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Abstract

Deciphering of the spatial and stereospecific constraints on synergistic transcription activation mediated between activators
bound to cis-regulatory elements is important for understanding gene regulation and remains largely unknown. It has been
commonly believed that two activators will activate transcription most effectively when they are bound on the same face of
DNA double helix and within a boundary distance from the transcription initiation complex attached to the TATA box. In
this work, we studied the spatial and stereospecific constraints on activation by multiple copies of bound model activators
using a series of engineered relative distances and stereospecific orientations. We observed that multiple copies of the
activators GAL4-VP16 and ZEBRA bound to engineered promoters activated transcription more effectively when bound on
opposite faces of the DNA double helix. This phenomenon was not affected by the spatial relationship between the
proximal activator and initiation complex. To explain these results, we proposed the novel concentration field model, which
posits the effective concentration of bound activators, and therefore the transcription activation potential, is affected by
their stereospecific positioning. These results could be used to understand synergistic transcription activation anew and to
aid the development of predictive models for the identification of cis-regulatory elements.
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Introduction

DNA-binding transcription factors interpret the genomic

regulatory code by binding to specific sequences to activate or

repress gene expression [1]. It has been thought that synergism of

multiple activators in transcription initiation is an effective strategy

to achieve cell diversity and dynamic response to stimuli with a

limited repertoire of transcription factors [2,3]. Increasingly,

researches have shown that the understanding of the combinato-

rial nature of cis-regulatory modules is necessary for the decoding

of transcription regulation networks, prediction of transcription

factor binding sites, profiling of gene expression and promoter

design for custom gene expression patterns [4,5,6,7,8].

The identification of cis-regulatory transcription elements has

been a major and formidable challenge in molecular biology [9].

Development of computational methods has been attractive to

overcome arduous laboratory procedures [10] and numerous

tools have been developed for this task [9,11,12,13,14,15,16,17].

These methods may allow the identification of cis-regulatory

elements with impressive accuracy by utilizing constraints on

motif composition/transcription factor binding affinity, orienta-

tion and relative position in the modules/regulons

[18,19,20,21,22]. The probabilistic model developed by Beer

and Tavazoie (2004) encoded all the constraints on a motif,

exemplified by PAC (polymerase A and C box) and RRPE

(ribosomal RNA processing element), including its presence,

orientation, distance to the transcription start/ATG start codon,

functional depth (PWM score cut-off for closeness of to

‘‘consensus’’) and the presence of other motifs. However, in most

predictive algorithms, the combinatorial parameters of two or

more transcription factor binding sites were constrained simply

by the distance between them, or by their relative distance to the

core promoter [4,18,23].

The mechanism underlying how synergism arises has been

widely explored and is ascribed to two aspects: cooperative DNA

binding of two activators [24,25] or simultaneous contact of

multiple activators with the transcription initiation complex

[26,27]. Experimental studies have shown that the transcription

activation function of several activators was constrained by the

distance between the activator binding site(s) and the TATA box,

due to distance requirements for protein-protein interactions.

Transcription activation by eukaryotic activators usually decreases

with increasing distance between the binding site(s) and the TATA

box, including for small GAL4 derivatives [28], SP1 [29,30], Pit-1

[31], FNR [32], and CRP [33]. Pearce et al. found that synergistic

transcription by glucocorticoid receptor (GR) and AP1 was

determined by the specific spacing between the GRE and AP1

sites [34].
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It has been commonly believed that two DNA-bound

transcription factors must occupy the same side of the DNA

double helix to allow for potential interactions in regulating

transcriptions [8,35,36,37]. In comparison to the studies on the

distance requirements of activation, few computational or

experimental studies have explicitly focused on the importance

of the relative stereospecific positioning, or binding face on helical

DNA, of activators for synergistic transcription. Yokoyama et al.

2009 embedded the distance plus helical phase/stereospecificity

relationships between motifs into the computational detection of

known and novel cis-regulatory modules. Another study demon-

strated that for the two prokaryotic activators FNR and CRP,

transcription activation requires stereo-specific positioning of the

activator and RNA polymerase on the DNA double helix [32,33].

However, the dependence on the distance and helical phase for

determining synergistic transcription activation has not ever been

systematically explored in experiment and remains poorly studied

or even improperly understood.

In this work, we explicitly tested the dependence of relative

distance and stereospecificity of bound transcription activators on

synergistic transcription. We systematically engineered binding

sites for the GAL4-VP16 fusion and ZEBRA transcription

activators such that their positioning around the DNA double

helix varied, as suggested from reconstructions from crystal

structures. These constructs were tested for activation potential

and the results suggested to us that the specific positioning of

activators plays a role in the recruitment of the transcription

initiation complex.

Results

GAL4-VP16 dimers synergized for activation less
effectively when bound to the same side of DNA

GAL4-VP16 is a classical eukaryotic transcription activator due

to its transcription activation potency and well-characterized DNA

binding preference [28,38,39]. We used this transcription factor to

test the transcription activation properties of various organizations

of GAL4 binding sites. Our first experiment involved placing two

GAL4 sites 22 base pairs upstream to the basic promoter of the

adenovirus E4 gene, which initiates very weak transcription in the

absence of bound upstream activators. In a series of templates, the

distance between two GAL4 sites was increased from 0 to 48 bp in

2 bp steps to evaluate the effect of spacer length between GAL4

sites on transcription activation (Figure 1). The templates were

transfected into 293T cells and a luciferase reporter assay was

performed. We observed that luciferase activity from every

template containing two GAL4 sites is obviously greater than

twice of that from G1 template. It means that whatever spaced,

two GAL4-VP16 dimers can always initiate transcription syner-

gistically. In addition, overall, increasing distance between two

GAL4-VP16 dimers caused the attenuation of activation. More

importantly, luciferase activity varied in a sinusoidal manner as a

function of increasing spacer length.

Given the helical structure of double-stranded DNA, it has been

suggested that increasing spacing between the two GAL4 sites will

bring about periodic changes of relative phase between the two

bound GAL4-VP16 dimers [28]. To evaluate whether relative

phase played a role in our first experiment, we determined the

spatial relationship between the two DNA bound GAL4-VP16

dimers at the various spacer lengths explored in Figure 1.

HyperChem 8.0 software was employed to construct the structure

of these DNA molecules, which were then aligned with the GAL4-

DNA crystal structure (PDB code 3COQ) [40] (Figure 2A, more

complex structures are available in Figure S1). Even though the

protein-DNA complex structures with multiple GAL4 dimers have

not been dissected by X-ray crystallography or NMR yet,

however, we can reasonably infer that DNA fragment between

the two dimers seems more likely to adopt linear but not curving

shape based on the non-cooperative DNA binding property of

GAL4 and ZEBRA. DNA molecule itself is intrinsic linear without

external force. It is believed that some transcription factors can

bend DNA when they bind, as indicated in the crystal structure of

Figure 1. Distance dependence of transcription activation by two GAL4-VP16 dimers. GAL4 binding sites (gray box) with designed
spacing from 0 to 48 bp, in steps of 2 bp, were placed 22 base pairs upstream of the TATA box of adenovirus early gene 4 (red box), followed by the
coding sequence of luciferase gene. Normalized luciferase activity is plotted versus GAL4 binding site spacer length and shows local peak values at 8,
18, 28 and 36 bp. Each data point and error bar came from three parallel replicates. Each experiment was repeated twice.
doi:10.1371/journal.pone.0031198.g001

Distance and Phase Dependence in cis-Module
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binding complex 3O9X [41], 1R8D [42], 1K6O [43], 1AKH [44]

and 2PUC [45]. This bend may play a key role in the function of

enhancer in initiating transcription. However, GAL4 binding does

not alter the liner or near-linear conformation of DNA as

indicated in the crystal structures 3COQ and 1D66 [46]

containing GAL4 DNA binding domain with dimerization

domain, and 1PYI [47] containing GAL4 like transcription factor

PPR1. In addition, since multiple GAL4 dimers binding to naked

DNA is neither cooperative nor impeditive [48], it indicates that

directly physical interaction between the two GAL4 dimers seems

not to exist. Similarly, activator ZEBRA also binds to multiple

DNA sites without exhibiting cooperativity [49]. Without possible

external force, we are likely to assume the DNA molecules are

linear or near linear shape. So, it is reasonable to determine the

spatial relationship of the two bound GAL4-VP16 dimers based on

the linear DNA model. As shown in Figure 2B, the peaks of the

sinusoidal transcription attenuation curve coincided with two

GAL4-VP16 dimers bound on opposite sides of the DNA double

helix, at GAL4 binding site spacer lengths of 8, 18, 28 and 36 bp

in the structural reconstruction. On the contrary, troughs of the

curve correlated with two GAL4-VP16 dimers bound at the same

side of the DNA double helix.

We undertook EMSA experiments to validate the structural

reconstruction. EMSA experiment has been largely used in the

study of protein-induced DNA bending or intrinsic DNA

curvature [50,51,52]. The greater and the closer to DNA center,

the bending makes it slower for the DNA to migrate in the

polyacrylamide gel. The bending angel of DNA is then determined

based on the EMSA shift. Under the similar hypothesis, a protein-

DNA complex of two dimers bound on opposite faces of the DNA

occupied a larger volume than the protein-DNA complex in which

the two activators bound on the same side of the DNA (Figure 2C),

assuming a fixed orientation of the activators in the experiment.

The former should migrate slower in an EMSA assay. The results

indicated that along with increasing the spacer length between the

two GAL4 sites from 0 to 46 bp, i.e. the increasing of the overall

length of the DNA, the mobility of free DNA probe decreased

gradually (Figure 2D). Significantly, the curve of the mobility of

the complexes in which both GAL4 sites were fully saturated

exhibited periodic fluctuation (Figure 2E). Along with the

extension of the separation between two GAL4 binding sites, the

DNA probe used for EMSA is getting longer progressively. It

means that both the DNA length and the spatial distribution of the

two bound GAL4 dimers would determine the electrophoresis

mobility jointly. The effect of the DNA length has to be deprived

to elucidate the spatial distribution of bound activators in the

binding complex by electrophoresis mobility. So, the mobility of

free probes was also dotted and lined in Figure 2E to serve as a

marker for the judgment of local minima. As shown in the

Figure 2E, the local minima should be the point which locally

closest to the marker line. In the judgment of peaks, if three points

are almost the same near to the marker line, it is reasonable to pick

the middle one as the minima. For example, among the three

points, 6 bp, 8 bp, 10 bp which are almost the same near to

marker line, 8 bp are selected to be the minima. The periodic

fluctuation showed local minima at separation distances of 8, 18,

28 bp and 38/40, indicating the protein-DNA complex had lower

mobility at these distances. This result is in agreement with the

structural reconstructions which showed the GAL4-VP16 dimers

Figure 2. Helical phase dependence of transcription activation
by two GAL4-VP16 dimers. A) Structural reconstruction of binding
modes of two GAL4-VP16 dimers on the designed adenovirus promoter
with two GAL4 binding sites. The GAL4-DBD dimers are shown in
cartoon representation, from the experimental coordinates in PDB code
3COQ [40], bound to the promoter region. Two views are shown,
longitudinal (left) and transervse (right). B) Overlay of structural
reconstructions on the luciferase activity assay from Figure 1. C)
Rationale for EMSA assay. Longitudinal views of structural reconstruc-
tion of two GAL4-VP16 dimers bound to promoter, left = dimers bound
on the same face of DNA, right = dimers bound on opposite faces of
DNA. D) EMSA. Lanes refer to experiments completed with templates
increasing spacer length between GAL4 binding sites. E) Plot of
logarithm(migration distance of saturated or free DNA probes in EMSA)
versus GAL4 spacer length. The local minima of binding complex

mobility were proven to be at separation distances of 8, 18, 28 bp and
38/40 determined according to the mobility of free probes as marker
line. Note the inverted scale of log(migration distance).
doi:10.1371/journal.pone.0031198.g002
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are on opposite faces of the DNA at these spacing values, and

demonstrated that the structural reconstructions were effective in

designing specific orientations of bound GAL4-VP16 activators.

Taking the luciferase-based transcription activation assay, the

structural reconstructions and the mobility shift assay data

together, the results suggested that transcription activation by

two GAL4-VP16 dimers was most effective when they were bound

on opposite faces of DNA double helix.

The distance and helical dependence was not affected by
the steric relationship between GAL4-VP16 dimers and
transcription machinery

The previous results supported a model where two activators

bound to the same face of the DNA activated transcription less

effectively than when bound on opposite faces. However, the

importance of the spatial and stereospecific relationship between

the activators and the transcription pre-initiation complex

(TFIIA/TBP bound to TATA box) was unclear. To explore this,

we varied the distance and orientation of the GAL4-VP16 dimers

relative to the transcription complex. We constructed a series of

DNA structures that bear a TATA box 22 or 26 bp downstream

from the second/proximal of the two GAL4 sites, plus a varied

separation distance between the two GAL4 sites. The resulting

DNA molecules were then overlapped with the DNA chain in the

GAL4-DNA crystal structure and then with the DNA chain in the

TFIIA/TBP/TATA-box complex crystal structure (PDB 1RM1)

(Figure 3A). It is notable that at separation distances of 22 and

26 bp, the TFIIA/TBP complex and the closer GAL4 dimers

bound on opposite, and the same faces of the DNA double helix,

respectively. Template 142 contains two GAL4 sites 21 bp spaced

center-to-center, located 22 bp upstream to TATAbox. On

template 142 two GAL4-VP16 dimers should bind on the same

side of DNA helix and to the opposite faces to the TFIIA/TBP

complex. In template 145, the two GAL4 sites were center-to-

center separated by 27 bp, the two GAL4-VP16 dimers bound on

opposite faces relative to each other, with the distal GAL4-VP16

dimer bound on the same side of the DNA helix as the TFIIA/

TBP complex. Template 193 contains two GAL4 sites 21 bp

spaced center-to-center, located 26 bp upstream to TATAbox. On

template 193 two GAL4-VP16 dimers and the TFIIA/TBP

complex should bind on the same side of DNA double helix.

Template 196 contains two GAL4 sites 27 bp spaced center-to-

center, located 26 bp upstream to TATAbox. On template 196

the proximal GAL4-VP16 dimers should bind on the same side of

DNA helix to TFIIA/TBP complex, but opposite to the distal

GAL4-VP16 dimers. By the luciferase activity assay (Figure 3B),

we observed that transcription activation exhibited sinusoidal

attenuation with increasing spacer length. Transcription activation

from template 145 was higher than that from template 142, and

also higher activation from template 196 was observed than from

template 193 (two-fold). Therefore, an alternating binding

arrangement of the two GAL4-VP16 dimers, rather an all factors

bound on the same face of the DNA, results in optimal

transcription activation.

An evenly spaced distribution of multiple activators
around DNA provides more effective activation

We were interested in investigating whether the stereospecificity

dependence by transcription activators extends to a greater

number than two bound activators. Five transcription templates

(190, 191, 192, 187 and 189) were constructed and all contained a

proximal GAL4 binding site 22 bp from the TFIIA/TBP/TATA-

box complex such that this GAL4-VP16 was bound on the

opposite face of the DNA from the transcription complex

(Figure 4A). Templates 190, 191 and 192 tested the effect of

changing the relative orientation of three bound GAL4-VP16

dimers. Template 190 contained three GAL4 sites for binding of

all GAL4-VP16 dimers on the same face of the DNA. Template

191 contained three GAL4 sites such that GAL4-VP16 dimers are

evenly spaced around the DNA double helix (120u). Template 192

contained three GAL4 sites on which the proximal GAL4-VP16 is

bound opposite to the two distal GAL4-VP16 dimers.

Template 187 contained four GAL4 sites, on which all four

GAL4-VP16 dimers would reside on the same side of the DNA.

Lastly, template 189 contained four GAL4 sites designed such that

the proximal GAL4-VP16 binds opposite to the transcription

complex, and the other three GAL4-VP16 dimers bound on the

same side of the DNA relative to the transcription complex.

The luciferase reporter assay using these templates demonstrat-

ed that transcription activation from templates 191 and 192 were

both equal and much greater than that from template 190

(Figure 4B). This illustrated that an identical relative arrangement

of activators, as in template 190, is not effective for transcription

activation. Interestingly, a regular spacing of activators around the

Figure 3. Helical phase dependence was not affected by the
spatial relationship between activators and transcription
complex. A) Structural reconstruction of promoter occupied by
TFIIA/TBP complex and two GAL4-VP16 dimers. Four templates, 142,
145, 193 and 196, are shown. The distance between the proximal GAL4
binding site is 22 bp in templates 142 and 145, and 26 bp in templates
193 and 196. B) Luciferase activity assay using a series of transcription
templates bearing two GAL4 binding sites (gray box) with increasing
spacer length, with the proximal GAL4 binding site placed 26 base pairs
upstream of the TATA box of adenovirus early gene 4 (red box). Each
data point and error bar came from three parallel replicates. Each
experiment was repeated twice.
doi:10.1371/journal.pone.0031198.g003
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DNA double helix, as in template 191, did not increase activation

further as compared to alternating the proximal and the next

activator, as in template 192. This is reflected in the fact that

activation from template 189 is greater than from 187, where the

increased activation was observed when the first two dimers were

arranged oppositely.

To rule out the involvement of activator concentration in our

results, the concentration of GAL4-VP16 was varied by increasing

the amount of expression plasmid included in the cell transfection.

Transcription activation increased with increasing levels of GAL4-

VP16 expression plasmid for all of the transcription templates

(142, 145, 190 or 191, Figure 5). Template 145 stimulated

transcription more than template 142 at all levels of GAL4-VP16

expression plasmid (Figure 5A). Similarly, template 191 activated

transcription to a higher level than template 190 at all levels of

expression plasmid (Figure 5B). These results show that the level of

expression plasmid is correlated with the level of transcription

activation, however, at no level of expression plasmid was the

activation level from templates designed for binding of GAL4-

VP16 dimers all on the same side of DNA higher than the

activation from templates designed for GAL4-VP16 binding in

opposite/regularly spaced arrangement around the DNA. This

conclusion is consistent with our earlier observations and rules out

a concentration dependence.

ZEBRA also more effectively activated transcription when
arranged around the DNA double helix

The above results could be specific for the VP16 activation

domain. To study this possibility, we repeated the analysis with

ZEBRA, belonging to a different class of transcription activator.

The transcription activation domain of ZEBRA is rich in glycine,

proline and glutamine residues [53], whereas VP16 belongs to the

class of factors rich in acidic residues [54]. We constructed a series

of templates with increasing distance between two ZIIIB sites.

Using the luciferase assay, we found that overall, transcription

activation decreased with increasing of length of spacing between

the ZIIIB sites, except for a peak of activation at spacing of 8 bp

(Figure 6A). To corroborate these results, we repeated the analysis

using an EMSA assay (Figure 6B). The experiment showed that

the highest level of mobility retardation was observed of a complex

Figure 4. Multiple evenly distributed activators around DNA
double helix function more effectively. A) Structural reconstruc-
tions of templates. All five templates, 190, 191, 192, 187 and 189,
contain a proximal GAL4 binding site 22 bp upstream to the TATA box.
Templates 190, 191 and 192 contain two additional GAL4 binding sites,
designed to have GAL4-VP16 dimers bound on the same side of the
DNA double helix (template 190), arranged regularly spaced around the
DNA (template 191), or opposite from the proximal GAL4-VP16
(template 192). Templates 187 and 189 contain three additional GAL4
binding sites, with three arranged on the same face of the DNA as the
transcription complex (template 187), or all four arranged opposite
(template 189). B) Transcription activation assay with templates 142,
150, 190, 191, 192, 187 and 189. Each data point and error bar came
from three parallel replicates. Each experiment was repeated twice.
doi:10.1371/journal.pone.0031198.g004

Figure 5. Evaluation of concentration dependence. Evenly distributed activators around the DNA double helix activate transcription more
effectively at all activator concentrations. Transcription activation assays were completed with templates 142, 145 (A), 190 and 191 (B), with increasing
concentration of GAL4-VP16 expression plasmid in the luciferase assay. Each data point and error bar came from three parallel replicates. Each
experiment was repeated twice.
doi:10.1371/journal.pone.0031198.g005
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of two ZEBRA dimers separated by 8 bp. This suggested that the

protein-DNA complex at this separation occupied the largest

volume. We reconstructed this protein-DNA complex using the

PDB ID 2C9L [55] at this separation distance. The structural

reconstruction showed at this spacing, two ZEBRA dimers bound

on opposite faces of the DNA double helix, consistent with the

EMSA results (Figure 6A). Further investment of activator

concentration dependence by increasing ZEBRA expression

plasmid in cell transfection, indicated that at all activator

concentrations, activation level from template (Z8Z) designed for

ZEBRA binding on opposite faces of DNA helix were higher than

activation from template Z4Z designed for ZEBRA binding on the

same side of DNA (Figure 6C). These observations are in

agreement with our results for the GAL4-VP16 system and

suggest a dependence on stereospecific positioning around DNA

could be a general property of transcription activators, with

greater activation by bound activators arranged on opposite faces

of DNA.

Discussion

It has long been known that the structural characteristics of

DNA-binding motifs place requirements on the spacing and

nature of recognition sequences [30,56]. In contrast, it has been

unclear whether synergistic transcription activation requires a

specific arrangement of the activators around the DNA double

helix and that was the focus of this study.

We demonstrated that transcription activation magnitude

varied in a sinusoidal manner with increasing spacing between

engineered GAL4 binding sites. We showed by computational

molecular structure reconstruction and by EMSA that the peaks in

this pattern occurred when two GAL4-VP16 dimers bound on

opposite faces of the DNA double helix. We also observed this

phenomenon with multiple GAL4 binding sites, where a regular

binding distribution of GAL4-VP16 around the DNA best

activated transcription. Furthermore, we showed that the

sinusoidal fluctuation of synergistic transcription activation by

two GAL4-VP16 dimers was not affected by their relative helical

positioning to the TFIIA/TBP transcription complex bound on

TATA box. Lastly, these results were not specific for GAL4-VP16,

as transcription activated by the ZEBRA transcription factor from

cis-regulatory modules composed of two ZIIIB binding sites was

maximal with ZEBRA dimers bound on opposite faces of the

DNA double helix.

Our findings are supported by studies of the NFY transcription

factor [8]. In cis-regulatory modules containing two NFY binding

sites from mouse and human promoters, the center-to-center

distance between these two NFY binding sites were statistically

proven to prefer approximately 15, 25, 35 and 45 bp. Similarly,

for the motif pairs composed of one NFY binding site and one SP1

binding site, the center-to-center distances of the two motifs were

statistically proven to prefer about 15 and 25 bp. These separation

distances corresponded to binding of activators on opposite faces

of the DNA double helix, which we observed for our test

activators. Since the interactions between two NFY proteins, or

between one NFY factor and one SP1 factor, have been well

studied [57,58], it is notable that these transcriptional activators

tend to bind opposite on the DNA double helix. It suggests that,

our observation is general enough for all transcription activation.

In their studies, Yokohama et al (2009) developed the ‘‘motif

relational function’’ (MRF) to detect spatial biases between motif-

pairs using regression analysis in human and mouse promoter

sequences and found that motif-pairs often co-occur preferentially

at multiple separation distances corresponding to half-turn of the

Figure 6. Distance and phase dependence of synergistic
transcription activation by two ZEBRA transcription activators.
Two ZEBRA binding sites (ZIIIB, oblique-line box) with increasing
spacers length (in steps of 2 bp) were placed 22 bp upstream to the
TATA box (red box). A) Transcription activation luciferase assay using
templates designed with increasing distance between ZIIIB sites. B)
EMSA assay. Lanes show experiments completed with templates
designed with increasing distance between ZIIIB sites. Below the main
gel is zoom in of region of the gel showing two ZEBRA molecules
bound. C) Transcription activation assays were completed with
templates Z4Z (ZIIIBs were 4 bp spaced) and Z8Z (8 bp spaced), with
increasing concentration of ZEBRA expression plasmid in the luciferase
assay. Each data point and error bar came from three parallel replicates.
Each experiment was repeated twice.
doi:10.1371/journal.pone.0031198.g006

Distance and Phase Dependence in cis-Module
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DNA double helix. However, those results were misinterpreted

under the assumption that transcription factor interactions only

occur when positioned in the same orientation around histone

complex or the DNA double helix [35,37]. They ignored and

failed to discover the key character as we found in this present

work. All these studies suggest that, as a strategy for organism to

activate transcription most elaborately during revolution, the

recognition sequences may instead be positioned at distances that

allow for binding of the activators on opposite faces of the DNA.

Current models of synergistic transcription activation
Various models have been employed to explain the distance and

stereospecificity constraints on synergistic transcription activation.

According to the simultaneous contact model, multiple activators

bind to recognition sequences and contact simultaneously with

transcription initiation complex component(s) to recruit them to

assemble on the core promoter [8,36]. Activators will drive

synergistic transcription only when they are positioned on the

same side of the DNA double helix. This is obviously contradictory

to and cannot be used to explain what we observed in our works.

An additional model is the DNA looping-out model [36]. Given

that the activators and the transcription complex are tethered to

DNA, this model suggests that the length of the intervening DNA

sequence between the activator and the transcription complex is a

factor in determining the flexibility of this sequence and the

probability of interaction between the two protein complexes

[59,60]. The highest probability of interaction between two DNA

tethered proteins via an intervening is reported to occur at a

separation length of 500 bp, at which distance the intervening

DNA between the transcription complex and the nearest bound

activator can loop out and avoid steric clashes with the bound

factors [60]. In our analysis, we placed GAL4/ZEBRA sites only

22 bp upstream of the TATA box. Therefore, looping out of the

DNA between the TATA box and proximal activator binding site

is minimal. The stereospecificity dependence we observed should

not be affected by the presence of the intervening DNA and

therefore the DNA looping out model is not sufficient to explain

our observations.

A novel model of synergistic transcription activation: the
concentration field model

We describe a novel model, the concentration field model,

which considers the binding of transcription activators to the DNA

double helix as a kinetic equilibrium of binding and dissociation

events. The balance between the dynamic binding and dissociation

events of activators to DNA determines the effective concentration

of activator at the binding site location and therefore their

activation potential (Figure 7). Transcription synergy arises from

the cooperative increase of transcription initiation complex

components around the TATA box by the multiple transcription

activators. The model suggests that multiple activators function

less efficiently for transcription activation when they are bound on

the same side of the DNA double helix, since the frequency of

activator binding/dissociation events at the binding site would be

greater for dissociation events due to steric clashes. Similarly, the

model suggests higher synergism of multiple transcriptional

activators originates from the lack of steric clashes when activators

are bound on opposite/regularly spaced positions around the

DNA double helix.

Since many activators have been reported to interact with some

component of the transcription machinery (reviewed in [61]), and

that binding of the transcription complex itself can be described by

binding and dissociation events, the effective concentration of the

transcription machinery could have a similar stereospecificity

dependence as that of the activator. Extending this model to the

transcriptional complex bound at the TATA box, binding of

activators in a productive series of oppositely/regularly-spaced

positions around the DNA double helix could favour interactions

Figure 7. Concentration field model of transcription activation. Transcription activator binds on the promoter and recruit transcription
machinery components (TF) to the TATA box to form the transcription initiation complex. If multiple activators are bound on the same side of DNA,
the proximal activator provides steric hindrance to the protein-protein interactions mediated by the distal activator, therefore decreasing the total
recruitment of TFs to the TATA box. Conversely, an arrangement of activators on opposite faces of the DNA, activators are free to recruit TFs.
doi:10.1371/journal.pone.0031198.g007
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between the activators and the transcription complex. Therefore,

we suggest this model for best explaining the synergism of multiple

transcriptional activators and the importance of their specific

spatial positioning as observed in this work.

We are aware that this model assumes a simplistic structure of

transcription factor. Many transcription factors are composed of

multiple domains, with each domain exhibiting either activation or

DNA-binding functionalities. These domains are often separated

by flexible linkers, such as in the KRAB-zinc finger or BTB-zinc

finger proteins (reviewed in [62]), and rigid body movements of the

activation domain of these proteins with respect to their tethered

DNA-binding domains may allow these factors to overcome any

stereospecificity effects we observed. However, the GAL4-VP16

fusion protein involved in this study did have a small linker region

between the activation and DNA binding domain, suggesting an

increased length of the linker might be necessary to overcome our

observed stereospecificity requirements. The concentration field

model could best apply to transcription factors whose DNA

binding and activation domains are not separated by a significant

linker, as with leucine zipper activators, or factors in which these

two functionalities co-exist in the same structured domain.

Materials and Methods

Construction of transcription templates
The transcription template plasmids pE4T, pG1E4T and

pZ1E4T, bearing none, one GAL4 binding site or one ZEBRA

binding site ZIIIB upstream to the 238 - +280 region of the

adenovirus E4 gene promoter, were kindly provided by Prof.

Michael Carey (UCLA, USA) [63]. DNA sequences containing

transcription activator binding site(s) and downstream 238 – +38

region of E4 gene promoter were amplified from these three

plasmids with primers E4Tup (59-GACGGCTAGCACATAC-

GATTTAGGTGACAC-39) and E4Tdown (59-GAGAAGATCT-

CACCACTCGACACGGCACC-39), digested with NheI and

BglII and inserted into pGL3 basic vector to construct the in vivo

transcription templates pE4TGL3, pG1GL3 and pZ1GL3 respec-

tively. GAL4 or ZEBRA binding sites on other in vivo transcription

templates were generated using an iterative process from

pE4TGL3, as follows and elaborated in Table S1. Template 126

was derived from pE4TGL3 by introducing one EcoRV site next

to the single GAL4 binding site by site-directed mutagenesis.

Transcription templates 142 to 145 were constructed by inserting

annealed double-stranded DNA containing GAL4 binding sites

with designed spacings between PstI and the engineered EcoRV

site of template 126. Templates 146 to 151 was constructed by

insertion of double-stranded DNA containing GAL4 binding sites

with designed spacing between PstI and SmaI cleaved template

145. Transcription templates 156–173 and 187–203 were similarly

constructed. Templates 174–186 were constructed by re-joining

the 2000 bp Sal I/EcoR V double restriction fragments from each

of the plasmids including 146–151 and 172–179 with the 2800 bp

Sal I/SmaI double restriction fragments of plasmid 172. Accession

numbers in GenBank of these new DNA sequencing data were

included in Table S1.

Construction of effector plasmids
Full length ZEBRA coding sequence was amplified from

prokaryotic expression vector pET11d-ZEBRA (gift from Prof.

Michael Carey of University of California, Los Angeles) using

primers ZEBRAup (59-ATCCGATATCCATGGACCCAAAC-

TCGAC-39) and ZEBRAdown (59-CCCGCTCGAGTTAGA-

AATTTAAGAGATCC-39). The PCR product was digested with

EcoRV and XhoI and inserted into the eukaryotic expression

vector pCI-HA to construct pCI-HA-ZEBRA. GAL4-VP16

coding sequence was amplified from the prokaryotic expression

vector pGEX2TK-GAL4-VP16 (gift from Prof. Michael Carey of

UCLA) using primers GAL4up (59-CCCGATATCTATGAAGC-

TACTGTCT-39) and VP16down (59-CTGCCTCGAGTTACC-

CACCGTACTCGTCAAT-39). The PCR product was digested

with EcoRV and inserted into SmaI-linearized eukaryotic

expression vector pRK5-FLAG to obtain pRK5-FLAG-GAL4-

VP16. The insertion direction of GAL4-VP16 coding sequence

was confirmed through XhoI cleavage. Both these two expression

constructs were proven to be correct by DNA sequencing

(Invitrogen, China).

Expression and purification of GAL4-VP16
GAL4-VP16 containing residues 1–147 of Gal4 attached by an

amino acid linker (PEFPGIW) to residues 413–490 of VP16 [39]

were expressed as an N-terminal GST fusion protein under the

control of the tac promoter by plasmids pGEX-2TK (gift from

Micheal Carey, UCLA) in Escherichia coli. Cultures were grown at

37uC to an OD600 of 0.6. The expression of the fusion proteins

was induced with 1 mM isopropylthiogalactoside for 3 h. Cells

from 1 liter of culture were harvested, washed and resuspended in

20 ml phosphate buffered saline (PBS, containing 0.5 mM

phenylmethylsulfonyl fluoride, PMSF), and lysed by sonication

in an ice bath. All subsequent operations were performed at 0 to

4uC. A crude extract was derived by centrifugation of the lysate for

20 min at 12000 g and then applied to 100 ml of glutathione

sepharose pre-equilibrated with PBS. After enough washing, the

GST-GAL4-VP16 fusion retained on the resin was digested with

10 units of thrombin protease (Amersham Pharmacia Biotech, 27-

0846-01) overnight at 4uC. The eluant was collected by

centrifugation and subjected to SDS-PAGE. The protein was

approximately 90% pure as judged by Coomassie blue staining of

sodium dodecyl sulfate (SDS)-polyacrylamide gels.

Expression and purification of ZEBRA
Full length ZEBRA (BamH I Z fragment, Epstein-Barr

Replication Activator) [64] was expressed in E. coli BL21(DE3)

cells under the control of the T7 promoter in plasmids pET11d

(gift from Micheal Carey, UCLA) and purified as described

previously [49]. The protein was approximately 90% pure as

judged by Coomassie blue staining of SDS-polyacrylamide gels.

Electrophoretic Mobility Shift Assay
DNA sequences containing two GAL4 binding sites of

increasing spacing from 0 to 46 bp in 2 bp steps were amplified

through PCR reaction using two primers, the fluorescently labeled

5-ROX-SP6 (ROX-59-GATTTAGGTGACACTATAGAATAC-

39, HPLC pure, Invitrogen) and E4TATAR (59-GCGAGTATA-

TATAGGACTGGG-39, Invitrogen). The PCR products were

then separated on 1.5% agarose gel and recovered using 3S Spin

DNA Agarose Gel Purification Kit (Biocolor BioScience &

Technology Company, BBST) and kept in Tris-EDTA (TE)

buffer. The 10 ml binding reaction contains 5.0 ml buffer D

(20 mM HEPES-KOH (pH 7.9), 20% (v/v) glycerol, 0.2 mM

EDTA, 0.1 M KCl, 0.5 mM PMSF, 1.0 mM DTT), 0.6 ml of

1 mg/ml poly(dI:dC)?poly(dI:dC) (Sigma, P4929-25U), 0.25 ml of

8 mg/ml BSA, 0.1 ml of 0.1 M DTT, 0.75 ml of 0.1 M MgCl2,

1.0 ml of ROX labeled DNA fragment, and 1.0 ml of ZEBRA or

GAL4-VP16 protein. After incubation at 25uC for 1 h, samples

were loaded onto a pre-run 20 cm long 4.5% native polyacryl-

amide gel. Gel was run in 0.56TBE containing 1% glycerol at

100 V for 1 hour. After electrophoresis, images were acquired

with a Typhoon 9410 imager system (Amersham Biosciences). 5-
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ROX fluorescence was excited with a green laser (wavelength

532 nm) and detected with 610-nm band pass filter. The EMSA

data were analyzed using ImageQuant TL software.

Cell culture and transfection
293T cells originated from ATCC were maintained in

Dulbecco’s modified Eagle’s medium (Invitrogen, USA) supple-

mented with 10% (v/v) newborn bovine serum (HyClone, USA),

100 U/ml penicillin and 100 mg/ml streptomycin [65]. Plasmids

were introduced into cells by M-PEI mediated transfection as

described previously [66]. Briefly, cells were placed in a 24-well

plate at a density of 56105 cells/ml. When grown to 50%

confluence, cells were transfected with 1.0 mg M-PEI-complexed

plasmids in serum-free DMEM medium. The ratio of plasmid to

PEI polymer was 1:1.5. Five h later, cells were supplied with

700 ml fresh medium containing serum but without antibiotics,

and were then continuously cultured for another 31 h. For

normalization of transfection efficiencies, 100 ng Renilla luciferase

expression plasmid pRL-CMV was included in each transfection

experiment.

Reporter Gene Assays
The transfected cells were harvested and washed with cold PBS

for 36 h post-transfection and lysed in 100 ml 16passive lysis

buffer (Promega, E194A). Insoluble debris was removed by

centrifugation at 12000 g at 4 uC for 5 min. The enzyme activities

of firefly luciferase and Renilla luciferase were acquired in turn

according to the instruction of Dual-LuciferaseH Reporter Assay

System E1910 (Promega, USA). 2 ml of each lysate was mixed with

10 ml LARII to read the firefly luciferase activity and then 10 ml

Stop & GloH Reagent was added to read the Renilla luciferase

activity in a 20/20n luminometer (Turner Biosystems, USA). The

Firefly luciferase activity was divided by Renilla luciferase activity

to normalize the transcription level.

Molecular Structure Construction and Superimposition
The structure of DNA molecules were constructed employing

HyperChem 8.0 software (Hypercube Inc., USA) and optimized

with Molecular Mechanics Force calculation using Geometry

optimization arithmetic, for which HyperMM+ force field was

selected for optimization. The sequences of each DNA molecule

submitted to molecular structure construction were listed in Table

S2; these constructed DNA molecules vary by the number of and

spacing of transcription factor binding site(s). We employed the

superimposition function of Discovery Studio 2.1 (Accelrys, USA)

to construct molecular structures of protein-DNA complexes

containing the transcription factors, GAL4-VP16, ZEBRA or

TFIID and the DNA molecule previously constructed using

HyperChem 8.0. The DNA binding site sequence on the

constructed DNA molecule was overlapped to the equal binding

site sequence on the DNA molecule in published crystal structures.

For the overlapping of GAL4 binding site sequences, the first

chain (sense chain) of the optimized constructed DNA molecule

was superimposed with the D chain of the nucleotide sequence of

GAL4-DNA crystal structure (Protein Databank (PDB) ID 3COQ)

[40]. For the overlapping of ZEBRA binding site sequences, the

first chain (sense chain) of the optimized constructed DNA

molecule was superimposed with the A chain of nucleotide

sequence of ZEBRA-DNA crystal structure (PDB ID 2C9L) [55].

For the overlapping of TBP binding site i.e. TATA box, the first

chain (sense chain) of the optimized constructed DNA molecule

was superimposed with the D chain of crystal structure of Yeast

TFIIA/TBP/TATA-box DNA Complex (PDB ID 1RM1).

Molecular structure figures were produced using Rasmol [67].

Supporting Information

Figure S1 Structural reconstruction of binding modes of
two GAL4-VP16 dimers on the designed adenovirus
promoter with two GAL4 binding sites. The GAL4-DBD

dimers are shown in cartoon representation, from the experimen-

tal coordinates in PDB code 3COQ [40], bound to the promoter

region.

(TIF)

Table S1 Construction strategies of transcription tem-
plates and their GenBank accession numbers.

(DOC)

Table S2 Information of DNA molecules used for
computational structure construction.

(DOC)
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