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Abstract

Osteosarcoma is the most common primary malignancy of bone. The tumours are characterized by high genomic instability,
including the occurrence of multiple regions of amplifications and deletions. Chromosome region 17p11.2-p12 is amplified
in about 25% of cases. In previous studies, COPS3 and PMP22 have been identified as candidate oncogenes in this region.
Considering the complexity and variation of the amplification profiles for this segment, the involvement of additional
causative oncogenes is to be expected. The aim of the present investigation is to identify novel candidate oncogenes in
17p11.2-p12. We selected 26 of in total 85 osteosarcoma samples (31%) with amplification events in 17p11.2-p12, using
quantitative PCR for 8 marker genes. These were subjected to high-resolution SNP array analysis and subsequent GISTIC
analysis to identify the most significantly amplified regions. Two major amplification peaks were found in the 17p11.2-p12
region. Overexpression as a consequence of gene amplification is a major mechanism for oncogene activation in tumours.
Therefore, to identify the causative oncogenes, we next determined expression levels of all genes within the two segments
using expression array data that could be generated for 20 of the selected samples. We identified 11 genes that were
overexpressed through amplification in at least 50% of cases. Nine of these, c170rf39, RICH2, c170rf45, TOP3A, COPS3, SHMT1,
PRPSAP2, PMP22, and RASD1, demonstrated a significant association between copy number and expression level. We
conclude that these genes, including COPS3 and PMP22, are candidate oncogenes in 17p11.2-p12 of importance in

osteosarcoma tumourigenesis.
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Introduction

Osteosarcoma is the most frequent primary bone tumour in
children and adults with a peak incidence in adolescence and a
second smaller peak after age 50 [1]. The tumours develop mainly
in regions with high osteoblastic activity like the metaphyseal
regions of the long bones, including the distal femur, proximal
tibia and proximal humerus [2]. Primary osteosarcomas arise from
primitive mesenchymal cells producing osteoid [3]. The main site
of metastasis is the pulmonary region and the metastasized
secondary tumours, present at presentation in 10-20% of patients,
are often the cause of death [4]. The introduction of pre- and
postsurgical chemotherapy has increased survival dramatically
during the last three decades, reaching five-year survival rates of
60-75% for patients with localized disease [5,6]. However, further
improvements in survival rate are obviously needed. One way to
accomplish this is the identification of molecular biomarkers for
osteosarcoma, which may be used for the improvement of
diagnosis and as possible targets for therapy.

Osteosarcomas are genetically characterized by high genomic
instability, including a high degree of aneuploidy, the presence of
unbalanced chromosomal rearrangements, and the occurrence of
multiple amplified or deleted segments (reviewed by Sandberg and
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Bridge [7]). Despite this genomic complexity, chromosomal and
array comparative genomic hybridization (CGH) studies have
revealed a limited number of chromosomal regions that are
consistently involved in high copy number gain or amplification
events, including 6p12-p21, 8924, and 17p11.2-p12 [8-10]. These
regions are expected to contain one or more oncogenes of which
the amplification-induced overexpression is important for osteo-
sarcoma tumourigenesis. Indeed RUNX2 and CDCSL, both
encoding cell cycle regulators, in 6pl12-p21, and MYC in 8q24
have already been identified as likely candidate oncogenes for
osteosarcoma in these chromosomal segments [11-13]. In an
carlier small-scale study, we found genes COPS3 in 17p11.2 and
PMP22 in 17pl2 to be most consistently overexpressed after
amplification in osteosarcomas, making these genes candidate
oncogenes in that segment [14]. However, due to technical
restrictions, the expression status of only about 60 genes and
expressed sequence tags in the amplified region could be analyzed.
Moreover, the available (chromosome and array) CGH and
microsatellite marker data from us and others did not allow an
accurate demarcation of the amplified segments within 17p11.2-
pl2 in the analyzed tumours [8-10,15-19].

Recent studies in other tumour types suggest that amplicons
may contain multiple oncogenes that can act independently or
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cooperatively [20,21]. In order to identify all possible candidate
oncogenes in the 17p11.2-p12 region, we performed a detailed
amplification and expression profiling of this segment in
osteosarcomas. To increase the sensitivity of our assays, we
restricted our analyses to tumours that were selected for the
presence of amplification events in that region.

Materials and Methods

Osteosarcoma samples and osteoblasts

Eighty-five osteosarcomas were selected form a collection,
which was established over a period of 15 years (1993-2008) at
the Academic Medical Center in Amsterdam. Age of the patients
(53% male/47% female) ranged from 6 to78 (median 16). For
those in the 17p-selected group (40% males/60% females) age
ranged from 6 to 58 (median 16). All osteosarcoma samples were
checked for high (>90%) tumour cell content by an experienced
pathologist (J.B.). Human primary fetal osteoblasts were cultured
in osteoblast basal medium with osteoblast growth supplement

(Cell Applications, Inc, San Diego, CA USA).

Ethics statement

The research was performed at the Department of Genome
Analysis of the Academic Medical Center (AMC), Amsterdam,
The Netherlands. Clinical samples were irreversibly anonymised
and results of scientific research could not be linked to individual
patients. The Committee Medical Ethics of the Academic Medical
Center specifically waived approval for this study because it falls
under paragraph 7:467 Civil Law Code of The Netherlands.

DNA and RNA extraction

Tumour tissue samples were cut in 10 pm sections. These were
collected in alternate fashion for DNA and RNA isolation.
Genomic DNA was isolated with proteinase K digestion and
chloroform extraction according to standard methods. For RNA
extraction, fetal osteoblasts were cultured to 90% confluency.
Total RNA was extracted from tumour tissue sections and
cultured osteoblasts using the Trizol method (Invitrogen, Breda,
The Netherlands) and additionally purified according to the
RNeasy protocol (Qiagen, Venlo, The Netherlands). RNA quality
was assessed using the BioAnalyzer (Agilent Technologies Inc,
Palo Alto, CA, USA). Only samples with RNA Integrity Number
(RIN) score higher than 7.5 were used for subsequent analyses.

Quantitative Real-Time PCR

For gene dosage measurements, quantitative PCR (QPCR) was
performed using the LightCycler 480 Real-Time PCR system
(Roche, Almere, The Netherlands) according to the manufac-
turer’s instructions. Target gene dosages in the tumour tissue
samples were normalized against reference gene ALB. Primers
and probes for the target genes and reference gene were
designed using the UniversalProbe Library Assay Design Center
(Roche, http://www.roche-applied-science.com/sis/rtpcr/upl/
ezhome.html) and are listed in Supplemental Table S1. Primers
were tested n-silico for specificity (http://www.genome.ucsc.
edu/cgi-bin/hgPcr) and on agarose gels for single band
amplification. All PCR reactions were performed in triplicate.
Normalized ratios were calculated using the Relative Quantifi-
cation software, provided by the manufacturer, and normal
blood as reference. A normalized ratio of 1 is equivalent to the
presence of two copies of a target gene in the tissue under study.
Amplification was defined as target gene copy number >3.5 in
the tumour sample.
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Quantitative Real-Time RT-PCR

Quantitative reverse transcription (RT) PCR was used for
measurement of mRNA expression levels of genes. For this
purpose, total RNA (0.5 ug) was reverse transcribed into cDNA by
oligo-dT or random priming, according to standard methods. The
cDNA content of target genes in the tumour tissue samples was
normalized against that of reference gene SDHA. Design of
primers and probes, listed in Supplemental Table S2, specificity
testing, and PCR reactions were performed as described for the
qPCR method. Fold changes in the expression of target genes were
calculated as described above, using cultured human fetal
osteoblasts as reference. Target genes that showed a 2-fold or
more increase in expression in the tumour sample compared to the
expression in the osteoblasts sample were considered to be
overexpressed.

Single nucleotide polymorphism (SNP) array analysis
DNAs extracted from tumours with significant amplifications in
17p11.2-p12 were analyzed for whole-genome copy number
variation by using Illumina HumanCNV370-Quad BeadChips.
The arrays contain probes for 373,397 SNPs. Processing of DNA
samples, hybridization, staining, and scanning of the BeadChips,
and primary data extraction were all performed according to the
Ilumina Infinium II protocol at the array facility of ServiceXS
(Leiden, the Netherlands). Scoring of genotypes was done using
the standard cluster file from Illumina. The arrays were analyzed
with Illumina GenomeStudio software (version 2009.2). The LogR
ratio (LRR) and the B allele frequency (BAF) data were processed
into the OverUnder plugin as described by Attiyeh et al [22], and
copy numbers were calculated using Illumina BeadStudio (version
3.2.2). The OverUnder algorithm calculates copy numbers of
tumours based on the allelic imbalance and signal intensities and
corrects for aneuploidy. The resulting copy numbers calculated for
each SNP were then used as input for Gain and Loss Analysis of
DNA (GLAD) [23]. GLAD detects the altered regions in the
genomic pattern and assigns labels of ‘“normal”, “gained” or
“lost” to the segmented data. These output data were used as
input for Genomic Identification of Significant Targets in Cancer
(GISTIC) analysis [24]. This program identifies and analyses
significant chromosomal aberrations across a set of tumour
samples, based on the amplitude of the aberrations as well as
their frequency of occurrence across the samples and calculates a
value for this significance, called the G-score. Multiple hypothesis
testing was accounted for using False Discovery Rate (FDR) g-
value statistics. A cutoff g-value of 0.25 was used to select
significant regions. The SNP data are described in accordance
with MIAME guidelines and have been deposited in the NCBI’s
GEO Omnibus database under accession number GSE32964.

Expression microarray analysis

RNAs extracted from tumours with significant amplifications in
17p11.2-p12 and from human fetal osteoblasts were analyzed for
whole genome gene expression analysis using Illumina Hu-
manHT-12 v3 Expression Beadchips. Each array contained
48,804 probes, spanning the entire human transcriptome.
Labeling of RNA samples, hybridization, staining, and scanning
of the Beadchips, and primary data extraction were all performed
according to the Illumina Infinium II protocol at the array facility
of ServiceXS (Leiden, the Netherlands). Fold changes in
expression of a probe were determined by normalizing the
intensity of the average signal in the tumour sample against the
average signal in the osteoblasts sample. The expression micro-
array data are described in accordance with MIAME guidelines

January 2012 | Volume 7 | Issue 1 | e30907



and have been deposited in the NCBI’s GEO Omnibus database
under accession number GSE32964.

Results

SNP array analysis identifies two significant amplicons in
17p11.2-p12

To select for osteosarcoma samples with amplification events in
the 17p11.2-p12 region, we performed qPCR for test genes SCOI
at 10.6 Mb (p12), MAP2K4 at 11.9 Mb (p12), MYOCD at 12.6 Mb
(p12), COX10 at 14.0 Mb (p12), PMP22 at 15.1 Mb (p12), NCORI
at 16.1 Mb (p11.2-p12), COPS3 at 17.2 Mb (p11.2), and TOMIL2
at 17.8 Mb (pl1.2) on 85 tumours. Twenty-six osteosarcomas
displayed amplification events (normalized copy number >3.5) for
one or more of the test genes. These samples were subjected to
whole genome high-resolution SNP array analysis using Illumina
HumanCNV370-Quad BeadChips. The arrays were analyzed
with Illumina GenomeStudio software. The resulting LogR ratio
(LRR) and the B allele frequency (BAF) data for all SNPs were
processed into the OverUnder plugin [22], and absolute copy
numbers were calculated using Illumina BeadStudio (see Materials
and Methods for details). Amplified regions were found on
chromosomes 1, 5-8, 11, 14, 16, 17, 19, and 20 (sex chromosomes
excluded). Large deletions were limited to chromosomes 3, 5, 6, 9,
10, and 13. A comparison of the genome-wide copy number
profile of these selected tumours with that of unselected
osteosarcomas will be presented elsewhere (Both e al, in
preparation). Representative chromosome 17 copy number
profiles of three osteosarcoma samples (OS2, OS11, OS20) are
shown in Figure 1. OS2 exhibits multiple amplification peaks in
17p, superimposed on copy number increases for whole
chromosome 17. Figures 1B and 1C show localized amplification

16.00

Novel Candidate Oncogenes in Osteosarcoma

events on 17p and diploid copy numbers for the other parts of
chromosome 17. The 17p copy number profiles in the other
selected osteosarcomas often proved to be complex, as in sample
OS2, but always included 17p11.2 and/or 17p12. To determine
the most significantly amplified segments in these profiles, we
subjected the whole genome copy number data to Genomic
Identification of Significant Targets in Cancer (GISTIC) analysis.
This method identifies regions that are aberrant (amplified or
deleted) more often than would be expected by chance, and gives
greater weight to high-amplitude events [24]. The whole genome
GISTIC amplification analysis is shown in Figure 2A, a detailed
view for chromosome arm 17p is presented in Figure 2B. As
expected, the amplification event on chromosome arm 17p
(marked by 17p11.2) proved to be most significant, as this was
the condition of inclusion. The GISTIC amplification profile also
demonstrates significant peaks for chromosomal regions 6p12.3,
8q24.21, and 19q12, containing the recently identified ostosar-
coma candidate oncogenes RUNX and CDCLS5, MYC, and CCNEI,
respectively [11-13,25]. The detailed GISTIC analysis for 17p
shows a minimal significant amplified segment in the 17p11.2-p12
region, with two major peaks centered on 13.5 and 17.2 Mb,
respectively. The positions of PMP22 and COPS3, which we
previously suggested as candidate oncogenes in this region, are
indicated.

Integration of copy number and expression data for
genes in 17p11.2-p12

Overexpression as a consequence of gene amplification is a
major mechanism for oncogene activation in tumours [26,27].
Thus, the candidate oncogenes in the 17p11.2-p12 region should
be found to be overexpressed in a significant fraction of the
tumours in which they were amplified. In addition, the
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Figure 1. Representative examples of copy number (CN) changes along chromosome 17 in osteosarcomas OS2, OS11, and 0S20.
SNP-array data were processed using the OverUnder algorithm described by Attiyeh et al [22], and copy numbers were calculated using lllumina

BeadStudio.
doi:10.1371/journal.pone.0030907.g001
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Figure 2. GISTIC amplification analysis. A. Chromosomal regions showing significant amplification by SNP-array profiling, generated by GISTIC
analysis. The significance threshold (g-value 0.25) is indicated by the green line. B. Detailed GISTIC analysis of chromosome arm 17p. Positions of
previously suggested candidate oncogenes COPS3 in 17p11.2 and PMP22 in 17p12 are indicated. The significance threshold (g-value 0.25) is indicated

by the green line.
doi:10.1371/journal.pone.0030907.g002

amplification-induced overexpression of these genes should result
in a positive correlation between copy number and expression
level in the respective tumours. To identify these candidate genes,
we determined expression levels for all genes in the two established
amplicons. Expression data for the genes in this region could be
generated for 20 of the 26 osteosarcoma samples that were
subjected to SNP array analysis. We extracted the expression data
from a whole genome expression profiling analysis of 35
osteosarcoma samples with 17p11.2-p12 amplifications and of
human osteoblasts, using Illumina HT12 expression array
BeadChips. A comparison of the genome wide expression profile
of these selected tumours with that of unselected osteosarcomas
will be presented elsewhere (Both el al, in preparation). To
establish the correlation between overexpression and amplifica-
tion, we first calculated for each gene in the 17p11.2-p12 segment
in each of the 20 tumours the fold-change in expression relative to
the expression in normal osteoblasts. Genes with a two-fold or
more increase in normalized expression were considered to be
overexpressed. In this way, we identified 53 genes that proved to
be overexpressed in at least one of the 20 osteosarcoma samples.
We then determined copy numbers for each of these genes in each
tumour using the absolute copy numbers of SNPs within or nearest
to their coding sequence. The latter were extracted from the
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preceding SNP array analyses. Genes with copy number >3.5
were considered to be amplified. The amplification and overex-
pression status of each of the 53 genes in the 20 tumours with
17p11.2-p12 amplification is given in Supplemental Figure S1.

Based on this correlative analysis, we identified the 11 genes
listed in Table 1, which proved to be overexpressed as a
consequence of amplification in more than 50% of cases.

To assess the significance of the association between copy
number and expression for these top ranking genes, we performed
qPCR and qRT-PCR for each of the genes in each tumour and
established the strength of the relationship between these two
variables by calculating Pearson’s correlation coefficient R. Using a
positive R of approximately 0.5 or more and a 2-sided P of 0.05 or
less as cut off values for a statistically significant association
between copy number and expression, we discarded two of the
eleven top genes listed in Table 1, i.e. GRAP and ALKBHS, as
candidate oncogenes in 17p11.2-p12 (Table 2).

Discussion

Osteosarcomas are characterized by the presence of highly
complex genomic aberrations. The p11.2-p12 region on chromo-
some 17 has already been known for some time to be amplified in
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Table 1. Top 11 genes most frequently overexpressed
through amplification in 17p11.2-p12.

Gene Location Band Mb A o O/A %

SHMT1 p11.2 18.25 17 15 13 76.5
PMP22 p12 15.15 16 14 12 75

RASD1 p11.2 17.39 18 13 12 66.7
TOP3A p11.2 19.5 17 12 11 64.7
PRPSAP2 p11.2 17.8 16 10 10 62.5
COPS3 p11.2 1717 18 12 11 61.1
GRAP p11.2 18.94 17 12 10 58.8
C170rf39 p11.2 17.95 18 10 10 55.6
RICH2 p12 12.75 17 1 9 529
ALKBH5 p11.2 18.1 17 10 9 529
C170rf45 p11.2 16.34 18 10 9 50

Genes were scored for the number of times a feature was found in the tumour
(data taken from Supplemental Figure S1). A: number of tumours with
amplification of a gene; O: number of tumours with overexpression of that
gene; O/A: number of tumours with overexpression and amplification of that
gene; %: percentage of tumours in which the amplified gene is overexpressed.
doi:10.1371/journal.pone.0030907.t001

a substantial fraction (25%) of these tumours [9,10,15-19].
However, the great variation and complexity of the amplification
profiles in this region, exemplified in Figure 1, have hampered the
identification of the driver oncogenes for these amplifications. In
this study, we performed a systematic search for these genes based
on the principle that a causative gene should exert its oncogenic
action via amplification-induced overexpression. We first selected
tumours with17p11.2-p12 amplifications. This enabled us to
enrich the dataset for amplification events in our area of interest.
Secondly, we applied the GISTIC procedure, which incorporates
not only the frequency but also the amplitude of amplifications
events, to demarcate the most significantly amplified segments in
17p11.2-p12. The amplification event on chromosome 17 was
clearly restricted to the 17pll.2-pl2 region and could be
subdivided into two major amplicons (Figure 2B). However, the
critical region was still quite large (approximately 13 Mb),
encompassing 53 genes that exhibited overexpression in at least
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one of the tumours for which microarray expression data were
available. These genes were subsequently scored for amplification
and overexpression status, resulting in a top list of 11 genes that
were overexpressed through amplification in at least 50% of cases
(Table 1). Based on our statistical analysis of the correlation
between copy number increase and expression level for each of the
top ranking genes, we identified RICH?2, c¢1701f45, TOP54, COPS3,
SHMTI, PRPSAP2, PMP22, and RASDI as candidate osteosarco-
ma oncogenes in the 17p11.2-p12 region (Table 2).

The gene list includes COPS3 in 17p11.2 and PMP22 in 17p12,
which we [14] and others [28,29] previously suggested to act as
causative oncogenes in osteosarcoma tumourigenesis. In a recent
study [30], further support for an oncogenic role for COPS3 was
provided by demonstrating that RNAi-mediated COPS3 gene
silencing inhibits the metastatic potential of osteosarcoma cells,
suggesting that COPS3 overexpression might have an important
role in the metastasis of osteosarcoma cells. The PMP22 protein is
a component of the myelin sheath in the peripheral nervous system
[31]. Next to its structural role, PMP22 has important functions in
cell growth control in non-neural tissues. We [32] and others [33]
have previously reported upregulation of PMP22 expression in
osteosarcoma tumours and cell lines. Since then, increased PMP22
expression has also been noted in invasive versus non-invasive
mammary carcinoma cell lines [34], in (pre)malignant lesions
versus normal pancreatic tissue [35], and in proliferative versus
secretory phase endometrium [36]. Taken together, these data
suggest that, contrary to its original proposed property as being
associated with cell growth arrest [37], PMP22 has an important
proliferation-associated and oncogenic role, not only in osteosar-
coma tumourigenesis, but in the development of other tumour
types as well.

C1701/39 codes for the hypothetical protein LOC79018, which
is thought to be a subunit of the Mediator complex. This complex
functions as a coactivator required for activation of RNA
polymerase II transcription by DNA bound transcription factors.
Although its oncogenic potential is not directly obvious, it is
interesting to note that C7/707/39 and also PRPSAP2 were recently
found to be overexpressed in osteosarcoma cell lines [25]. The
transcript of (1 70rf45 is a non-protein coding RNA with unknown
biological function.

The RICH2 protein has a GAP domain that functions as a
GTPase activator for Rho-type GTPases [38,39]. The latter
constitute a subfamily of the RAS superfamily of small GTPases.

@ PLoS ONE | www.plosone.org

Table 2. Pearson’s correlation coefficient R estimating the relationship between gene copy number and expression level for the
top 11 genes most frequently overexpressed through amplification in 17p11.2-p12.

Gene Function of gene product R 2-sided P
C170rf39 Subunit of complex that co-activates transcription from RNA pol Il promoters 0.77 0.00003
RICH2 GTPase activator for Rho-type GTPases 0.75 0.00009
C170rf45 Non-coding RNA with unknown function 0.74 0.0001
TOP3A Alteration of DNA topologic state during transcription 0.73 0.0001
COPS3 Embryonic development/signal transduction 0.72 0.0002
SHMT1 One-carbon compound metabolism 0.67 0.0007
PRPSAP2 Nucleic acid metabolism 0.64 0.001
PMP22 Component of myelin/cell growth control 0.62 0.002
RASD1 Activator of G-protein signaling 0.49 0.02

GRAP Cytoplasmic signaling —0.13 0.6
ALKBH5 Alkylation repair homolog —0.16 0.5
doi:10.1371/journal.pone.0030907.t002
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Rab proteins also belong to this family and TBC1D16, encoding
Rab3-GAP, has recently been identified as a driver oncogene in
melanoma [40]. In analogy, RICH? might have a comparable
function in osteosarcoma tumourigenesis.

The gene product of RASDI is another member of the RAS
superfamily of small GTPases and, as such, presumed to have an
oncogenic function. However, Vaidyanathan et al [41] found that
expression of RASD1 in a number of cell lines suppressed cell
growth, contrary to what would be expected of RAS family
members. This would make RASD! a poor candidate oncogene for
osteosarcoma tumourigenesis, However, in accordance with an
oncogenic function, knockdown of the expression of RABB27A,
encoding another member of the Ras superfamily, was shown to
inhibit the growth of melanoma cells [40]. In analogy, RASDI
might have such an oncogenic aspect as well.

Two types of topoisomerases are found in mammals, type I
which alters topology by a single strand break and type II which
work through a double stranded break. We [19] and others [42]
have previously reported amplification of TOP34, encoding a type
1 topoisomerase, in osteosarcomas. However no other information
about its possible oncogenic potential is available. The implica-
tions for TOP2A amplification in cancer are better known.
Amplification of TOP24, encoding a type II isomerase, has been
reported for a multitude of neoplasms including breast [43], gastric
[44], and pulmonary cancers [45], and isolated 7OP24 amplifi-
cations have been found in urinary bladder cancers [46] and acute
lymphoblastic leukaemias [47]. In node-negative breast cancer
patients high TOP2A4 expression was found to be significantly
associated with shorter metastasis-free intervals [48]. Although
TOP2A and TOP3A are different types of isomerases, one may
speculate that amplification and overexpression of TOP34 has an
oncogenic effect similar to that of TOP24 on the development of
osteosarcoma and other cancers.

SHMT1 functions as a regulator in the de novo synthesis of
thymidine nucleotides. Several polymorphisms in the SHMTI
gene have been linked to a higher chance of cancer, like acute
lymphoblastic leukemia [49,50], ovarian cancer [51] and prostate
cancer [52]. PRPSAP2 is another protein involved in nucleic acid
metabolism. The PRPSAP2 gene encodes part of the enzyme
PRPP synthetase, which catalyzes the formation of phosphoribo-
sylpyrophosphate, being a primary substrate for newly formed
purine and pyrimidine nucleotides. Depletion of the PRPP
synthetase causes growth arrest [53], the reverse has not been
shown. Overexpression of SHMTT1 and PRPSAP2 (and also COPS3)
has been reported to occur in multiple myelomas [54].
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Conclusion

Our systematic screening of genes in the 17pl11.2-p12 region
has yielded nine candidate oncogenes associated with osteosarco-
ma tumourigenesis. Functional studies are underway to test these
candidate genes for there oncogenic potential. To test their
prognostic potential, we are currently investigating the expression
of our candidate genes at the RNA and protein level in an
extended series of osteosarcomas with or without metastasis or
local recurrence. It has already been demonstrated that there is a
significant relationship between strong COPS3 staining and
patients that develop metastasis [30]. However, prognostic studies
for the other candidate genes require the development of new
antibodies (C1701f39, RICH2, RASDI) or testing of available
antibodies on osteosarcoma tissues (70P34, COPS3, SHMTI,
PRPSAP2, PMP22), which is presently underway. The candidate
oncogenes could be useful as biomarkers for improvement of
diagnosis and as possible targets for therapeutic intervention in
osteosarcoma and in other tumour types as well.
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Figure S1 Amplification and overexpression status of genes in
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