude mice as previously

described [49,50].

Immunohistochemistry
Immunohistochemical staining was performed as previously

described [51], with antibodies specific for CD31, MMP-9, VEGF

(Santa Cruz Biotechnology; 1:200 dilutions) or heparanase

(InSight Company; 1:100 dilution).

Statistical analysis
Unless otherwise stated, all data were shown as mean 6

standard error of the mean (SEM). Statistical significance (P,0.05)

was determined by t test or analysis of variance (ANOVA) followed

by assessment of difference using SPSS 12.0 software (SPSS Inc.,

Chicago, IL).

Supporting Information

Figure S1 Schematic location of alternative heparanase
TSS. The transcription of heparanase gene can be initiated from

two different TSS sites, resulting in two mRNA species, which

contain Exon 1 or not, respectively. The location and promoter

region of former TSS remain unknown, while the later TSS is

located at or nearly close to 101 bp upstream of the translation

start site (ATG).

(DOC)

Figure S2 Target specificity of heparanase TSS-targeted
siRNA. Cancer cells were transfected with 10–100 nmol/L of

siH3, siNC (100 nmol/L) and siScb (100 nmol/L) or left

untreated. Cells were collected at 72 hrs post-transfection. qRT-

PCR indicated that the expression of non-downstream genes of

heparanase, PCNA and cyclin D1, was not affected by transfection

of siH3, siNC or siScb.

(DOC)

Figure S3 Heparanase TSS-targeted siRNA does not
influence the expression of epigenetic and transcrip-
tionally active chromatin marks. Cancer cells were trans-

fected with 100 nmol/L of siH3 or siScb for various duration as

indicated. Western blot revealed that transfection of siH3 or siScb

did not affect the expression of H3K9me2, H3K27me3, AcH3,

RNA Pol II, TFIIB, Sp1 or EGR1 in cancer cells.

(DOC)

Figure S4 Establishment of stable cell lines transfected
with heparanase TSS-targeted shRNA. The shRNA con-

structs targeting TSS (locating at 101 bp upstream of the

translation start site), upstream promoter and encoding regions

of heparanase, shP2 (2134/2115 bp), shP3 (29/+10 bp), shCd

(+1496/+1515 bp) and shScb, were transfected into cultured

cancer cell lines PC-3, EJ and SGC-7901, respectively. A, 72 hrs

post-transfection, the transfection efficiency was monitored by the

reporter gene, enhanced green fluorescent protein (EGFP), within

the vectors. B, stable cell lines were established by administration

of G418. RT-PCR (left panel) and western blot (right panel)

demonstrated that stable transfection of shP3 or shCd resulted in

attenuated mRNA and protein levels of heparanase in cancer cells.

C, qRT-PCR further indicated that the heparanase mRNA levels

in cancer cells were attenuated by stable transfection of shP3 or

shCd. The symbol (#) indicates a significant decrease from vector

transfection (mock) group.

(DOC)

Table S1 Sequences of small interfering RNAs and
short hairpin RNAs.

(DOC)

Table S2 Primers sets used for RT-PCR, ChIP and
qPCR.

(DOC)
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