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Abstract

Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using
fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and
the endoplasmic reticulum accumulated high amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine.
Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors
for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine, accumulated to
mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its
pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this
study implies an important role of mitochondria in ether lipid metabolism and intracellular ether lipid trafficking.
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Introduction

One fifth of all glycerophospholipids in humans are ether lipids

featuring an alkyl chain at the sn-1 position and commonly an

ethanolamine or choline head-group [1]. Highly abundant in certain

tissues ether lipids are linked to pathologies and genetic disorders

although their biological function remains unclear [2]. An involve-

ment in membrane organization, fusion and trafficking or intracel-

lular signaling and protection against oxidative stress is discussed

[1,3,4]. Changed levels link to neurological dysfunction and

degeneration [1,5]. Inactivation of ether lipid biosynthesis in mice

causes male infertility, defects in eye development, cataract and optic

nerve hypoplasia [2]. Little detail of the subcellular localization of

ether lipids is known; although synthesized in peroxisomes and the

endoplasmic reticulum (ER), they also occur in the plasma membrane

(PM), post-Golgi compartments and lipid droplets, LDs [1,2,6,7].

Neutral ether lipids contribute 20% to the LD core and ether-

phosphatidylcholine, ePC, and ether-phosphatidylethanolamine, ePE

were detected in the surrounding monolayer [7].

Several synthetic ether lipids, the prototype being edelfosine (1-

O-octadecyl-2-O-methyl-glycero-3-phosphocholine), show anti-

neoplastic activity [8–10]. The metabolically stable edelfosine

induces a selective apoptotic response in cancer cells, sparing

normal cells [11,12] unless these are in a proliferate state [13].

This selectivity arises from the internalization step [14–16] as the

drug is only readily incorporating into cellular membranes of

malignant cells [17,18]. Edelfosine-induced apoptosis involves

mitochondria [19,20] and caspase-3 activation [20], but the

underlying mechanism is complex as many cellular processes e.g.

PC biosynthesis [21–23], signaling [24] and intracellular transport

[25,26] are affected.

Polyene lipids are fluorescent lipid analogues of high structural

similarity to natural lipids [27]. Microscopy of polyene lipids holds

the invaluable advantage of studying lipids in living cells avoiding

compromises inherent to subcellular fractionation and purification

approaches. Here, we employ polyene-ether lipids to visualize

their subcellular distribution. Polyfosine, a fluorescent analogue of

edelfosine, is used to elucidate the cellular localization of the

bioactive compound and gain insights into its action.

Materials and Methods

Materials
Mitotracker Red CMXRos and Lysotracker Red DND-99 were

from Invitrogen (Carlsbad, CA, USA). LD540 has been described

[28]. Antibodies against Hsp60, Calnexin or cytochrome C were

from Stressgen (Farmingdale, NY, USA), against active caspase-3

or COX IV from Cell Signaling (Danvers, MA, USA), against

actin or tubulin from Sigma (Taufkirchen, GER), against Smac

from MBL (Woburn, MA, USA).

Edelfosine was from Sigma, other ether lipids (Fig. 1) were

synthesized as described in Text S1.

Methods
COS7 (from ATCCH, Number: CRL-1651) cell culture and

delivery, extraction, TLC and detection of lipids were performed

as described [27].
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Quantification of signals on TLC plates and Western blotting films

was performed using ImageGaugeV3.3 (Fuji, Duesseldorf, GER).

Mass spectrometry (MS)
Cells were washed sequentially with PBS, 155 mM ammoniu-

macetate pH6.9 and HES (2 mM Hepes, 1 mM EDTA, 250 mM

sucrose, pH 7.0) and scraped. Lipids were extracted as described

[29]. Lipids were dissolved in chloroform/methanol/2-propanol

(1:2:4) containing 7.5 mM ammoniumacetate and analyzed by

multiple precursor ion scanning on a QSTAR-Pulsar-i quadrupole

time-of-flight mass spectrometer (AB SCIEX, Concord, ON,

CAN) equipped with a robotic nanoflow ion source Triversa

NanoMate (Advion Biosciences Inc., Ithaca, NJ USA) [30,31].

Plasmanyl-PC species were detected by precursor ion scanning

(PIS) m/z 456.3 analysis [32]. Plasmanyl-PE and plasmenyl-PE

species were detected by PIS m/z 428.2 and PIS m/z 426.2

analyses, respectively [33]. Detected lipid precursors were

identified using Lipid View software (AB SCIEX) [31]. Alterna-

tively, endogenous PC, ePC, PE and ePC species were profiled by

high-resolution positive ion mode fourier transform MS analysis

on a LTQ Orbitrap XL mass spectrometer (Thermo Fisher

Scientific) equipped with a Triversa NanoMate.

Cell fractionation
Cells were washed and collected as above, followed by

homogenization in a cooled EMBL cell cracker (HGM, Heidel-

berg, GER) with 8 strokes using a maximum clearance of 18 mm.

To purify the mitochondria by differential centrifugation the

supernatant (PNS, post nuclear supernatant) after a first

centrifugation step (100–1,0006g; 2–5 min, respectively) was

separated from the pellet (PNP, post nuclear pellet) and

centrifuged again (10,0006g; 10 min) to obtain a crude mito-

chondria pellet (PMP, post mitochondrial pellet) and a supernatant

(PMS, post mitochondrial supernatant). The PMP was redissolved

in HES and layered on top of a step gradient (40%, 26% and 12%

Percoll in HES). The gradient was centrifuged (25 min,

150,0006g) before harvesting 8 fractions from the top. Samples

were subjected to SDS-PAGE and Western blotting.

Microscopy
Two-photon-excited fluorescence microscopy of living cells was

performed as described [27]. Epifluorescence microscopy of living

and fixed cells was performed using a Zeiss Observer.Z1

microscope (Carl Zeiss, Oberkochen, GER) equipped with a C-

Apochromat 636 (1.20 NA) and a Photometrics Evolve camera,

or a Plan-Apochromat 636 (1.40 NA) DIC and a Photometrics

Coolsnap K4 camera, respectively. Live cells imaging was

performed at 37 degree C in a 5% carbondioxid atmosphere.

Light source was a Polychrome V 150 W xenon lamp (TillPho-

tonics, Gräfelfing, GER). Confocal immuno-fluorescence laser

scanning microscopy of fixed cells was performed using a Leica

TCS SP2 microscope (Leica, Wetzlar, GER) equipped with a

HCX PL APO CS 406 (1.25 NA). Relief contrast bright field

microscopy of living cells was performed using an Olympus

CKX31 microscope (Olympus, Hamburg, GER) equipped with a

LCACHN 20xRC (0.4 NA) and a halogen light source. Images

were acquired with Canon Powershot digital camera (Canon,

Amsterdam, NED). Phase-contrast video microscopy of living cells

was performed using an Olympus IX70 microscope (Olympus)

equipped with a U-Plan S Apo 1006 (1.40 NA) and a primary

halogen lamp light source. A secondary light source, a Polychrome

II 75 W xenon lamp (TillPhotonics) with its soft shutter

wavelength set to 280 nm, and an FT395-LP415 (Carl Zeiss)

was used to illuminate the cells continuously with broadband UV

light. Digital images were acquired with a NTE/CCD-512-EBFT

camera (Roper Scientific, Ottobrunn, GER). All images were

processed employing Adobe Photoshop 6.0 (Adobe).

Results

Polyene-ether lipids derived from alkyl glycerol
precursors

We fed polyene-alkyl glycerols to cells and analyzed the

fluorescent metabolic products by TLC. From 50 mM concentra-

tions of c16:5-alkyl-glycerol or c20:5-alkyl-glycerol, the cells

produced primarily neutral ether lipids (ether-diglycerides, eDG;

ether-triglycerides, eTG) and ether glycerophospholipids (ePE,

Figure 1. Ether lipids used in this study. Simplified names are black boxed. All lyso-lipids are sn-2-lyso-lipids.
doi:10.1371/journal.pone.0031342.g001
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ePC and ether-phosphatidic acid, ePA) during the experiment

(Fig. 2A and B). Differences in alkyl chain lengths did not influence

the labeling pattern, also when 3 mM concentrations were used

(data not shown). Considerable amounts of precursor, whose

concentration decreased only slowly during a chase, were

detectable. Studying the distribution of polyene-ether lipids in

living cells by two-photon-microscopy (Fig. 2C) revealed a staining

of the nuclear envelope, ER, LDs and mitochondria. To

unequivocally identify the latter we performed epifluorescence

microscopy colocalization studies (Fig. 2D). LDs and mitochondria

were confirmed to contain polyene-ether lipids. Peroxisomes did

not accumulate ether lipids as shown before [27].

Polyene-ether lipids derived from lyso-ether lipid
precursors

A shortcoming of using alkyl glycerols for ether lipid tagging is

the limited specificity. Labeling selectivity was greatly increased

when cells were incubated with polyene lyso-ether lipids.

Application of polyene-lyso-ePE yielded fluorescent ePE upon

cellular acylation (Fig. 3A). At later timepoints (60–120 min)

minimal labeling of ePC could be detected as also natural ePC is

synthesized from ePE [1]. During a 2 h chase the precursor

concentration was reduced by 70%. When cells were incubated

with polyene-lyso-ePC, cellular acylation yielded ePC with high

specificity and rate (Fig. 3B). During the 2 h chase the precursor

was converted to only ePC. Uptake and specificity of various

polyene precursors were quantified (Fig. 4). The alkyl glycerol was

taken up 5-fold more efficiently (Fig. 4A), but after 60 min

incubation the lyso-ether lipids showed a 8-fold or 5-fold higher

labeling specificity for the desired lipid class (Fig. 4B and C), which

increased further during a chase.

To identify the fatty acids used for cellular acylation of polyene

lyso-ether lipids MS analyses were performed (Table 1). Arachi-

donic acid (20:4) was the predominant acylation partner for both

polyene-lyso-ePE and -ePC. Other endogenous unsaturated fatty

acids, oleate (18:1), linoleate (18:2), and palmitoleate (16:1) were

also detected. These findings are expected, since ePE and ePC

species are rich in polyunsaturated fatty acids in untreated COS7

cells (Fig. S1) and other cells [1]. The 6-fold higher abundance of

palmitate (16:0) and the presence of myristate (14:0) in ePC, but

not in ePE (Table 1) might point to a different specificity of the

acyltransferases with a higher acceptance of saturated acyl chains

in ePC compared to ePE. The concentration of vinylated polyene

plasmenyl-PE was 24-fold lower than that of polyene plasmanyl-

PE. Due to peak overlay plasmenyl-PC could not be analyzed. MS

analysis did not indicate any significant conversion of polyene ePE

or ePC into ether-phosphatidylserine, ePS, or ePA. Taken

together, polyene-lyso-ether lipids are acylated by cellular enzymes

without apparent disturbances by the tag.

Ether lipids in mitochondria and ER
The specific labeling of ePE or ePC obtained using the

respective polyene-lyso-ether lipid allowed for the localization of

fluorescent ePE and ePC on the subcellular level in living cells for

the first time. Two-photon-excitation microscopy revealed that

ePE and ePC prominently stained the mitochondria, nuclear

envelope and ER (Fig. 5). LD staining was not detected, as only

minor amounts of fluorescent neutral ether lipids were biosynthe-

sized during the experiment (Fig. 3).

When cells were incubated with polyfosine, a fluorescent

analogue of the metabolically stable, synthetic ether lipid

edelfosine, no significant metabolites could be detected within

Figure 3. Metabolism of polyene-lyso-etherlipids in COS7 cells. Cells were incubated with 50 mM of c16:5-lyso-ePE (A) or c16:5-lyso-ePC (B)
for different pulse times. Fresh medium was applied for chase times. Lipid were extracted and analyzed by TLC for fluorescent metabolites, which
were identified by comigrating lipid standards.
doi:10.1371/journal.pone.0031342.g003

Figure 2. Metabolism and intracellular distribution of polyene-alkyl-glycerols in COS7 cells. Cells were incubated with 50 mM of c16:5-
alkyl-glycerol (A, C, D) or c20:5-alkyl-glycerol (B) for different pulse times (A & B), 2 h (C) or 0.5 h (D). Cellular lipids were extracted and analyzed by TLC
for fluorescent metabolites, which were identified by comigrating lipid standards (A & B). Living cells were imaged using two-photon-excitation
microscopy (C) or epifluorescence microscopy (D). Merged color images show ether lipids in green and LDs, mitochondria, or lysosomes stained by
LD540, Mitotracker, or Lysotracker, respectively, in red (D). Bars, 20 mm. ori, origin of application.
doi:10.1371/journal.pone.0031342.g002
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Table 1. MS analysis of ether glycerophospholipids from COS7 cells incubated with 50 mM polyene-lyso-ePE or -ePC for 2 or 1 h,
respectively.

label m/z lipid species rel. int. [%] m/z lipid species rel. int. [%]

lyso- 638.4 ePE(O-16:5/14:0) 2 636.4 ePE(P-16:5/14:0) 2

ether- 664.4 ePE(O-16:5/16:1) 23 662.4 ePE(P-16:5/16:1) 17

PE 666.5 ePE(O-16:5/16:0) 8 664.4 ePE(P-16:5/16:0) 10

690.5 ePE(O-16:5/18:2) 21 688.4 ePE(P-16:5/18:2) 25

692.5 ePE(O-16:5/18:1) 45 690.5 ePE(P-16:5/18:1) 45

694.5 ePE(O-16:5/18:0) 2 692.5 ePE(P-16:5/18:0) 8

714.5 ePE(O-16:5/20:4) 100 712.4 ePE(P-16:5/20:4) 100

716.5 ePE(O-16:5/20:3) 8 714.5 ePE(P-16:5/20:3) 13

lyso- 740.5 ePC(O-16:5/14:0) 22

ether- 766.5 ePC(O-16:5/16:1) 36

PC 768.5 ePC(O-16:5/16:0) 55

792.5 ePC(O-16:5/18:2) 40

794.5 ePC(O-16:5/18:1) 21

796.5 ePC(O-16:5/18:0) 3

814.5 ePC(O-16:5/20:5) 14

816.5 ePC(O-16:5/20:4) 100

818.5 ePC(O-16:5/20:3) 15

‘‘O’’ indicates plasmanyl, ‘‘P’’ plasmenyl lipids.
doi:10.1371/journal.pone.0031342.t001

Figure 4. Uptake and labeling specificity of various polyene-ether lipid precursors. The total amount of fluorescent lipids in COS7 was
determined by fluorescence spectroscopy and plotted over incubation time (A). Fluorescent ePC (B) or ePE (C), derived from c16:5-alkyl-1-glycerol (B
& C, closed circles) or c16:5-lyso-ePC (B, open circles) or c16:5-lyso-ePE (C, open circles), respectively, was quantified from TLC plates (Figs. 2 & 3).
Results from a single experiment are displayed as background-corrected percent values of total fluorescence in the TLC lane.
doi:10.1371/journal.pone.0031342.g004
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20 h (Fig. 6). Fluorescence microscopy analysis revealed a

pronounced polyfosine staining of mitochondria with a noticeable

marking of nuclear envelope, ER and PM (Fig. 7). Long

incubation with polyfosine resulted in shortened or swollen

mitochondria (Fig. 7B and C). Colocalization studies confirmed

the accumulation to mitochondria (Fig. 7D), while lysosomes

contained hardly any detectable polyfosine (Fig. 7E).

The impact of polyfosine and edelfosine on mitochondria
To compare the potentials of edelfosine and polyfosine to

induce cellular apoptosis the activation of caspase-3 in immortal

COS7 cells was monitored by microscopy and Western Blotting

(Fig. 8). The number of caspase-3 positive cells and its

concentration increased over time, faster for edelfosine compared

to polyfosine treatment. Long incubation times resulted in

decreased cell viability and number, due to apoptosis-induced

detachment (Fig. 8A and Fig. S2).

To compare the inhibition of PC biosynthesis by edelfosine and

polyfosine the incorporation of a radio-labeled fatty acid into PC

was assayed (Fig. 9A). After an initial decrease in the incorporation

rate, edelfosine treated cells stopped the synthesis and remodeling

of PC. Longer polyfosine treatment also reduced the amount of

labeled PC, although less efficiently. To corroborate these findings

we analyzed the major cellular lipid classes by MS (Fig. 9B). The

PC and PE contents were quantified relative to the sum of major

lipids. After 1 h treatment, edelfosine decreased the total PC

content by about 38%, polyfosine by 18% compared to control

cells (Fig. 9B).

Figure 5. Imaging of polyene-ether phospholipids in COS7 cells. Cells were incubated with 50 mM lyso-ePE (A & B) or lyso-ePC (C & D) for 1 h
(A & C) or 1 h+2 h chase (B & D). Fresh medium was applied for chase times. Cellular metabolism generated mostly ePE (A & B) or ePC (C & D) (see
Fig. 3 A & B, respectively). Living cells were imaged using two-photon-excitation microscopy. Note, that the reticular ER staining appears less defined
after the chase (B & D). Bars, 20 mm.
doi:10.1371/journal.pone.0031342.g005

Figure 6. Metabolism of polyfosine in COS7 cells. Cells were
incubated with 50 mM of polyfosine for different times. Lipids were
extracted and analyzed by TLC for fluorescent metabolites, which were
identified by comigrating lipid standards.
doi:10.1371/journal.pone.0031342.g006
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The morphological changes of mitochondria upon polyfosine

accumulation were studied by fluorescence microscopy employing

a dye sensitive to mitochondrial activity and vitality (Fig. S3A). In

control cells mitochondria were often elongated and stained with

similar intensities. Many polyfosine and all edelfosine treated cells

had short and fragmented mitochondria (Fig. S3B). While many

apoptotic cells upon polyfosine treatment did not accumulate the

dye, edelfosine treated cells with condensing nuclei or arrested in

mitosis often showed intensively stained mitochondria with an

increased cellular background stain (Fig. S3A). Mitochondrial

fragmentation leads to changes in organelle size, shape and

density, which prevented their isolation by density gradient

centrifugation to a satisfying purity from contaminating ER (Fig.

S4).

Mitochondrial fragmentation was analyzed by phase-contrast

video microscopy (Fig. 10 and Movie S1). After 10 min some

polyfosine and edelfosine treated cells started mitochondrial

fragmentation, while others followed after 15–25 min. Shortly after

fragmentation the mitochondria of polyfosine, but not edelfosine

treated cells condensed and disintegrated, followed by nuclear

condensation. Control cells incubated with carrier or polyene-lyso-

ePC, the latter sharing the fluorophore and the cellular localization

with polyfosine (Fig. 5C and D) showed no morphological changes.

Blebbed mitochondria upon polyfosine treatment were also

Figure 7. Imaging of polyfosine in COS7 cells. Cells incubated with 50 mM of polyfosine for 1 h (A, D & E), 2.5 h (B), or 5 h (C) were imaged by
two-photon-excited lipid fluorescence (A–C) or epifluorescence (D & E) microscopy. Merged color images show polyfosine in green (D & E) and
mitochondria (D) or lysosomes (E) stained by Mitotracker or Lysotracker, respectively, in red. Polyfosine stained convoluted PM ruffles (D, arrow
heads). Bars, 20 mm.
doi:10.1371/journal.pone.0031342.g007
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observed in experiments evaluating an end-point (Fig. S5) but

disintegration was significantly accelerated during video microscopy

likely caused by the continuous UV illumination of the imaged cells.

Apparently, the phototoxicity potentiated the membrane-disrupting

effects of fluorescent polyfosine, but not edelfosine, known for its

radiosensitizing properties [34].

Figure 8. Induction of apoptosis in COS7 cells by polyfosine or edelfosine. (A) Cells incubated with 10 mM of polyfosine or edelfosine for
indicated times were fixed and probed for activated caspase-3, a landmark of apoptosis. After 18 h many apoptotic cells had detached from support.
Confocal laser immuno-fluorescent microscopy images are shown as inverted grayscale. Bars, 50 mm. (B & C) Lysates of cells incubated with 10 mM of
polyfosine or edelfosine for indicated times were assayed by Western blotting for activated caspase-3 and for a-tubulin, which served as a load
control. (C) Signal intensities from four Western blots were quantified. Shown is the amount of activated caspase-3 corrected for background and
normalized to the a-tubulin signal. The amount of active caspase-3 in edelfosine treated cells was set to 100.
doi:10.1371/journal.pone.0031342.g008
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Discussion

Information on the subcellular localization of most ether lipids is

limited. Using polyene lyso-ether lipids, which upon cellular

acylation yielded fluorescent ePC or ePE, allowed for their

unprecedented individual microscopic analysis. Both ether phos-

pholipids strongly accumulated to mitochondria, besides the ER.

The fact that fluorescent ePC or ePE was not detectable on LD

monolayers [7] or the PM [4] likely reflects limitations in optical

resolution and detection sensitivity. Polyene-sphingolipids were

not accumulating on mitochondria arguing against an erratic

targeting of the fluorophore to mitochondria [27]. Comparing the

labeling patterns of polyene lyso-ether lipids and alkylglycerols we

established lyso-ether lipids as supreme precursors for phos-

phoether lipid tagging as they represent a good compromise

between labeling specificity, similarity to natural lipids and

applicability to cells. Cell derived polyene-ePC and -ePE, like

natural ether glycerophospholipids [1], often contained unsatu-

rated fatty acids most prominently arachidonic acid. Placed to

mitochondria ether lipids might serve as a sink for harmful

oxidants resulting from oxidative phosphorylation. However, only

a small amount of polyene-ePE was detected as vinylated

plasmenyl-ePE with antioxidative properties [2]. Alternatively,

mitochondria undergo extensive fusion and fission cycles [35] as

do synaptic vesicles, which show high plasmalogen concentrations

[36]; ether phospholipids might facilitate membrane reorganiza-

tion in both cases.

After lyso-ether lipid feeding mitochondria became the first

labeled organelles justifying speculations of the underlying

targeting mechanism. The structure of lyso-ether lipids supports

a non-facilitated transport between membranes. For instance, the

related lyso-PC is spontaneously released from membranes within

milliseconds, which allows for rapid kinetic equilibration [37]. Its

release and cytosolic transport are supported by fatty acid binding

proteins [38]. Mitochondria may provide the enzyme for lyso-

ether lipid acylation, which would arrest the resulting ether lipid in

the mitochondrial membrane. Tafazzin, a phospholipid acyltrans-

ferase catalyzing transacylation between lyso-PC and cardiolipin

[39] represents a candidate.

Alternatively, ePC and ePE generated by non-mitochondrial

acyltransferase(s) could be targeted to mitochondria by a

mechanism also accessible to the synthetic ether lipids polyfosine

and edelfosine. Especially for the latter, a raft-dependent

endocytosis step has been discussed and is supported by the

enrichment of both edelfosine [16,40] and ether lipids [4] in rafts.

Alternatively, membrane continuities between organelles could be

involved as reported for lipid trafficking before [41]. Noteworthy,

many other cellular organelles including LDs, which act as a

cellular sink for hydrophobic xenobiotics [42] did not accumulate

polyfosine, arguing for a specific rather than a stochastic

enrichment at mitochondria.

One may not expect polyfosine enrichment in mitochondria as

edelfosines established molecular targets are located to the ER and

PM [16]. Labeling by a fluorescent phenylpolyene-analogue of

edelfosine was restricted to the PM in leukemic cells or predomi-

nantly found in the ER of solid carcinoma yielding a model where

the cell specific distribution pattern correlates with different cellular

targets [43,44]. A recent study performed in HeLa cells uses

fluorescent borondifluorodipyrromethene (BODIPY) coupled edel-

fosine analogues and confocal laser microscopy to describe a

mitochondrial localization of these probes [45]. Polyfosine, the

analogue matching best the chemical structure of edelfosine confirms

mitochondria as a target for the drug in COS7 cells, while verifying

an ER and PM localization. Cell type or different cellular handling of

the various analogues may explain the discrepancy in localization of

the fluorescent analogues. Mitochondrial localization may be hard to

detect if only non-confocal microscopic images are available [43,44]

as ER staining can interfere.

While polyfosine and edelfosine activated caspase-3 and

interfered with PC biosynthesis our study supports the notion

that the accumulation of these lipids to mitochondria per se results

in a structural damage of the organelle that ultimately leads to

apoptosis. These inverted cone-shaped lipids possibly generate

membrane curvature if high local concentrations are met [46].

Indeed, edelfosine induced swelling of isolated mitochondria [45]

and membrane destabilization in liposome model systems by

formation of interdigitated structures, micelles and small vesicles

[47]. Edelfosine’s detergent properties [10] and very low critical

micellar concentration were found to cause lipid solubilization

and, importantly, release of content from lipid vesicles [48].

Physical membrane destabilization and loss of mitochondrial

integrity results in release of mitochondrial proteins like cyto-

chrome c [49], which ultimately induces apoptosis [35].

In summary, this study establishes polyene lyso-ether lipids as

supreme precursors for phosphoether lipid tagging. Fluorescent

Figure 9. Inhibition of PC synthesis. (A) COS7 cells were incubated with 10 mM polyfosine (closed circles) or edelfosine (open circles) in the
presence of [3H]-myristic acid. At indicated times lipids were extracted and analyzed by TLC for radioactive metabolites. The signal intensity of
labeled PC was quantified from TLC plates. Data are mean values 6 range, n = 2. Error bars smaller than symbol size are omitted. (B) COS7 cells were
incubated with 50 mM polyfosine or edelfosine for 1 h. Cellular lipids were extracted and analyzed by MS. The total PC and PE intensity was
normalized to the sum of all major lipids (PC, PE, SM, DG, TG, ePC and ePE). Data are mean values, n = 2, with a range of less then three percent.
doi:10.1371/journal.pone.0031342.g009
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phosphoether lipids accumulated to mitochondria, suggesting an

important role for the organelle in lipid trafficking.

Supporting Information

Figure S1 Analysis of glycerophosphatidylcholine and
glycerophosphatidylethanolamine lipids species of
COS7 cells by MS. Cells were grown in DMEM containing

4.5 g/ml glucose, GlutaMax I, pyruvate and 10% FCS. Total lipid

extracts of cells were analyzed for the PC and ePC (A), or PE and

ePE (B) species by high-resolution FT MS analysis. The intensity

of each species was quantified as a fraction of the sum of all

glycerophosphatidylcholine (A) or glycerophosphatidylethanola-

mine (B) species monitored. Lipid species with a relative amount of

less than one percent are omitted.

(TIF)

Figure S2 Analysis of the viability of COS7 cells upon
treatment with polyfosine or edelfosine. Cells were

incubated with 10 mM of polyfosine, edelfosine or carrier as

control for indicated times. Representative relief contrast micros-

copy images of the morphological appearance of the cells are

shown (A). Note, that after 3–6 h of incubation with either

polyfosine or edelfosine cells were rounding up and detaching

from the support presumably by apoptosis-induced detachment.

The nuclei appeared granular and fragmented. The number of

Figure 10. UV light induced phototoxicity. COS7 cells were incubated with carrier (A) or 50 mM of lyso-ether PC (B), edelfosine (C) or polyfosine
(D). Living cells were imaged by phase-contrast video microscopy for at least 60 min, during which a broadband UV illumination from a second light
source was constantly applied. Bars, 20 mm. Mitochondria fragmented (C & D) and disintegrated (D). See also Movie S1.
doi:10.1371/journal.pone.0031342.g010
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apoptotic cells as judged by their morphology (detached or

rounded up cells with granular fragmented nuclei) were counted

and used to calculate the percentage of viable cells (B).

(TIF)

Figure S3 Morphological changes of mitochondria and
nuclei upon polyfosine or edelfosine treatment of COS7
cells. Cells were incubated with 50 mM polyfosine, edelfosine or

carrier for the indicated times. Mitotracker, whose accumulation

depends on mitochondrial activity and vitality, was added prior

fixation and fluorescence microscopy (A). Merged color images

show green nuclei and red mitochondria, stained by DAPI or

Mitotracker, respectively. Bars, 50 mm. (B) Cells with fragmented

mitochondria were counted from microscopy images (70–200 cells

total for each time point).

(TIF)

Figure S4 Isolation of mitochondria from COS7 cells
incubated with polyfosine or edelfosine. Cells incubated

with carrier (control) or 50 mM polyfosine or edelfosine for 1 h

were harvested and homogenized. A crude mitochondria pellet

was prepared as described under Material and Methods and

separated from a cytosol-enriched supernatant (PMS, post

mitochondrial supernatant). The crude mitochondria fraction

(crude) was loaded onto a Percoll gradient and centrifuged again

(150,0006g; 25 min) before 9 fractions were collected from the

top. Aliquots were analyzed by SDS-PAGE and Western blotting

for the mitochondrial proteins cytochrome c and cytochrome c

oxidase subunit IV (COX IV) and calnexin, an ER marker

protein. Note, that in contrast to control cells the mitochondria of

polyfosine or edelfosine treated cells cannot be separated from the

ER by density gradient centrifugation.

(TIF)

Figure S5 Disintegrated, blebby mitochondria and
condensed nuclei of COS7 cells upon polyfosine treat-
ment. Cells were incubated with 50 mM polyfosine for 5 h. For

the last 15 min before fixation the incubation medium was

supplemented with 20 nM Mitotracker dye whose accumulation

to mitochondria depends on their activity and vitality. The vitality

and morphology of mitochondria was analyzed by fluorescence

microscopy. Merged color images show nuclei in green, mito-

chondria in red, stained by DAPI or Mitotracker, respectively.

Bar, 50 mm.

(TIF)

Movie S1 UV light induced changes of cell morphology
upon polyfosine treatment. COS7 cells were incubated with

carrier (upper left) or 50 mM of lyso-ether PC (upper right),

edelfosine (lower left) or polyfosine (lower right). Living cells were

followed by phase contrast video microscopy for 33 min. During

the course of the experiment the cells were constantly illuminated

by broadband UV light from a second light source, a Xenon lamp.

Bar, 20 mm. Note the fragmentation of mitochondria (lower left

and right) and the disintegration of mitochondria and nuclei (lower

right).

(MOV)

Text S1.

(DOC)
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