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Abstract

Safflower (Carthamus tinctorius L.) is one of the most extensively used oil crops in the world. However, little is known about
how its compounds are synthesized at the genetic level. In this study, Solexa-based deep sequencing on seed, leaf and petal
of safflower produced a de novo transcriptome consisting of 153,769 unigenes. We annotated 82,916 of the unigenes with
gene annotation and assigned functional terms and specific pathways to a subset of them. Metabolic pathway analysis
revealed that 23 unigenes were predicted to be responsible for the biosynthesis of flavonoids and 8 were characterized as
seed-specific oleosins. In addition, a large number of differentially expressed unigenes, for example, those annotated as
participating in anthocyanin and chalcone synthesis, were predicted to be involved in flavonoid biosynthesis pathways. In
conclusion, the de novo transcriptome investigation of the unique transcripts provided candidate gene resources for
studying oleosin-coding genes and for investigating genes related to flavonoid biosynthesis and metabolism in safflower.
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Introduction

Safflower (Carthamus tinctorius L.), one of the most extensively

used broadleaf plants in west Asia and China, is a source of

conjugated linoleic acid (CLA) and an important herbal medicine

with mild side effect [1]. Octadecadienoic acid, accounting for

about 80% of safflower seed oil, can regulate cholesterol and is

helpful in preventing cardiovascular disease [2,3]. The major

bioactive compound in safflower petals is flavonoid, which

reportedly has many different pharmacological effects including

preventing the occurrence of oxidation, inflammation, hyperten-

sion and cancer, and promoting blood circulation to dredge

collaterals [4,5]. In addition, safflower petals are commercially

produced for use in the coloring and flavoring of foods, and for

making dyes. Flavonoids include up to 5,000 kinds of secondary

metabolites that exist in many plant species. Hydroxysafflor yellow

A (HSYA), a chalcone glycoside, and safflor yellow B (SYB), a

quinochalcone glycoside, are common ingredients of the flavo-

noids in safflower that are widely extracted and extensively used

[6,7]. Although flavonoid is biologically important, its synthesis

pathways remain largely unknown. To date, no potential enzyme

involved in catalyzing flavonoid biosynthesis has been discovered

and annotated in safflower.

With the emergence of sequencing by synthesis (SBS) platforms,

transcriptome characterization and expressed sequence tags

(ESTs) analysis have become robust tools for identifying novel

genes involved in specific biological pathways [8]. Next-generation

sequencing provides not only large-scale identification of mRNA

but also primary insight into functional genes involved in

biological processes [9]. Solexa is a large-scale SBS platform that

has been widely used in plant species in attempts to discover

putative genes [10]. Safflower is a diploid plant whose genome has

not yet been sequenced; this limits the understanding of molecular

function and genomic structure in this plant. However, the de novo

transcriptome could be useful and cost-effective for distinguishing

transcripts, functional genes and for providing quantitative

estimates of gene expression.

Considering the importance of safflower and the little

knowledge that is available about its transcripts, we aimed to

study the de novo transcriptome of the safflower leaf, petal and seed.

We also aimed to identify the transcripts that were involved in the

biosynthesis of the flavonoids that exist mainly in the safflower

petal and partially in the leaf. As results, a total of 153,769

unigenes were generated by Illumina Solexa de novo sequencing

technology; 39,390 of the unigenes from the seed were assembled

into 68,889 scaffolds, 35,354 of the unigenes from the leaf were
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assembled into 51,702 scaffolds; and 60,628 unigenes from the

petal were assembled into 100,650 scaffolds. Furthermore, 23

candidate unigenes from the petal cDNA library were character-

ized to be responsible for the biosynthesis of flavonoids.

Additionally, 8 unigenes were putatively characterized as seed-

specific oleosins. The data and results from this study will help

drive novel functional gene discovery in researches into other plant

species.

Results

Reads generation and assembly
Three safflower cDNA libraries from seed, leaf and petal were

subjected to Solexa sequencing to explore their de novo transcrip-

tomes. After removing the low quality reads and trimming off the

adapter sequences, we obtained 60,269,546, 57,201,466 and

56,960,100 clean reads for the seed, leaf and petal transcriptomes

respectively. The average length of the reads was 75 bp. An

overview of the sequencing and assembly is given in table 1. All the

short reads were deposited in the National Center for Biotech-

nology Information (NCBI) and can be accessed in the Short Read

Archive (SRA) (accession number SRA047279.2).

Because no reference genome sequence was available for

safflower, all the clean reads (174,431,112) were assembled using

SOAPdenovo [11]. 516,414 contigs (length .100 bp) were

obtained ranging from 101 to 7,600 bp in length; the average

size exceeded 235 bp. Assembled reads of the seed, leaf and petal

accounted for 29.56% (average length 249 bp), 22.69% (307 bp)

and 47.75% (235 bp) of the corresponding clean reads, respec-

tively. The size distribution of the contigs is shown in figure 1A.

A total of 221,241 scaffolds were further assembled using the

pair-end information of the assembled contigs. The total numbers

of scaffold .200 bp long generated in the seed, leaf and petal

libraries was 68,889 (average length of 499 bp), 51,702 (653 bp)

and 100,650 (528 bp), respectively. Because the scaffolds were

obtained from contigs using pair-end alignment, it was easier to

estimate their length; however, the shortage was that part of

scaffolds contained gaps. The percentage of gaps within scaffolds

sequences ranged from min 1% to max 62.7%. In the seed, leaf

and petal libraries, 25,206, 18,205 and 44,659 sequences were

derived from high quality assembled scaffolds respectively. The

size distribution of the scaffolds is shown in figure 1B.

The scaffolds were further assembled into unigenes with pair-

end annotation. In total, 153,769 unigenes were generated from

the seed, leaf and petal libraries of which 39,190 (average length of

692 bp), 35,154 (840 bp) and 60,628 (713 bp) were more than

300 bp long, respectively. The gapped sequences ranged from min

1% to max 62.7%, including 17,586, 11,829 and 30,361 sequences

in seed, leaf and petal, respectively. The size distribution of the

unigenes is shown in figure 1C.

Functional annotation
A set of 153,769 unigenes were annotated using BLASTX and a

variety of protein databases taking into account the identity

between the unigene sequence and the sequence in the database (E

value,0.00001). A total of 82,916 (53.92%), 52,842 (34.36%),

28,538 (18.56%) unigenes were aligned against the Nr, SWISS-

PROT, and COG databases, respectively. The unmatched

unigenes may represent tissue-specific novel genes.

We used the GO (gene ontology) functional annotations from

these databases to assign molecular function, cellular component

and biology process terms to the safflower unigenes (figure 2). As a

result, some of the genes in the seed, leaf and petal libraries were

annotated with GO terms and 12,230 unigenes were assigned at

least one GO functional category. The most abundant unigene

GO terms were related to cellular components or to the molecular

function of catalysis, indicating that these genes were enriched in

the safflower transcriptome libraries. In addition, of the transcripts

annotated with biological process terms, the most common were

response to stimulus and response to stress.

Candidate genes from the seed transcriptome involved
in oleosin biosynthesis

In sunflower (Helianthus annuus L.), oleosin was reported to

prevent the degradation of the seed oil body, particularly during

seed desiccation [12], because it does not provide a binding site for

the lipases that digest the oil body. A number of cDNAs encoding

oleosins have been cloned from different plant seeds including

Arabidopsis thaliana, sunflower (H. annuus), maize (Zea mays), rape

(Brassica napus), and safflower (C. tinctorius L.) [13]. In the

transcriptome of the safflower seed we identified eleven unigenes,

unigene24748, unigene24871, unigene29297, unigene42440 and

unigene76676, unigene76868, unigene80266, unigene83809, uni-

Table 1. The summary of sequencing and assembling results.

Sample
HQ sequences
(n)

total bases
(bp)

average length
(bp)

gap sequences
(n)

gap distribution
(N/size)

reads length = 75 seed 60,269,546 4,520,215,950 75 - -

leaf 57,201,466 4,290,109,950 75 - -

petal 56,960,100 4,272,007,500 75 - -

contig length.100 seed 152,639 38,007,111 249 - -

leaf 117,195 35,978,865 307 - -

petal 246,580 57,946,300 235 - -

scaffold length.200 seed 68,889 34,375,611 499 25,206 0.01–0.554

leaf 51,702 33,761,406 653 18,205 0.01–0.565

petal 100,650 53,143,200 528 44,659 0.01–0.627

unigene length.300 seed 39,190 27,119,480 692 17,586 0.01–0.485

leaf 35,354 29,697,360 840 11,829 0.01–0.395

petal 60,628 43,227,764 713 30,361 0.01–0.464

doi:10.1371/journal.pone.0030987.t001
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gene83847, unigene120350 and unigene141701, that were

annotated as candidate oleosins (table S1). These eleven unigenes

may be involved in seed lipid storage and were selected for further

analysis. The amino acid sequences of oleosins always have a

central hydrophobic domain that is highly conserved between

species. Therefore, it is likely that this domain is essential for

oleosin function and it is thought to be inserted into the

hydrophobic core of the oil body. Multiple sequence alignment

of the translated amino acid sequences of these unigenes revealed

that unigene80266, unigene83847 and unigene76868 had a

Figure 1. Overview of the sequencing and assembly of the safflower transcriptome. A. Overview of contig assembly. B. Overview of
scaffold assembly. C. Overview of unigene assembly.
doi:10.1371/journal.pone.0030987.g001
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hydrophobic domain in their sequences. These three unigenes

were regarded as candidate oleosins that may be involved in the

biosynthesis of octadecadienoic acid and they will be subjected to

further research.

Candidate genes from the petal transcriptome involved
in the flavonoid biosynthesis pathway

Biological pathways, including metabolic pathways, signal

transduction pathways, and genetic information processing

pathways, were identified by KEGG pathway analysis of the

unigenes. A total of 219 pathways were evaluated and some of the

significant pathways that we found are listed in table S2.

Significant pathways containing a large number of unigenes were

pathways for photosynthesis, amino acid metabolism, histidine

metabolism, and pathways for the biosynthesis of polyketide sugar

unit, anthocyanin, betalain, carotenoid and indole, and flavone

and flavonol.

Flavonoid is generally synthesized via the flavonoid biosynthesis

pathway. 156 unigenes were annotated as encoding enzymes

involved in flavonoid synthesis based on the KEGG pathway

assignments (figure 3) and we investigated some of them. Chalcone

synthase, an important enzyme involved in the flavonoid

biosynthesis pathway, catalyzes the conversion of cinnamoyl-

CoA to pinocembrin chalcone. It was reported that chalcone is a

major ingredient of flavonol and that it plays an important role

in flower development [14]. 17 unigene sequences (including

unigene34109, unigene46610, and unigene53415 from the petal

and leaf libraries were annotated as chalcone synthase. Chalcone

isomerase is another important enzyme in the flavonoid biosy-

nthesis pathway that catalyzes the conversion of pinocembrin

chalcone to pinocembrin, a substrate of galangin synthesis.

Altogether, we identified four unigenes as promising candidate

chalcone isomerases. No genes encoding enzymes related to

hydroxysafflor yellow were identified among the unigenes that we

identified as candidate genes in the safflower flavonoid biosynthesis

pathway. However, a number of unigenes related to enzyme

families involved in flavonoid biosynthesis were identified, and

these might prove to be potentially helpful for hydroxysafflor

yellow enzyme discovery in the future (figure 4).

Transcripts differentially expressed in the seed, leaf and
petal libraries

To investigate the expression patterns of tissue-specific unigenes

in the seed, leaf and petal libraries, the numbers of reads

assembled from each library were evaluated separately for each

unigene. We found that most of the unigenes involved in protein

biosynthesis and biological regulation were highly expressed.

These genes were mainly annotated as cellular development, for

example, unigene19622 involved in protein synthesis was

expressed almost equally and ubiquitously throughout the seed

(637 reads), leaf (501 reads) and petal (588 reads). As expected,

seed-specific unigenes were highly expressed only in the seed

library; for example, unigene24748 annotated as oleosin was

highly expressed (121,878 reads) in the seed and only slightly

expressed in the leaf (639 reads) and the petal (107 reads); the

expressions of unigene24871 and unigene29297 were similar. This

expression pattern of the candidate oleosin genes is consistent with

the earlier observations that oleosins are detected only in the seed

of plants. The unigenes that were found to be highly expressed in

all three libraries are likely to play important roles in growth and

metabolism (e.g. unigene96376, unigene137965, and uni-

gene14674). Other transcripts that were expressed differently in

the three libraries (e.g. unigene64133, unigene82122, and

unigene23361) may be involved in tissue-specific functions.

To characterize the differentially expressed unigenes in the

transcriptome of safflower, we compared the three libraries in

pairs of two with the following criteria: absolute value of log2ratio

.1.0 and P value,0.001). Expression differences between the

seed and the leaf libraries revealed that 43,319 unigenes (28.17%

of all unigenes) were differentially expressed; 25,157 were up-

regulated and 18,162 were down-regulated (figure 5). Among the

up-regulated ones, 5,819 unigenes (13.43% of differentially

expressed unigenes) were significantly differentially expressed.

The most significant change in expression was for unigene144784

Figure 2. GO categories assigned to the safflower unigenes.
doi:10.1371/journal.pone.0030987.g002
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which was 16.36 fold more highly expressed in the seed than in the

leaf. The second was for unigene58978, annotated as double layer

of lipid molecules involved in enclosing cells, which was 16.2 fold

more highly expressed in the seed than in the leaf. Compared with

in the leaf, in the seed, of the 3,226 down-regulated unigenes,

those with log2ratios between 1 and 2 formed the largest group

(17.76%). The expression of unigene87898, annotated as a

chlorophyll-containing plastid, was 21.52 fold lower in the seed

than in leaf. When we compared expression differences between

the petal and seed libraries, we found that 84,008 unigenes

(54.63% of all unigenes) were differentially expressed; 58,351 were

up-regulated (69.46% of the differentially expressed sequences)

and 25,657 were down-regulated. The log2ratio fold changes were

from 1 to 17.15 (figure 5). The majority (5,015) of down-regulated

genes showed changes in expression between one and two fold,

similar to what we found when comparing the seed and leaf

libraries. The most significant expression difference was for

unigene56205, annotated as a regulator of cellular transcription,

which was 16.9 fold lower in the petal than in the seed. Of the up-

regulated unigenes, unigene21406, annotated as involved in the

catalysis of the transfer of groups such as methyl group, glycosyl

group, acyl group and phosphorus-containing, was 21.02 fold

more highly expressed in the petal than in the seed. Most unigenes

that showed expression changes of only 1 or 2 fold were annotated

Figure 3. Unigenes predicted to be associated with flavonoid biosynthesis.
doi:10.1371/journal.pone.0030987.g003

Figure 4. Unigenes predicted to be involved in the flavonoid biosynthesis pathway. Red indicates significantly increased expression; gray
indicates genes that were not identified in the expression profile analysis; blue indicates unigenes predicted to be involved in the pathway.
doi:10.1371/journal.pone.0030987.g004
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to be involved in common metabolic processes, such as

carbohydrate metabolism; however, unigene5517 (1.15 fold more

highly expressed in the petal than in the seed) was annotated as

responsible for pigmentation which mostly takes place in the petal.

Finally, we found that the expression changes of many of the genes

that were related to metabolic pathways were significant between

Figure 5. Unigenes that were differentially expressed in the seed, leaf and petal libraries.
doi:10.1371/journal.pone.0030987.g005
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the leaf and petal. We found that 71,994 unigenes (54.63% of all)

were significantly differently expressed in the leaf compared to the

petal; 54,483 were up-regulated and 17,511 were down-regulated.

These differentially expressed unigenes include genes that were

predicted to be involved in carbohydrate, amino acid, lipid, and

secondary metabolite metabolism. For example, the expression of

unigene76334, which was annotated as helicase RecG that

functions in DNA recombinase and cell growth [15], was 16.98

fold more highly expressed in the leaf compared with the petal.

The expression of unigne135951, annotated as glutathione S-

transferase that plays a role in metabolism and stress tolerance,

was 18.53 fold lower in the leaf than in the petal.

To investigate the oleosins of seed, we observed the expression

levels of oleosins among seed, leaf and petal libraries. Among the

unigenes annotated as oleosins mentioned above, unigene24748

and unigene80266 were found to show significant expressions level

in seed compared with leaf and petal. We represented the

expression level of unigene24748 as 2542.92 RPKM (reads per

kilobase of transcript per million reads) in the seed, 13.728 RPKM

in the leaf and 2.856 RPKM in the petal. The expression level of

unigne80266 was 2658.81 RPKM in the seed, 123 fold higher

than in the leaf; this transcript was not found in the petal. Thus,

the GO annotation of oleosin for our transcripts is in line with

studies that have reported that oleosin is specifically expressed in

the seed. In addition, some of the unigenes that were annotated as

storage proteins had similar expression characteristics as the

candidate oleosins.

The predicted biosynthesis pathways for the unigenes were

different in the different tissue libraries and most of the unigenes

involved in these pathways were differentially expressed. In

particular, we found that the numerous genes predicted to be

involved in flavonoid biosynthesis were significantly up or down-

regulated in specific tissues. This is consistent with the earlier

observations that flavonoids are, for the most part, found in the

petal. A number of unigenes, closely related to the chalcone

synthase, that were predicted to be involved in the flavonoid

biosynthesis pathway were also found to be up-regulated in the

petal library. In particular, the expression levels of unigene46610

and unigene53415, annotated as enzymes that catalyze the

conversion of cinnamoyl-CoA to pinocembrin chalcone, were

greatly changed. Significantly, unigene53415 was expressed only

in the petal. Unigenes annotated as related to chalcone isomerase

and beta-carotene hydroxylase were up-regulated in the petal.

Only unigene75439, annotated as naringenin 3-dioxygenase and

predicted to be involved in flavonoid biosynthesis, was down-

regulated in this pathway.

qRT-PCR validation
To confirm the results of the Solexa/Illumina sequencing,

thirteen unigenes were selected for quantitative RT-PCR assays.

The selected thirteen unigenes showed differential expression

patterns related to seed, leaf and petal. We found that qRT-PCR

validation of one unigene (unigene5517) was not consistent with

sequencing results. Expressions of twelve genes were consistent

between the qRT-PCR and the Solexa analyses (figure 6). Five

genes annotated to oleosin were validated as being highly

expressed in seed; (unigene76676 and unigene83809 responsible

for storage of seed lipid, unigene76868 and unigene83847 with

hydrophobic core of oil body, unigene24871 identified as a

putative oleosin gene). Three tissue-specific genes were also

validated: unigene82122 annotated as a putative seed-specific

protein; unigene64133 identified as a leaf-specific function; and

unigene21406, a high expressed gene related with catalysis in

petal. In addition, unigene46610 encoding a protein that was

predicted to catalyze the cinnamoyl-CoA to pinocembrin chalcone

conversion, and unigene135951 annotated as a glutathione S-

transferase was also up-regulated in petal. The differential

expressed patterns of unigene10029 and unigene14674 (up-

regulated in leaf compared with in petal and seed) were consistent

between qRT-PCR and Solexa analyses.

Discussion

Here we report the results of deep sequencing aimed at

obtaining transcript coverage of safflower using the Solexa high-

throughput sequencing platform. Previously, Solexa was used to

estimate gene expression, for small RNA exploration, and to

obtain transcriptome coverage. More recently, large scale of

transcriptome analysis based on deep sequencing has been used in

gene discovery, the analysis of specific transcripts, and the

estimation of overall gene expressions at different development

stages and/or in different tissues. In studies of maize, transcrip-

tome analysis has contributed to the annotation of the genomic

sequence [16,17]. Solexa is a cost-effective and efficient DNA

sequencing approach that has been used to study grape (Vitis

amurensis) [10], yellow croaker [18], Salvia miltiorrhiza [19], and

Populus euphratica [20], producing data on differentially expressed

genes or genes probably associated with potential or novel

pathways. Illunima/Solexa estimates gene expression by deter-

mining the frequency of EST tags making it one of the most

popular tools for gene discovery.

Genome and transcriptome resources for safflower were not yet

available. We have analyzed the de novo transcriptome of some of

the tissues of safflower and obtained a large amount of sequence

information. Here we report the results of a single run of Solexa

with cDNA amplified from safflower seed, leaf and petal which

produced 60,269,546 reads from the seed, 51,702 reads from the

leaf and 100,650 reads from the petal. Short reads of 75 bp on

average were sufficient to make it possible to annotate more than

153,769 unigenes. From these unigenes we identified 39,190

sequences of more than 300 bp in the seed library and a similar

large number in the other two libraries. Our de novo analysis

identified 43,319 unigenes that were differentially expressed in the

seed and leaf, indicating that tissue-specific diversities in seed

remain to be further explored. Similar results were observed in the

leaf and petal. This result is similar to an earlier study of grape

[10].

In the previous study of maize brace root [21], transcriptome

dynamics associated with root development were investigated.

Millions of transcripts were generated from the stem node tissues

and the most differentially expressed tags and the most enriched

functional categories were putative protein, metabolism, signal

transduction and cellular transport, suggesting that the develop-

ment of plant tissue is complicatedly regulated requiring the

participation of many transcription factors. In the present study,

the unigenes annotated as oleosins (e.g. unigene24748, uni-

gene24871, and unigene29297) were highly expressed only in

the seed library. It has been reported previously that oleosin is

specifically expressed in the seed [22] where it is embedded in the

oil body [23] maintaining its morphology [24]. An earlier study

also reported that oleosin was most abundantly expressed in the

seed [25] of safflower and they were significantly more highly

expressed in the seed library with read numbers of more than

several thousand. These studies all indicate the importance of the

oleosins in the developing and mature oil body where they play a

role in stabilizing fatty acid storage in seeds. Oleosins have a

hydrophobic central domain and a proline motif at the C-terminal

domain of the amino acid sequence [26]. In the present research,

Transcriptome of Safflower
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our sequence analysis indicated that three of eleven candidate

oleosins (unigene80266, unigne83847 and uninge76868) had

hydrophobic amino acid sequences, demonstrating that the

Illumina/Solexa platform produced sequences that were, for the

most part, highly accurate.

A large number of differentially expressed genes involved in

flavonoid biosynthesis pathways, such as the genes annotated as

participating in anthocyanin synthesis and chalcone synthesis,

were also found in the present study. Chalcone synthase is the first

enzyme in the flavonoid biosynthesis pathway ([27,28]. We

analyzed the expression pattern of 17 novel transcripts related to

chalcone biosynthesis and found that most of them were down-

regulated in the leaf compared with the petal. We proposed that a

sharp increase of transcripts encoding the chalcone synthase might

be required for flavonoid biosynthesis in petal because flavonoid

composition in mainly responsible for alterations in fruit color and

where it is essential for pollen tube growth and germination

[29,30]. Several important genes related to chalcone biosynthesis

that were highly expressed in petal were also identified in the

safflower unigene dataset. Therefore, the identified changes in

gene expression in safflower that facilitate the synthesis of

flavonoid may help in the identification of related genes.

In conclusion, the identification of genes involved in oleosin

biosynthesis will contribute to future functional studies in the plant

and provide a basis for improving production levels in plants or in

microbial hosts by metabolic engineering. In our data set, we

identified transcripts that encode all the known enzymes involved

in the biosynthesis of the flavonoids and established a gene pool

containing flavonoid related unique sequences. Further, we

annotated a large number of genes involved in the biosynthesis

of secondary metabolites and identified a large number of putative

genes that may be involved in secondary metabolism pathways.

The data set of assembled safflower unigenes presented here will

provide the foundation for other functional and comparative

genomic studies.

Materials and Methods

Sample culture and sequencing preparation
Safflower seeds (kindly provided by Runkang Traditional

Chinese Medicine Institute, Heze, Shandong, China) were

cultivated in a climatron with the following conditions: temper-

ature 26uC (day) and 20uC (night); humidity 80%; light for 16 h

(intensity of illumination at a constant 30,000 lx) and dark for 8 h.

Figure 6. qRT-PCR validation of the selected unigenes.
doi:10.1371/journal.pone.0030987.g006

Transcriptome of Safflower
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Mature seeds, petals in full bloom and flourish leaves were stored

at 280uC for further use. Total RNA was extracted separately

from the seeds, petals and leaves using Trizol (Invitrogen, USA)

following the manufacturer’s protocol.

20 mg of total RNA was prepared for Solexa sequencing.

Magnetic beads with polyT oligos attached were used for purifying

the mRNA from the total RNA. Then the mRNA was cleaved into

small fragments with divalent cations at elevated temperature. The

fragments were used to synthesize first-strand cDNA using random

hexamer adaptors and reverse transcriptase (Invitrogen, USA).

Second-strand cDNA was synthesized with RNase H (Invitrogen,

USA) and DNA polymerase I (NEB, USA). Fragments of 300 bp

with 200 bp insertions were isolated on separation gels. Read

lengths of 75 bp were produced using an Illumina GA IIx

following the manufacturer’s protocol.

Sequence annotation
Clean reads were obtained by deleting the empty reads, the

adaptor sequences, and the low-quality sequences. The clean reads

were assembled into contigs and scaffolds based on pair-end

information using SOAPdenovo (http://soap.genomics.org.cn/

soapdenovo.html). Functional annotation of the unigenes was

performed by running our assembly against the NCBI Nr, COG

(http://www.ncbi.nlm.nih.gov/COG) and KEGG (http://www.

genome.jp/kegg/) databases using BLAST (E-value,1.0e25). The

proteins from NCBI Nr database with the highest sequence

similarity to the unigenes were used to assign functional

annotations to the genes. The GO (Gene Ontology) annotations

for the unigenes were determined by Blast2GO [31]. We then

used the WEGO software [32] to analyze the GO functional

classification for all the unigenes. The expression level of each

unigene was estimated by the frequency of clean reads in the

corresponding sample.

Real-time quantitative RT-PCR (qRT-PCR) analysis
Expression of the selected candidate genes was determined

using qRT-PCR. Tissue samples were removed from the freezer

and ground in liquid nitrogen. The first-strand cDNA fragment

was synthesized from total RNA using a Super RT Kit (BioTeke,

China). Gene-specific primers were designed base on the gene

sequences using Primer express software. Fifteen primer pairs were

designed to amplify 20 target genes. Using the obtained sequences,

gene specific primers were designed for each target gene for qRT-

PCR (table S3). The qRT-PCR was performed with a Stratagene

Mx3000P instrument (Agilent, USA) in a final volume of 25 ml

containing 2 ml of cDNA, 12.5 ml 26 SYBR premix Ex taqTM

(Takara, Japan), and 10 mM of the forward and reverse primers.

The thermal cycling conditions were as follows: 40 cycles at 95uC
for 5 s for denaturation and 60uC for 20 s for annealing and

extension. The 18 s rRNA gene was used to normalize gene

expressions [33,34]. The relative changes in gene expression levels

were calculated using the 22DDCt method.
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