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Abstract

Various murine models are currently used to study acute and chronic pathological processes of the liver, and the efficacy of
novel therapeutic regimens. The increasing availability of high-resolution small animal imaging modalities presents
researchers with the opportunity to precisely identify and describe pathological processes of the liver. To meet the
demands, the objective of this study was to provide a three-dimensional illustration of the macroscopic anatomical location
of the murine liver lobes and hepatic vessels using small animal imaging modalities. We analysed micro-CT images of the
murine liver by integrating additional information from the published literature to develop comprehensive illustrations of
the macroscopic anatomical features of the murine liver and hepatic vasculature. As a result, we provide updated three-
dimensional illustrations of the macroscopic anatomy of the murine liver and hepatic vessels using micro-CT. The
information presented here provides researchers working in the field of experimental liver disease with a comprehensive,
easily accessable overview of the macroscopic anatomy of the murine liver.
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Introduction

Within the last twenty years the number of publications describing

the use of mouse models has steadily increased. Animal models of

human disease have become an integral part of virtually all areas of

medical research. Consequently, various murine models of liver

disease have been developed including models of inflammatory liver

disease [1,2], alcoholism [3,4], portal hypertension [5,6], parasitic

infectious disease [7,8], hepatectomy [9], as well as liver tumors and

metastases [10,11,12,13]. Most of these models are used for

longitudinal monitoring of the disease process and to assess the

effectiveness of novel therapeutic approaches. Methods that allow

non-invasive longitudinal liver imaging include micro-computed

tomography (micro-CT) [14,15], magnetic resonance imaging (MRI)

[16], ultrasound [17], as well as more sensitive techniques with lower

resolutions, such as positron emission tomography (PET) [18,19,20]

and fluorescence imaging [18]. The increased availability of high-

resolution imaging modalities allow researchers the opportunity (and

sometimes the need) to identify with precision the pathological

processes at work, making knowledge of the macroscopic anatomical

situation of the murine liver essential.

To gain a better understanding of the macroscopic anatomy

of the murine liver and its associated microvasculature we

compiled information from our own previous research in

C57BL/6 mice using micro-CT and compared our observations

to the literature.

Materials and Methods

Micro-CT
Micro-CT images were acquired as described recently [14,21] using

an industrial X-ray inspection system (Y.Fox; Yxlon International

GmbH, Hannover, Germany) equipped with a transmission X-ray

tube and a 12-bit direct digital flat bed detector (Varian PaxScan 2520;

Varian, Palo Alto, CA, USA). The data used in our study was based

upon previously performed liver imaging in ten male and female, 12–

24 week old C57BL/6 mice with a body wheight between 30–35 g.

After injection of a liver specific nanoparticular contrast agent

(ViscoverTM ExiTronTM nano; Miltenyi Biotec, Bergisch-Gladbach,

Germany) or a blood pool contrast agent (Fenestra VC; Advanced

Research Technologies Inc., Montréal, Canada), mice were anaesthe-

tized, intubated and imaging of the vascular structures and of the liver

was performed using the following scan parameters: tube current

80 kV; 75 mA; 190u rotation within 40 sec scan time and continuous

image acquisition at 30 fps (frames per second). The resulting 1200

projections were reconstructed using the software provided by the

manufacturer (Recon Studio; Yxlon International GmbH) using a

filtered back projection algorithm with a matrix of 51265126512. The

voxel size ranged between 39639652 mm and 41641655 mm.

Coronal, saggital, and axial reconstruction were prepared. All

experiments were carried out after receiving the local ethics committee

approval (Regierungspräsidium Karlsruhe; G-202/10). Institutional

guidelines for animal welfare and experimental conduct were followed.
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Literature search analysis
Our literature search utilized, the search engines Medline,

Google, and Vetseek [22], and also included veterinary anatomy

books [23,24,25,26,27]. The search terms included: anatomy,

mouse, mice, murine, liver, hepatic, hepatectomy, and imaging.

To create comprehensive up-to-date illustrations of the murine

liver, our review focused on gathering information that specifically

detailed the shape, fixation and impressions of the liver, the

location of the lobes, the adjacent perihepatic organs and the liver-

related vessels.

Results

Literature search
Searching Medline we found four articles describing the

macroscopic anatomy of the murine liver [9,28,29,30]. In these

four articles, three different terminologies for the anatomical

description of the liver lobes were used and none of the

descriptions conformed with Nomina Anatomica Veterinaria (NAV)

which is the standard reference in veterinary science for

anatomical terminology [31].

In addition to the journal articles available online, we identified

seven books that included a description of the murine liver

anatomy [23,24,25,26,27,32]. Within the seven books, five

different terminologies were used for the anatomical description

of the liver. While four books did not refer to the NAV at all

[23,24,25,33], three books [26,27,32] used a simplified version of

the of the NAV.

During our literature search we found no articles or books that

comprehensively reviewed the murine liver anatomy with regard

to the classical slice orientations used in small animal in vivo-

imaging, nor did we find any articles that described the adjacent

liver vessels in this context.

Anatomy of the murine liver
Shape and impressions of the liver. The murine liver has a

convex shaped cranial surface conforming to the vault of the

diaphragm and a concave shaped caudal surface, which is adapted

to the surface of the abdominal organs. While the gastric

impression (Impressio gastrica) of the caudal surface of the left

lateral liver lobe is caused by the stomach, the right kidney lies

within the renal impression (Impressio renalis) located on the caudal

surface of the caudate lobe. Other impressions of the liver are the

duodenal (Impressio duodenalis), oesophageal (Impressio esophagea), and

the jejunal impression (Impressio jejunalis), which are difficult to

identify in small animal imaging.

Ligaments. The liver is fixed in place by several ligaments. On

the dorsal surface the left medial liver lobe and the left lateral liver

lobe are fixed to the diaphragm by the coronary ligament (Ligamentum

coronarium) and the triangular ligament (Ligamentum triangulare

sinistrum), respectively. According to the literature, mice have no

ligaments stabilizing the right medial and right lateral liver lobe. On

the right side, only the caudate process is fixed to the right kidney by

the hepatorenal ligament (Ligamentum hepatorenale). Ventrally, the

falciforme ligament (Ligamentum falciforme) containing the teres

ligament (Ligamentum teres hepatis), is considered a relic of embryonic

development rather than a ligament of fixation (Figure 1B and 1C).

Anatomy of the liver lobes. According to the NAV, the liver

is divided into four lobes that can be further subdivided, as

schematically illustrated in Figure 1A, the following photographs

(Figures 1B, 1C), and the reconstructions of micro-CT imaging in

Figures 2, 3, 4.

The left liver lobe can be divided into the left medial lobe

(yellow color-coding) and the left lateral lobe (red color-coding),

with the smaller left medial lobe lying cranially and medially to the

larger left lateral lobe (Figures 1, 2, 3, 4).

Similarly, the right liver lobe can be subdivided into the right

medial lobe (blue color-coding), which is located directly below the

diaphragm and lateral to the right side of the gall bladder, and the

right lateral lobe (green color-coding), which is smaller and located

more caudally than the right medial lobe.

The caudate lobe is subdivided into the larger caudate process

(cyan color-coding) and the smaller papillary process (magenta

color-coding). The larger caudate process lies directly caudal to the

right lateral lobe and overlaps the right kidney ventrally and

laterally. The papillary process in general is relatively small, and

can be subdivided into two smaller parts (no specific nomenclature

exists for these two subdivided parts) and is located between the

stomach, the right lateral lobe, and the caudal caval vein.

Finally, the quadrate lobe is described in the NAV. This lobe is

located at the medial edge of the left lateral lobe and is not further

subdivided. While we have not been able to identify this small lobe

Figure 1. Illustrating the segmentation of the murine liver lobes according to the Nomina Anatomica Veterinaria. A Since in most animals
we have not been able to identify the quadrate lobe in micro-CT imaging or in situ, the quadrate lobe was put in brackets and not color-coded. B and
C are photographs of the liver of a C57BL/6J mouse (ventral view). In C the left and the right liver lobe have been folded cranially to reveal the liver
lobes lying below. The single liver lobes have been consistently color-coded according to the schematic segmentation (1A) and to the related micro-
CT figures 2, 3, 4 to simplify orientation.
doi:10.1371/journal.pone.0031179.g001

Murine Liver Anatomy Using Micro-CT
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of the liver macroscopically or with micro-CT images, other

authors depicted the quadrate lobe in their schematic drawings

without labeling it within the images [26,32]. Only Popeskow et al.

[27] correctly depicted and labeled the quadrate lobe in their

schematic drawing. Although very small in mice, the quadrate lobe

has been described as an independent lobe in the NAV, mainly

because in many other animals the lobe is larger and therefore

more easy to identify.

Anatomical variations. While anatomical variations of the

liver do exist both within and between different mouse strains, to

date, we did not evaluate these differences in-depth. However, we

observed variations in our own measurements at the fusion of the

two middle lobes. This variation has been described, by Rauch et

al. [34] as fission rather than of fusion of the lobes especially

among male animals. Other noted variations include the shape

and size of the single liver lobes. Figure 5A–C illustrates the

variability of the size of the papillar process.

Perihepatic structures and hepatic vessels
To compliment the anatomical description of the liver we also

gathered additional information on the anatomical relations of the

adjacent perihepatic organs and liver-related vessels.

Organs adjacent to the liver. Only separated by the

diaphragm, the heart and the lungs are cranial to the liver.

Figure 2. Coronally reconstructed micro-CT images. Imaging of the liver of a C57BL/6J mouse was performed 3 hours after i.v. injection of
100 ml of a nanoparticular contrast agent (ExiTron nano 12000). The color-coding of the single liver lobes corresponds to the color coding presented
in Figure 1. The slice orientation in relation to the spine is shown in the lower right corner.
doi:10.1371/journal.pone.0031179.g002

Murine Liver Anatomy Using Micro-CT
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While these organs are often easily distinguished from the liver, in

one case we observed transdiaphragmatic herniation of the right

medial liver lobe, which was clearly identifiable just after

administration of a liver-specific contrast agent (Figure 5D).

The half-moon shaped spleen can be found caudal to the

liver, kidneys, adrenal glands, and stomach (Figure 6D). As

mentioned earlier in the manuscript, the right kidney lies a

little more cranially towards the left kidney, reaches the liver

surface and lies within the renal impression (Impressio renalis) of

the liver. Between the medial cranial pole of the kidneys and

the liver the triangularly shaped adrenal glands are located on

both sides (Figure 6D). On the left side of the abdomen the

stomach lies within the gastric impression (Imressio gastrica)

adjacent to the surface of the left lateral lobe, while the spleen

is located between the left kidney, the stomach, and left

abdominal wall.

Hepatic artery. The coeliac artery (Arteria coeliaca; Figure 6C)

arises from the abdominal aorta before the cranial mesenteric

artery (A. mesenterica cranialis, in humans the superior mesenteric

artery) and among others branches into the hepatic artery which

Figure 3. Saggital reconstructed micro-CT images. Micro-CT of the liver of a C57BL/6J mouse was performed 3 hours after injection of 100 ml of
a nanoparticular contrast agent (ExiTron nano 12000). The color-coding of the single liver lobes corrsponds to the color coding presented in Figure 1.
The slice orientation in relation to a coronal section is shown in the lower right corner.
doi:10.1371/journal.pone.0031179.g003

Murine Liver Anatomy Using Micro-CT
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runs cranially. Due to the limitations of in vivo micro-CT of the

hepatic artery we have been able to identify the proximal hepatic

artery, but cannot trace this vessel into the liver. However, the

branching pattern of the hepatic artery has been reported to

correspond with the branching of the portal vein and the billiary

ducts [35,36].

Figure 4. Axial reconstructed micro-CT images. Micro-CT of the liver of a C57BL/6J mouse was performed 3 hours after injection of a
nanoparticular contrast agent (ExiTron nano). The color-coding of the single liver lobes corrsponds to the color coding presented in Figure 1. The
orientation of the axial slices in relation to the spine is shown in the lower right corner.
doi:10.1371/journal.pone.0031179.g004

Figure 5. Liver variationes. A–C are comparable coronal sections of the murine liver illustrating the variability of the size of the papillary process
of the caudate lobe. D shows transdiaphragmatic herniation of parts of the right medial liver lobe, which we incidentally discovered during our
studies.
doi:10.1371/journal.pone.0031179.g005

Murine Liver Anatomy Using Micro-CT
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Portal vein. The portal vein drains blood from the gastro-

intestinal tract and spleen to the liver. The portal vein divides into

the right branch (Ramus dexter) draining into the caudate process

and the right lateral lobe (Figure 6A), and the left branch (Ramus

sinister). The left branch provides blood-flow into the right medial

lobe and divides into the umbilical part (Pars umbillicalis) for the

left medial lobe and the transversal part (Pars transversalis) for the

left lateral lobe. The NAV provides no specific nomenclature

for the small branch providing blood supply to the papillary

process.

Hepatic veins. The hepatic veins are not well described in the

NAV. Only a left, a right, and a medial hepatic vein are described.

However, using in vivo micro-CT angiography, more veins draining

into the inferior vena cava can be identified (Figure 7). To address this

problem we referred to the NAV to describe the side of the vein, and

added information on the draining territory (i.e. lateral or medial),

which matches the nomenclature of the right and the left liver lobe.

For the processes of the caudate lobe we extended the name of the

vein by adding the name of the drained lobe (i.e. the left papillary

hepatic vein).

The most caudally located vein draining the caudate process is

the right caudate hepatic vein. The next most cranially located

branch on the right side draining the right medial lobe is the right

medial hepatic vein, while the right lateral lobe is drained by the

right lateral hepatic vein.

The left lateral liver lobe is drained by the left lateral hepatic

vein. The left medial lobe is drained by the left medial hepatic

vein, that drains into the left lateral hepatic vein. The papillary

Figure 6. Perihepatic structures. A shows coronally reconstructed micro-CT images acquired 20 minutes after injection of 400 ml Fenestra VC. The
portal vein (arrowheads) runs in a caudocranial direction and divides into single veins supplying the liver lobes with blood from the abdominal
organs. The right branch (1; Ramus dexter) divides up into two non-specified branches supplying the right lateral lobe (colored green) and the right
caudate process (colored cyan). The left branch (2; Ramus sinister) divides into the umbillical part (3; Pars umbillicalis) and the transversal part (4; Pars
transversalis) draining the left medial lobe and the left lateral lobe, respectively. The vein supplying the right medial liver lobe (colored blue) is not
classified in the NAV. Spontaneous peristaltic movement of the portal vein is known to result in a corkscrew-like appearance of the vessel as shown in
B. The liver is supplied with arterial blood from the coeliac artery (arrow) arising from the aorta cranial of the cranial mesenteric artery (arrowhead), as
shown in C. The portal vein collecting blood from smaller abdominal vessels can be spotted directly ventral to the hepatic artery. D shows a coronally
reconstructed micro-CT, 21 days after injection of 100 ml Exitron nano 12000 showing relevant organs adjacent to the liver. The right kidney (1), the
left kidney (2), the spleen (3), the stomach (4; containing air bubbles), and the adrenal glands (arrow heads). The dotted lines indicate the renal
impression of the liver on the right side and the gastric impression on the left side.
doi:10.1371/journal.pone.0031179.g006
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process of the caudate lobe is drained by a small, separate branch

which would be termed the left papillary hepatic vein.

Billiary tract
Using contrast agents that are not being excreted via the biliary

tract, the only clearly identifiable part of the billiary system in micro-

CT images is the gall bladder, which is depicted in Figures 2, 3, 4.

Discussion

Searching the literature we found a limited number of

publications sparsely describing the macroscopic anatomy of

the murine liver [23,24,25,26,27,30]. In addition, we found no

existing publications referring to the increasingly available

imaging modalities. Within the publications that described the

macroscopic anatomy of the murine liver we noted a lack of

consistency in nomenclature [30,35]. Reasons for the inconsis-

tency in terminology includes the alternating use of Latin and

English terminology and, more problematic, inconsistency in

nomenclature of the structures between different authors

[9,24,26,27,37]. For example, while the left liver lobe (according

to the NAV) was correctly divided into the left lateral and left

medial liver lobe by Popesko et al. [27], other authors divided the

left liver lobe into the left lateral lobe and the left part of the

medial lobe [24,25,28,30]. Likewise, the lobes of the right side of

the murine liver have been found to be accompanied by different

adjectives including ‘‘posterior’’, ‘‘anterior‘‘, ‘‘inferior‘‘, ‘‘superi-

or’’, ‘‘upper’’ and ‘‘lower’’ by different authors [9,24,28,30,35,

37,38], again creating confusion.

The most serious differences exist in the terminology of the

quadrate lobe and the caudate lobe (with the latter one according

to the NAV being subdivided into the papillary process and the

caudate process). For example, some authors described the

caudate process (of the caudate lobe) as the caudate lobe [26,27]

or the right lower lobe [9], while other authors named the

papillary process as the caudate [23,24,25,28,30] or the omental

lobe [9], due to its anatomical surroundings.

To overcome the problems that may arise from the inconsistent

designation of the liver lobes we recommend using the

nomenclature in accordance with the Nomina Anatomica Veterinaria,

which was introduced in 1955 and since then has continuously

been updated by an international group of veterinarians.

Regarding the murine liver lobes we found the NAV to serve

almost perfectly (with the only exception that we found it difficult

to identify the quadrate lobe). However, there were some problems

in the most recent edition of the NAV from 2005 [31]. For

example, as noted in the results section, the nomenclature of the

draining veins of the liver, as described in the NAV, are not easily

transferrable to mice.

Photographs and schematic drawings are primarily used in

virtually all other publications dealing with the anatomy of

the murine liver. Although different three-dimensional mouse

atlases are available in book form [23,27,33] and online [39,40],

the precision of the anatomical description of the liver isn’t as

comprehensive as presented here. To better represent the

increasing use of small animal imaging modalities in liver

research, we present the anatomy of the murine liver using the

three typical radiological cut planes implemented in tomo-

graphic imaging which allows for a faster and better orientation

of the liver relative to other adjacent anatomical structures. This

might be helpful for anatomical studies or to reveal strain

differences, but also for animal models of human disease as

described in the introductory section and as exemplarily shown

in figure 8.

While our study aimed at providing a general overview of the

macroscopic anatomy of the murine liver, we did not investigate

differences related to mouse strain, gender, weight, or age. These

differences, however, have to be considered when trying to refer to

the anatomical descriptions presented in our manuscript.

Conclusion
The provided three-dimensional illustrations of the macroscopic

anatomy of the murine liver using micro-CT may promote clarity

and precision among scientists and veterinarians working in the

field of liver research and may be helpful as a reference for future

experimental research in this field.

Figure 7. Hepatic veins. Maximum intensity projection (MIP) of micro-CT images of the murine hepatic veins 20 minutes after injection of 400 ml
Fenestra VC. The color coding of the draining veins corresponds to the color coding used for the liver lobes before. The renal veins are indicated by
arrowheads.
doi:10.1371/journal.pone.0031179.g007
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