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Abstract

Augmenter of Liver Regeneration (ALR) is a sulfhydryl oxidase carrying out fundamental functions facilitating protein
disulfide bond formation. In mammals, it also functions as a hepatotrophic growth factor that specifically stimulates
hepatocyte proliferation and promotes liver regeneration after liver damage or partial hepatectomy. Whether ALR also plays
a role during vertebrate hepatogenesis is unknown. In this work, we investigated the function of alr in liver organogenesis
in zebrafish model. We showed that alr is expressed in liver throughout hepatogenesis. Knockdown of alr through
morpholino antisense oligonucleotide (MO) leads to suppression of liver outgrowth while overexpression of alr promotes
liver growth. The small-liver phenotype in alr morphants results from a reduction of hepatocyte proliferation without
affecting apoptosis. When expressed in cultured cells, zebrafish Alr exists as dimer and is localized in mitochondria as well as
cytosol but not in nucleus or secreted outside of the cell. Similar to mammalian ALR, zebrafish Alr is a flavin-linked sulfhydryl
oxidase and mutation of the conserved cysteine in the CxxC motif abolishes its enzymatic activity. Interestingly,
overexpression of either wild type Alr or enzyme-inactive AlrC131S mutant promoted liver growth and rescued the liver
growth defect of alr morphants. Nevertheless, alrC131S is less efficacious in both functions. Meantime, high doses of alr MOs
lead to widespread developmental defects and early embryonic death in an alr sequence-dependent manner. These results
suggest that alr promotes zebrafish liver outgrowth using mechanisms that are dependent as well as independent of its
sulfhydryl oxidase activity. This is the first demonstration of a developmental role of alr in vertebrate. It exemplifies that a
low-level sulfhydryl oxidase activity of Alr is essential for embryonic development and cellular survival. The dose-dependent
and partial suppression of alr expression through MO-mediated knockdown allows the identification of its late
developmental role in vertebrate liver organogenesis.
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Introduction

Augmenter of Liver Regeneration (ALR), also known as

Hepatopoietin (HPO) and growth factor ERV1-like (GFER), is a

protein highly up-regulated during liver regeneration and

stimulates hepatocyte proliferation. ALR was first purified and

cloned from rat liver as a secreted protein of 125 amino acids [1].

The human ortholog of the yeast Essential for Respiration and

Viability 1 (Erv1) was identified in 1995 [2] and subsequently

purified and cloned from human fetal liver [2,3] and was also

named hepatopoietin (HPO). Erv1 a sulfhydryl oxidase localized

in the intermembrane space in mitochondria and is essential for

yeast cell survival. In yeast, Erv1 is also involved in Fe/S cluster

formation in proteins and Fe homeostasis [4]. Mammalian ALR

contains a conserved sulfhydryl oxidase enzymatic domain (ERV1

domain) at the C-terminus and functions as a sulfhydryl oxidase

facilitating disulfide bond formation in proteins [5]. To date,

homologous ALR proteins have been found throughout the

eukaryotic kingdom from fungi to man, suggesting its role in

common and important functions. While the enzymatic domain at

the C-terminus is conserved, the N-terminal region is highly

variable among ALRs in different species, implicating potentially

distinct functions of this protein in different species. In both yeast

and human, the mitochondria protein Mia40 and cytochrome c

have been identified as direct in vivo substrates of Erv1/ALR

[6,7,8]. Whether ALR has additional in vivo substrates inside

mitochondria or at other subcellular locations is still a mystery.

In mammals, ALR has an additional function, i.e. stimulating

hepatocyte proliferation and liver regeneration as a cytokine. In

adult rat liver, ALR is believed to be predominantly and

constitutively produced and stored in hepatocytes in an inactive

form. Upon partial hepatectomy or other hepatic damage, ALR is

activated and secreted out of hepatocytes into circulation [9]. As a

cytokine, ALR stimulates Mitogen-Activated Protein Kinase

(MAPK) pathway by binding to the ALR receptor specifically

expressed on hepatocyte cell surface [10]. However, the identity of

the cell surface ALR receptor is not yet known. Intracellularly,

ALR binds to Jun Activation domain-Binding protein 1 (JAB 1)
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and potentiates Activator Protein-1 (AP-1) transcription activation

pathway utilizing its sulfhydryl oxidase activity [11,12]. ALR is

therefore been called a ‘‘cytozyme’’, possessing both cytokine and

enzyme functions. Nevertheless, it is not clear if the cytokine

activity of ALR is dependent on its enzymatic activity.

Recently, the first human disease due to ALR R194H mutation

has been identified as an autosomal-recessive infantile mitochon-

drial disorder presenting myopathy with cataract and combined

respiratory-chain deficiency [13]. The crystal structure of short

form human ALR (sfALR) indicated that R194 is located at the

subunit interface, close to the intersubunit disulfide bridges [14].

In vitro characterization indicated that R194H mutation affected

the stability of both the long form and short form of human ALR,

leading to a significant increase in conformational flexibility [14].

Despite many studies demonstrating various functions of ALR

during liver regeneration, its developmental role has not been

studied. Based on the fact that ALR exists in large amount in fetal

livers of both rat and human [3,15,16], we hypothesized that this

protein may have crucial roles in liver organogenesis during

vertebrate embryonic development.

Zebrafish offers great promise as a model organism to study

embryonic liver development and liver diseases [17]. Significantly,

zebrafish adult liver regenerates efficiently similar to mammals

[18]. However, different from mammals, zebrafish embryonic liver

is not a hematopoiesis organ, thus liver organogenesis could be

studied independently from the defects caused by hematopoietic

deficiencies [19].

In vertebrate, liver develops from the anterior endoderm. In

both zebrafish and mammals, Fgfs, Bmps, and the Wnt/b-catenin

pathway are the primary signaling pathways required for zebrafish

hepatogenesis (reviewed in [18]). In zebrafish, cells in the anterior

endodermal rod become specified to the hepatic cell fate at around

22 hours post fertilization (hpf). Both Fgf and Bmp signaling are

essential for hepatic specification [20]. On the other hand,

Wnt2bb produced from the adjoining mesoderm cells is involved

in multiple stages of hepatogenesis including hepatic specification,

hepatocyte differentiation and liver outgrowth [21]. By 26–28 hpf,

hepatoblasts migrate and thicken on the left side of the anterior gut

tube to form the liver bud, marking the beginning of the budding

phase of liver formation. Transcription factors such as hnf4, hhex,

and prox1 are expressed in the liver bud at this stage. Beyond

32 hpf, liver bud begins to express differentiated hepatocyte

markers such as ceruloplasmin (cp), transferrin (tfa), and liver fatty

acid binding protein (lfabp). Around 50 hpf liver bud completely

delaminates from gut tube. Subsequently, liver enters a rapid

growth phase during which it becomes vascularized and expands

rapidly. By 5 days post fertilization (dpf), liver has crossed the

midline to reach the right side of the body [19].

Despite the significant advances in our understanding of

vertebrate hepatogenesis in recent years, our knowledge of the

molecular mechanisms and genes involved are far from complete. In

this work, we showed for the first time that the zebrafish Alr is a

hepatocyte mitogen during liver organogenesis. Knockdown of alr

interfered with liver expansion, resulting in a small liver phenotype.

Intriguingly, zebrafish Alr controls liver development possibly

through sulfhydryl oxidase dependent as well as independent

signaling pathways. This is the first study which categorically

identifies a crucial role for Alr in vertebrate hepatogenesis.

Materials and Methods

Ethics statement and zebrafish lines
Fish maintenance and experimental protocols were approved by

Institutional Animal Care and Use Committee (IACUC) of

National University of Singapore (Protocol 007/06). Embryos

were collected and staged as described [22,23]. The transgenic line

used is Tg(lfabp:DsRed; elaA:EGFP) [24] in which DsRed is

expressed in liver and EGFP is expressed in exocrine pancreas.

Molecular cloning of zebrafish augmenter of liver
regeneration (alr)

The full length cDNA of zebrafish alr (NM_001089386.1) was

obtained by high fidelity RT-PCR using Advantage High Fidelity

2 (HF2) PCR kit (Clontech) using pools of RNA from mixed stages

of zebrafish embryos. The PCR product was cloned into pGEM-T

vector (Promega) and validated by sequencing. The alr gene was

subcloned into pCS2(+) (Addgene) vector for in vitro transcription.

The alr ORF was cloned into pEF6/V5-His-TOPO (Invitrogen)

vector to transiently express Alr with a C terminal V5 epitope in

cultured cells. After PCR addition of the restriction enzyme sites

on zebrafish alr coding sequence, the cDNA was cloned back into

pGEM-T vector (Promega), and subcloned into pEGFP-N1

(Clontech) vector to create an ALR-EGFP fusion protein. Cys

131 of zebrafish Alr was mutated into Ser by QuickChange site-

directed mutagenesis kit (Stratagene) in pCS2-alr plasmid. Both

the wild type and mutant alr genes are cloned into pET28b vector

(Novagen), with a N-terminal His-tag for protein expression and

purification from E.coli.

Whole mount in situ hybridization (WISH)
WISH was performed using digoxigenin labeled RNA antisense

probe for the following genes: cp, prox1, alr, insulin, foxa3 according

to the Zebrafish Book [23]. The embryos were grown in 0.003%

1-phenyl-2-thiourea (PTU) solution to block pigmentation.

Knockdown of alr by antisense morpholino injection
Morpholino antisense oligonucleotides were purchased from

Gene Tools, and were dissolved in sterile water at the concentration

of 1 mM. A total amount of 5–10 ng morpholino per embryos was

injected into either Tg (lfabp:DsRed; elaA:EGFP) or local wild type

embryos to monitor liver formation. The alr morpholinos used are:

(1) Translation blocking morpholino (ATG morpholino): 59-

CGTGTGCAGCTGCCATGTTGTTATG, 5 bp mismatch

control: 59-CcTGTGgAGCTcCCATcTTcTTATG;

(2) Splicing inhibiting morpholino targeting first exon and first

intron splicing junction (E1I1 morpholino): 59-TCATTCA-

TAATTGTTCACCTGCACC, 5 bp mismatch control: 59-

TgATTgATAATTcTTCAgCTcCACC;

(3) Splicing inhibiting morpholino targeting first intron and

second exon splicing junction (I1E2 morpholino): 59-

CTCTCCTGTACAACATATCACGTTG, 5 bp mismatch

control: 59-CTCTCgTcTACAAgATATgACcTTG.

Total RNA extraction and RT-PCR
Total RNA from zebrafish embryos and adult tissues was

extracted using TRI reagent (Ambion) following manufacturer’s

instruction. Adult zebrafish tissues samples were extracted from a

pool of 5–10 fishes. The livers were extracted from 100 five-days

old fishes, 50 two-week old fishes, 30 three-week old fishes, 20

four-week old fishes, 10 six-week old fishes and 5 adult fishes

(three-month and nine-month old fishes) respectively. For fishes

younger than 5 dpf, total RNA were extracted from a pool of 30–

50 embryos.

RT-PCR was performed using one-step RT-PCR kit (Qiagen)

and 0.5 mg total RNA per reaction. The primers used to amplify
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alr were: foward 59-GGGTCGTCTCCACATAGC-39 and re-

verse 59-CTCTCCATCGCTCATCCACCCT-39. The one-step

RT-PCR conditions were: 50uC 30 min; 95uC 15 min; 95uC
30 sec, 55uC 30 sec, 72uC 40 sec, for 30 cycles; 72uC 5 min. The

zebrafish ribosomal protein S18 (rps18) or b-actin were used as

internal control. The cycle numbers used for each gene are

selected within the exponential amplification phase of that gene.

The relative signal intensity of alr bands were determined using the

ImageJ software by normalizing to the respective rps18 band.

Generation of 59 capped mRNA by in vitro transcription
59-capped mRNA of zebrafish alr and alrC131S were synthesized

using mMessenger mMachine kit (Ambion) and injected into

fertilized embryos at 1–2 cell stages. For overexpression, 1.6 ng alr

mRNA was injected into each 1–2 cell stage embryos. To rescue

morphants, 5 ng E1I1 morpholino and 1.6 ng alr mRNA were co-

injected into 1–2 cell stage zebrafish embryos.

Liver size quantification for alr overexpression and
morphant rescue

Embryos at 48 hpf that have gone through prox1 WISH to label

the liver were used for liver size quantification. Photos were taken

for these embryos from dorsal view by microscope under the same

magnification and then analyzed in Photoshop CS3 software. The

liver size in 2-D dimension was represented by the number of

pixels in liver region. Data was presented as mean 6 standard

deviation (SD). Student’s t-test was used to analyze the data and

p,0.05 is considered significant.

Immunostaining for proliferation and TUNEL assay
Embryos were fixed in 4% paraformaldehyde at 4uC for

overnight. Frozen sections of 10 mm were collected. After blocking

with 3% BSA for 1 h at room temperature, the sections were

incubated with rabbit anti-proliferating cell nuclear antigen (PCNA)

(1:250 dilution, Santa Cruz) or rabbit anti-phospho histone H3 (p-

H3) antibody (1:100 dilution, Millipore) at 4uC overnight.

Secondary antibody of Alexa Fluor 568 conjugated anti-rabbit

IgG (Invitrogen) was then incubated for 1 h at room temperature.

The stainings were imaged with fluorescent microscope.

To calculate the percentage of PCNA/p-H3 positive hepato-

cytes per embryo, number of stained hepatocytes and total

hepatocytes were counted on each section. For PCNA staining of

4 dpf embryos, 3 livers, 7 sections per liver were counted. For p-

H3 staining of 4 dpf embryos, 4 livers, 7 sections per liver were

counted. For p-H3 staining of 48 hpf embryos, 5 livers, 7 sections

per liver were counted. Data was presented as bar graph of mean

6 standard deviation (SD) and p,0.05 was considered significant

as analyzed by student’s t-test.

TUNEL assay was performed using Roche in situ cell death

detection kit following the manufacture’s instruction and quanti-

fied similarly.

Cellular localization study of zebrafish Alr
The expression plasmids for Alr-V5 and Alr-EGFP were

transfected into human hepatocellular carcinoma cells (HepG2)

and zebrafish liver cells (ZFL) [25] using FuGENE HD

transfection reagent (Roche), into human embryonic kidney cells

(HEK293T) cells using TransIT-LT1 transfection reagent (Mirus).

The transfected cells were labeled with MitoTracker Red

(Invitrogen) before being fixed in 4% PFA, followed by

immunofluorescent staining using mouse anti-V5 primary anti-

body (1:500 dilution, Invitrogen) and Alexa Fluo 488 anti-mouse

IgG (1:1000 dilution, Invitrogen).

For western blot analysis, cells were lysed using RIPA lysis

buffer at 48 hour post transfection. The culture medium was

collected and cold acetone was used to precipitate proteins from

the medium. Mitochondria isolation from the cultured cells was

carried out using Mitochondria Isolation Kit for Cultured Cells

(Pierce).

Western blot
Western blot was performed using standard method and probed

with mouse anti-V5 antibody (Invitrogen), mouse anti-GFP

antibody (Millipore), rabbit anti-VDAC/porin antibody (Santa

Cruz), mouse anti-a tubulin (Sigma) and mouse anti-b actin (Santa

Cruz) respectively.

Recombinant Alr expression and purification from E.coli
The wild type pET28b-alr and mutant pET28b-alrC131S were

expressed in E. coli BL21-DE3 strain. Bacterial pellet were

collected, lysed in lysis buffer, and soluble proteins were subjected

to Ni-NTA resin purification under native condition (Promega).

Imidazole in the purified protein solution was removed by dialysis.

Sulfhydryl oxidase enzymatic assay
Lysozyme (Sigma) was reduced and used as substrate as

described before [5]. Reduced glutathione and DTT were also

used as substrates. The ability of Alr to introduce disulfide bonds

into the substrates were measured by Ellman’s reagent (Sigma)

which can quantify the number of free thiol groups as described by

Lisowsky et al. [5]. The enzymatic reactions were carried out at

room temperature.

Results

alr expression in zebrafish adult tissues and during
embryogenesis

The zebrafish alr cDNA was cloned by 5’RACE from local wild

type embryos, and it codes for a protein of 191 amino acids.

Sequence alignment showed that zebrafish Alr protein was 62%

identical to human and mouse short form ALR, 48% identical

with their long forms (Fig. S1). Phylogenetic and synteny analyses

showed that this zebrafish alr was the ortholog of the mammalian

ALR as well as the yeast ERV1 (Fig. S2).

To understand the function of zebrafish alr, we first determined

its spatial and temporal expression pattern in adult zebrafish

tissues as well as in embryos of various developmental stages.

Semi-quantitative RT-PCR revealed that alr was expressed at

different levels in various adult tissues, with the highest expression

in kidney and egg (Fig. 1A). The high abundance of alr mRNA in

eggs indicates that alr is present as maternal mRNA and may play

important roles in early embryonic development. Intermediate

level expression of alr can be detected in brain and intestine. A low

level alr expression can be detected in adult liver, spleen, gill, eye

and fin while muscle showed almost no detectable alr mRNA.

Liver alr expression is highest in embryos and young fish and

gradually declined to a moderate level as the fish get older (Fig. 1B

and Fig. 2). In comparison, relatively high level of Alr expressions

have been reported in livers of adult rat and human [1,9,26].

It is known that upon partial hepatectomy in rat, serum ALR

levels increase with concomitant decrease in hepatic ALR protein,

suggesting that ALR is released by the liver after PH [9].

Expression of ALR is also increased in acute or chronic human

liver diseases such as fibrosis and cirrhosis, as well as in liver

carcinoma [26,27,28], suggesting liver protective functions of ALR

in liver diseases. Indeed, ALR has been shown to function as a

survival factor for hepatocytes and depletion of ALR protein by

Alr Is Required for Zebrafish Liver Outgrowth
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antisense oligonucleotide leads to hepatocyte cell death [29]. Acute

liver damage induced by toxins, such as ethanol, is known to

stimulate hepatic stimulatory substance (HSS) activity in the

injured livers, and exogenous HSS administration increased the

injured liver hepatic proliferation post toxin treatment [30,31].

ALR is a purified protein of HSS [1] and has been reported to

stimulate hepatocyte proliferation directly as well as indirectly

through Kupffer cells [3,32]. We therefore investigated if Alr is up-

regulated by alcohol induced acute liver injury. Indeed, when

zebrafish embryo (5 dpf) and young fish (3-weeks old) were treated

with 2% ethanol, a condition previously shown to induce hepatic

steatosis (fatty liver) in zebrafish [33], alr expression was

significantly up-regulated in the liver (Fig. 1C). This result

indicates that liver injury can induce Alr expression in the liver

of zebrafish larvae, similar to the behavior of mammalian ALR

after liver injury. However, the role of Alr in zebrafish liver

steatosis is unclear at this stage.

Temporal and spatial expression of alr analyzed by WISH

indicated a ubiquitous presence of alr mRNA in early stage

embryos (Fig. 2A). During the segmentation period, it is highly

expressed in the ventral portion of the brain (Fig. 2, B–D).

Notably, alr mRNA is expressed in the developing liver from the

liver budding stage (28 hpf) and the liver expression persists and

become intensified during the liver growth phase from 3–5 dpf

(days post fertilization) (Fig. 2, C–J, white arrow). In addition, alr is

also expressed in brain, pharyngeal arches and exocrine pancreas

during the liver growth phase (Fig. 2G–J and Fig. S3). The high alr

expression in the developing liver throughout hepatogenesis

suggests that alr might play an important role in liver

organogenesis.

alr promotes liver outgrowth during zebrafish
hepatogenesis

To investigate the developmental functions of alr in zebrafish,

morpholino antisense oligonucleotide (morpholino) mediated gene

knockdowns were performed. As illustrated in Fig. 3A, zebrafish

alr gene has three exons separated by two introns. Three

morpholinos were designed, targeting the translation starting site

(ATG), exon1-intron1 boundary (E1I1) and intron1-exon2

boundary (I1E2) respectively. Morpholinos were microinjected

into 1–2 cell stage embryos, using 5 bp mismatch morpholinos as

controls.

Both splicing-blocking morpholinos E1I1 and I1E2 potently

knocked down the endogenous alr mRNA expression in a dose-

dependent manner. At 26–28 hpf, a stage in which liver has just

budded from the anterior endoderm and alr is expressed in the

budding liver, significant reductions of endogenous alr mRNA

Figure 1. Expression of zebrafish alr in adult tissues, livers of
fishes of various ages and its response to alcohol treatment.
A. alr mRNA expression in zebrafish adult tissues analyzed by semi-
quantitative RT-PCR. Kidney and egg have the highest alr expression
level (upper panel). Low expression was detected in liver. The ribosomal
protein S18 (rps18) (lower panel) was used as the internal loading
standard. B. Liver alr mRNA expression in fishes of various ages. alr is
expressed at high levels in 2–4 weeks old fishes, but reduces
significantly in 6 weeks old fishes. The expression level is further
reduced in adult fishes (3–9 months old). alr expression in 5 dpf whole
embryo is used as a comparison. C. Ethanol treatment significantly
increased alr expression in livers of 5 dpf larvae and 3 weeks old young
fish. Fish was treated with 2% ethanol for 32 hours, a condition
previously shown to potently induce hepatic steatosis in zebrafish
embryonic liver [33]. The relative signal intensity of all the alr bands
were shown beside the corresponding gel photos.
doi:10.1371/journal.pone.0030835.g001

Figure 2. Expression of alr during zebrafish embryonic development. Whole mount in situ hybridization (WISH) shows expression of alr
mRNA at different embryonic stages. During early stages, expression of alr is ubiquitous (A, B). Expression in the brain and pharyngeal arches are also
observed (C, D, J). From 28 hpf onwards, the expression of alr is detected in liver (white arrow head) throughout hepatogenesis (C–J). C, E, G, I: lateral
view, anterior to the left; D, F, H, J: dorsal view, anterior to the left.
doi:10.1371/journal.pone.0030835.g002
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Figure 3. Knockdown of alr by antisense morpholino oligonucleotide inhibits liver growth. A. Schematic presentation of alr pre-mRNA
and morpholino design. alr pre-mRNA consists of 3 exons (shown by squares) and 2 introns (shown by lines). The number of nucleotides in each
region is labeled below the region. The red lines indicate the targeting sites of the two splicing inhibiting morpholinos, E1I1 and I1E2. In 5-bp
mismatch control morpholino injected embryos (CO), splicing of alr pre-mRNA is not affected. In E1I1 morpholino injected embryos, two alternative
splicing sites are used. One of the alternative splicing sites is at 229 bp downstream of the 59 boarder of intron 1, generating mRNA product a; the
other alternative splicing site is in exon 1, 160 bp downstream of the 59 end of exon 1, producing the mRNA product b. In I1E2 morphants, E1I1
splicing site and I2E3 splicing site will join together and generate mRNA c (with exon 2 removed). The red arrows show the stop codons present in
these alternatively spliced mRNAs. B. RT-PCR results demonstrate the potent knockdown of endogenous alr mRNA by the splicing morpholinos.
Bands a, b and c are described in Fig. 3A. Morpholinos were injected at 5 ng per embryo, and total RNA was extracted from these embryos at 26–
28 hpf. CO, 5-bp mismatch morpholino injected embryos; MO, morpholino injected embryos. b-actin was used as internal control for RT-PCR.
C. Knockdown of alr suppressed liver growth in Tg(lfabp:DsRed;elaA:EGFP) embryos. Three morpholinos showed similar phenotype, and the photos
shown are from translation blocking morpholino injected embryos. Liver size (red color) was reduced significantly in MO, compared to CO. In the
right panel, confocal fluorescent images show suppressed liver (red) and exocrine pancreas (green). All images are anterior to the left, side view for
3 dpf embryos, dorsal view for 5 dpf embryos. D. Knockdown of alr did not affect intestine and endocrine pancreas formation. Intestine was marked
by WISH using pan-endoderm marker foxa3. Endocrine pancreas was shown by WISH using pro-insulin marker. Dorsal view, anterior to the left for
30 hpf embryos. Side view, anterior to the right for 4 dpf embryos. White arrow points to liver bud, White arrow head points to intestine. E. Liver
formation in alr morphants monitored by hepatoblast marker prox1. In alr morphants, an obviously reduced liver size was observed at 48 hpf and

Alr Is Required for Zebrafish Liver Outgrowth
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were demonstrated in morphants injected with 5 ng morpholino

per embryo (Fig. 3B). Nevertheless, low level endogenous alr

mRNAs are still present in morphants at this morpholino dose

(Fig. 3B). The predicted splicing product in E1I1 morphants

(Fig. 3A and 3B, product a) as well as an alternative splicing

product using an upstream splicing donor site (Fig. 3A and 3B,

product b) were detected (Fig. 3B). The I1E2 morphants generated

a predicted aberrant RNA product lacking the second exon which

carries premature stop codons (Fig. 3A and 3B, product c).

When injected at $10 ng morpholino per embryo, embryos

showed severe morphological defects including a curved body,

small head with high level of apoptosis (especially in brain), no

circulation, and cardiac edema (data not shown). In comparison,

embryos injected with the same amount of 5 bp mismatch control

morpholino did not produce such morphological defects. This was

more obvious with the translation blocking morpholino (data not

shown). It therefore seems that the maternally supplied alr mRNA

plays some fundamental roles in early zebrafish embryonic

development. Higher amount of morpholino (10 ng/embryo)

leads to death of embryos within 24 hpf. When injected at 5 ng

morpholino per embryo, embryos are morphologically normal,

except for a mild developmental delay. Thus all functional studies

presented in this paper were carried out with this morpholino

dose.

The effect of alr knockdown on liver formation was monitored

using the transgenic line Tg(lfabp:DsRed; elaA:EGFP). In this

transgenic line, liver-specific expression of DsRed (red fluores-

cence) is easily visible after 60 hpf while the exocrine pancreas is

labeled green with EGFP from 4 dpf onwards [24]. Knockdown of

alr lead to an obvious reduction in liver size in morphants from 3–

5 dpf compared to control morpholino injected embryos at the

same stage (Fig. 3C and Fig. S4). Knockdown of alr using three

different morpholinos showed similar small liver phenotype (Fig. 3

and data not shown).

Growth of the exocrine pancreas is also inhibited in alr

morphants (Fig. 3C, right panels; Fig. 3E, middle and right

panels, indicated by *), consistent with alr expression in this organ

(Fig. S3). At 5 dpf, both liver and exocrine pancreas was much

smaller in alr morphants comparing with the control. The smaller

exocrine phenotype is also observed using exocrine pancreas

marker elaB in WISH (data not shown). In contrast, the endoderm

rod marked by foxa3 and the endocrine pancreas marked by insulin

were not affected (Fig. 3D).

During zebrafish liver organogenesis, competent endoderm cells

become specified into bipotential hepatoblasts upon induction and

later differentiate into hepatocytes or cholangiocytes [19].

Subsequent proliferation of hepatocytes and other liver cells

underscore the growth of the liver. In order to determine at which

stage of liver development alr functions, WISH with hepatoblast/

hepatocyte markers were performed in alr morphants. As shown in

Fig. 3, prox1 (marks hepatoblast/hepatocyte) expression in the liver

primordial region was detected at 26 hpf in alr morphants,

suggesting that specification of liver progenitor cell hepatoblasts

was not affected (Fig. 3E). Consistently, the pan-endoderm marker

foxa3 showed the presence of a sickening of the anterior endoderm

rod at 30 hpf, indicating liver budding (Fig. 3D). Nevertheless,

liver size marked by prox1 expression is obviously smaller in the

morphants at 48 hpf (55% of embryos) and 3 dpf (51% of

embryos). In comparison, the development of lens is not affected in

alr morphants (100% of morphants in all developmental stages

examined) despite the high prox1 expression in lens. Since prox1 is

expressed in hepatoblast and hepatocyte, the small liver phenotype

in alr morphants suggests the possibilities of alr function in

differentiation of hepatoblast to hepatocyte or proliferation of

hepatocyte.

To distinguish the possibilities, we analyzed the expression of

the hepatocyte marker cp which is expressed in the liver bud from

32–34 hpf onwards. It is also expressed in the yolk syncytial layer

[34]. No significant delay in liver cp expression was observed in alr

morphants (data not shown). From 48 hpf onwards, an obvious

reduction of liver size was observed in alr morphants using cp as a

marker while its expression in the yolk syncytial layer is not

affected (Fig. 3F).

As a summary of the knockdown experiment, hepatoblast

markers (prox1, foxa3) were present in the liver budding region at

26–30 hpf in alr morphants, but marker genes for hepatocytes

(prox1, cp and lfabp) showed that the liver is much smaller compared

to control between 48 hpf to 5 dpf. Altogether, the above results

indicate that alr plays a major role in liver outgrowth, but has

negligible influence on hepatoblast determination or differentia-

tion to hepatocyte.

Knockdown of alr reduces hepatocyte proliferation
without affecting apoptosis

As hepatocytes are the parenchymal cells in liver which

constitute more than 80% of the liver, the small liver phenotype

in alr morphants could results from reduced hepatocyte prolifer-

ation and/or increased apoptosis. To determine the mechanism,

we analyzed hepatocyte proliferation by immunofluorescent

staining with two commonly used cell proliferation markers:

proliferating cell nuclear antigen (PCNA) and phosphorylated

histone 3 (p-H3). As shown in Fig. 4, the hepatocyte proliferation

rate in the liver of 4 dpf embryo is reduced more than 50% in alr

morphants compared to control embryos (injected with same

amount of 5 bp mismatch control morpholino) using both

proliferation markers.

In contrast, no increase in liver cell apoptosis in alr morphants

was observed as determined by TUNEL assays. A similar low level

hepatocyte apoptosis was observed in 4 dpf alr morphants and

control embryos, with only a couple of cells stained positive on

each section (Fig. S5). The low level of apoptosis in the developing

liver is consistent with previous report [35]. In comparison, similar

TUNEL assay detected high level apoptosis in embryos after heat-

shock, a treatment known to induce apoptosis (Fig. S5) [36].

Together, these results demonstrate that alr functions as a

hepatocyte mitogen and promotes liver growth by stimulating

hepatocyte proliferation during zebrafish liver organogenesis.

Zebrafish Alr is localized in the cytosol and mitochondria
Subcellular localization is important for protein function. In

mammals, two protein isoforms of ALR exist: the long form and

the short form. While the short from have been shown to be

localized in the nucleus, the long form is localized in the

3 dpf. Although a discernible small liver was also observed in some embryos at 26 hpf, but quantification of embryo population failed to show a
statistically significant difference comparing to controls. The number of embryos analyzed was shown on the bottom left of each panel while the
percentage of embryos with small liver was labeled on the bottom right corner. White arrow points to liver, white star points to pancreas. All images
are dorsal view, anterior to the left. F. Liver formation in alr morphants monitored using hepatocyte marker cp. In alr morphants, a reduced liver size
was also observed at 48 dpf, 3 dpf and 5 dpf. White arrow point to liver. All images are dorsal view, anterior to the left.
doi:10.1371/journal.pone.0030835.g003
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intermembrane space of mitochondria and the cytosol

[4,37,38,39]. The identity of the secreted Alr isoform is still

unclear up to now. In vitro, both human ALR125 (short form) and

ALR205 (long form) can stimulate hepatoma cell proliferation as

an extracellular growth factor [3,40]. The zebrafish Alr is similar

in size to the long form of mammalian ALR as well as the yeast

ERV1. No equivalent short form zebrafish Alr has been detected

in both embryos and adult zebrafish. Sequence analysis indicated

that similar to ALRs in other species, zebrafish Alr does not

contain any identifiable signal peptide or typical mitochondria

import sequence.

To determine the subcellular localization of zebrafish Alr,

plasmids expressing Alr-V5 and Alr-EGFP fusion proteins were

generated and transiently expressed in HepG2 (human hepato-

cellular carcinoma cell), HEK293T (human embryonic kidney

cell) as well as ZFL cells (zebrafish liver cell). Live cell imaging

demonstrated that Alr-V5 protein is mainly localized in the cytosol

but not in the nucleus (Fig. 5A). Co-localization study using the

mitochondria marker MitoTracker demonstrated that Alr-V5 is

localized in mitochondria (Fig. 5A). Furthermore, injection of in

vitro transcribed Alr-EGFP mRNA into 1–2 cell stage zebrafish

embryos and detection of Alr-EGFP fusion protein in the 6 hpf

embryos by anti-EGFP antibody staining also indicated a

predominant cytosol localization of the fusion protein (Fig. S6).

Cell fractionation and western blot further revealed that both Alr-

V5 and Alr-EGFP are localized in the cytoplasm as well as

mitochondria in both HEK293T and ZFL cells. In the same cell

fractionation experiment, the mitochondria protein voltage

dependent anion channel protein (VDAC) is only present in the

mitochondria fraction and a-tubulin is only present in the cytosol,

demonstrating the purity of cell fractions isolated (Fig. 5B). No Alr-

V5 or Alr-EGFP fusion protein is detected in the medium of

transfected HEK293T or ZFL cells (Fig. 5C and Fig. S6). In

comparison, high level expression of Alr-V5/Alr-EGFP was

observed in the cell lysates. This result indicates that zebrafish

Alr is most likely not secreted outside of the cell under normal cell

culture conditions. The zebrafish Alr may have functions in both

the mitochondria as well as the cytosol.

Figure 4. Knockdown of alr reduces hepatocyte proliferation. A & B. Hepatocyte proliferation demonstrated by immunofluorescent staining
of proliferation markers in 4 dpf embryos: proliferating cell nuclear antigen (PCNA) (A) and phosphor-histone 3 (p-H3) (B). The sections were
counterstained with DAPI to label nucleus. PCNA and p-H3 staining is co-localized with DAPI, indicative of nucleus staining. Both PCNA and p-H3
staining showed a significantly reduced hepatocyte proliferation in morphants without affecting proliferation in other tissues such as intestine. I:
intestine; L: liver. Dash line circles the boundary of liver. C. Quantification of hepatocyte proliferation. Percentage of PCNA positive hepatocytes in
liver is reduced from 13.8% in CO to 6.6% in MO. Percentage of p-H3 positive hepatocytes in liver is reduced from 1.1% in CO to 0.45% in MO. Values
are means 6 standard deviation (SD). Hepatocytes were counted based on cell morphology.
doi:10.1371/journal.pone.0030835.g004
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Zebrafish Alr is a flavin-linked sulfhydryl oxidase
ALR is known as a ‘‘cytozyme’’, bearing both cytokine and

enzymatic activity. Several members of the ERV1/ALR family

are sulfhydryl oxidases including those from human, rat,

Arabidopsis, and yeast [5,41,42]. The importance of sulfhydryl

oxidase has been well documented in yeast [43,44]. The yeast

Erv1p, localized in the intermembrane space of mitochondria,

forms disulfide relay system with Mia40. Erv1p oxidizes Mia40 to

recycle it for oxidative folding of proteins imported to

mitochondria. The electron of Erv1p is then transferred to

cytochrome C and finally to oxygen. Intracellular human short

form ALR (sfALR) binds to Jun Activation domain-Binding

protein 1 (JAB-1) and potentiates Activator Protein-1 (AP-1)

signalling pathway in a sulfhydryl oxidase dependent manner

[12]. On the other hand, extracellular human sfALR activates

MAPK pathway and stimulate HepG2 cell proliferation inde-

pendent of its enzymatic function [12].

A common characteristic of sulfhydryl oxidase is the presence of

a FAD containing redox center adjacent to the conserved CxxC

motif in the ERV1/ALR domain and the dependence on flavin for

its enzymatic activity. Mutation of either of the conserved cysteines

into serine will inactivate this enzyme [5]. To determine if

zebrafish Alr is also a flavin-dependent sulfhydryl oxidase, we

expressed and purified recombinant zebrafish Alr and the CxxC

mutant AlrC131S proteins from E. coli under native condition. The

purified recombinant Alr proteins were relatively pure as shown in

coomassie blue stained SDS-PAGE gel (Fig. 6A). In the presence

of the reducing agent DTT, a single band around 23 kDa is

observed in both Alr and AlrC131S, consistent to the predicted

monomer size. In the absence of DTT, the monomer band

disappeared; instead, multiple dimeric bands were detected

between the 40–46 kD range. This result indicates that zebrafish

Alr also exists as dimer, similar to its human and yeast

counterparts [39,41]. Mutation of cysteine in the C-terminal

CxxC motif does not disrupt dimerization.

Zebrafish Alr also binds FAD as determined by spectroscopic

absorption, showing two distinct peaks at 360 nm and 450 nm

characteristic of FAD (Fig. 6B). The loading of FAD to the

monomeric Alr is lower than the expected ratio of 1:1, possibly

due to lower binding efficiency of the protein preparation

condition used.

DTT has been shown to be a very good model substrate for

flavin-dependent sulfhydryl oxidases, compared to reduced

proteins and monothiol molecules [45,46]. Zebrafish Alr oxidized

DTT efficiently, while AlrC131S completely lost this activity

(Fig. 6C). Thus, zebrafish Alr is a sulfhydryl oxidase that relies

on the proximal CxxC motif for its enzymatic activity. Similar to

other ALRs, zebrafish Alr showed almost no detectable activity

towards reduced lysozyme and monothiol molecule such as

reduced glutathione (data not shown).

Figure 5. Zebrafish Alr is localized in both the cytosol and mitochondria, but neither in the nucleus nor secreted outside of the cell.
A. Alr subcellular localization by immunofluorescent staining. Human hepatocellular carcinoma cells HepG2, human embryonic kidney cells HEK293T
and zebrafish liver cells ZFL were transfected with pEF6/V5-His-TOPO plasmid expressing Alr-V5. MitoTracker was used to label the mitochondria and
the cells were counter stained with DAPI to mark the nucleus. The Alr protein is co-localized with MitoTracker in the mitochondria, but not present in
nucleus. Scale bar is 10 mm. B. Alr subcellular localization by cell fractionation. Western blot revealed that Alr was localized in both the cytosol and
mitochondria fractions in transfected HEK293T cells and zebrafish liver cell line (ZFL). Alr was detected by anti-V5 antibody. The mitochondrial porin
voltage-dependent anion channel (VDAC) was used as the mitochondria marker while a-tubulin was used as the cytosolic marker. C. Alr was not
secreted outside of cell. Alr-V5 was detected in cell lysates but not in the conditioned medium in both HEK293T and ZFL cells. b-actin was used as
loading control. L, cell lysate; M, medium.
doi:10.1371/journal.pone.0030835.g005
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Overexpression of alr promotes liver growth and rescues
the liver growth defects of alr morphants

To determine if the sulfhydryl oxidase activity is important for

Alr’s function in zebrafish hepatogenesis, we performed overex-

pression and morphant-rescue studies by microinjecting in vitro

transcribed alr mRNA into 1–2 cell stage embryos. As liver

organogenesis is a relatively late developmental event for mRNA

overexpression study, we first tested the lifespan of the microin-

jected alr mRNA/protein by injecting the Alr-EGFP fusion

mRNA generated from the pCS2+ expression vector. The

maturation time of the fusion protein is as fast as EGFP alone

[47], with green fluorescence become visible 2–3 h after mRNA

injection (data not shown). The green fluorescence is strongest

within 30 hpf, after which the signal started to decrease. From

3 dpf onwards, the green fluorescence is no longer visible.

Therefore, embryos at 48 hpf were used for liver organogenesis

analysis by prox1 WISH. At this stage, a clear small-liver

phenotype can be observed in alr morphants and Alr produced

from the microinjected mRNA are still present (Fig. 3).

Embryos injected with alr mRNA at #1.6 ng per embryo

developed normally with no gross morphological abnormalities

except a mild 1–2 h precociousness in development (data not

shown). Notably, overexpression of Alr (at 1.6 ng mRNA/embryo)

significantly enhanced liver growth, with embryos in the

overexpression group showing a 40% increase in average liver

size comparing to WT embryos at 48 hpf as determined by WISH

(Fig. 7A). Interestingly, overexpression of the enzymatically

inactive mutant AlrC131S also mildly but significantly promoted

liver growth. Comparing to WT Alr, the effect of AlrC131S is

noticeably weaker (about 15% increase in average liver size)

(Fig. 7A). Nevertheless, the liver growth promoting effect is a

consistent phenotype.

The small-liver phenotype resulted from E1I1 morpholino

injection (a splicing interference morpholino) was effectively

rescued by co-injection of either alr or alrC131S mRNA (Fig. 7B).

In alr morphants, the relative liver size is in the range of 0.6–0.8.

Overexpression of either WT or mutant Alr completely restored

the liver size in morphants. Moreover, liver sizes in the alr mRNA

rescued morphants were about 40% larger than WT embryos, and

similar to liver sizes in alr overexpressed WT embryos (Fig. 7A and

7B). These results together with morpholino knockdown results

establish that Alr is a stimulator of liver growth in zebrafish

hepatogenesis.

On the other hand, overexpression of the enzyme-inactive

AlrC131S promoted liver growth less efficiently comparing to the

WT Alr (Fig. 7A). In addition, although AlrC131S effectively

rescued the alr morphants and restored the small liver to sizes

slightly larger than the WT liver (about 15% larger), the average

liver size of AlrC131S rescued embryos is obviously smaller than

that of the WT Alr rescued embryos (Fig. 7B). It therefore seems

that the sulfhydryl oxidase activity of Alr also contributes to liver

outgrowth. Our results suggest that zebrafish alr may use both

enzyme-dependent as well as enzyme-independent pathways to

promote liver growth.

We further showed that the enhanced liver growth is through

stimulating hepatocyte proliferation as demonstrated by p-H3

staining (Fig. 7, C and D).

Discussion

It is hypothesized that genes involved in liver regeneration may

also be involved in embryonic liver development. However, to

date this has only been documented in a couple of genes. One

example, uhrf1 gene stimulates both adult liver regeneration as well

Figure 6. Zebrafish Alr is a flavin-linked sulfhydryl oxidase. A. Alr is present as dimers. Recombinant zebrafish Alr purified from E.coli was
examined by SDS-PAGE and stained by commassie blue. In the presence of the reducing reagent DTT, Alr protein is in the monomer form, with a size
of around 23 kD. In the absence of DTT, both Alr and the mutant AlrC131S are present as dimers with sizes in the 40,46 kD region. B. Absorption
spectra of recombinant zebrafish Alr and AlrC131S protein at 15 mM. Free FAD at 15 mM was used as reference and its spectra show the typical
riboflavin spectrum, with two absorbance peaks at around 375 nm and 450 nm. The absorption spectra of both the wild type Alr protein and mutant
AlrC131S protein are characteristic of the FAD moiety, with a minor shift of the first peak to 365 nm compared to the free FAD. Under equal molar
concentration, the amount of Alr-bound FAD is only half of the free FAD, indicating about 50% loading of FAD in the recombinant Alr preparation.
C. Alr is a sulfhydryl oxidase. Enzymatic assay using DTT as substrate, showing the reduction of free thiol groups overtime. The blue line represents
DTT alone. Wild type Alr protein oxidized thiol groups over time while the CxxC motif mutant, AlrC131S, completely lost the sulfhydryl oxidase activity.
doi:10.1371/journal.pone.0030835.g006
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as embryonic liver outgrowth in zebrafish [18,48]. ALR is an

established hepatotrophic growth factor activated during liver

regeneration and specifically stimulates hepatocyte proliferation

[4]. However, its role in vertebrate embryonic development has

not been examined.

In this study, we demonstrated for the first time that alr plays a

critical role in liver growth during zebrafish hepatogenesis. We

showed that alr is temporally and spatially expressed in the

developing liver at a high level throughout zebrafish liver

organogenesis (Fig. 2). Knockdown of alr by morpholino antisense

Figure 7. alr overexpression promotes liver growth and rescues alr morphants. A. Overexpression of both alr and enzyme-inactive mutant
alrC131S can promote liver growth. But the wild type alr is more efficient than alrC131S mutant. The mean liver sizes (means 6 SD) are: WT (1.0060.28),
alr mRNA (1.3760.23) and alrC131S mRNA (1.1360.23). B. Both alr and alrC131S overexpression can rescue alr morphant and restore liver size. The mean
liver sizes (means 6 SD) are: WT (1.0060.25), MO (0.7860.13), MO+alr mRNA (1.3060.37) and MO+alrC131S mRNA (1.1460.30). The black line in the
middle of scattered dots indicates the mean liver size in that group. The brackets on top indicate the respective two samples compared by student’s
t-test. n, number of embryo analyzed. *, p,0.05; **, p,0.01. C and D. Overexpression of alr and alrC131S promote liver growth by promoting
hepatocyte proliferation. Hepatocyte proliferation demonstrated by immunofluorescent staining of proliferation marker p-H3 in 48 hpf embryos (red
color). The tissue sections were counterstained with DAPI (blue) to label nucleus. I: intestine; L: liver. Dash line circles the boundary of liver. *, p,0.05.
Sample number and other details are described in the relevant methods section.
doi:10.1371/journal.pone.0030835.g007
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oligonucleotide suppressed liver growth, generating a small-liver

phenotype without affecting hepatoblast determination from the

anterior endoderm (Fig. 3). We further demonstrated that alr

promotes liver growth by stimulating hepatocyte proliferation

rather than inhibiting apoptosis (Fig. 4). This is in accordance with

the findings that apoptosis levels are generally low during this stage

of liver development (this work and [35]). It is noted that in

mammals an anti-apoptotic function of ALR for adult hepatocytes

have been reported [49]. Nevertheless, the minimum apoptosis

during normal embryonic liver formation in zebrafish possibly

renders this function of Alr unimportant in this developmental

process. Our work demonstrates that alr is a new member to the

growing list of genes regulating vertebrate hepatogenesis.

We noted that knockdown of alr also resulted in a smaller

exocrine pancreas (Fig. 3C and 3E). This is correlated with the

expression of alr in this organ (Fig. S3). It seems that alr could be

playing a role in the development of exocrine pancreas. Future

investigations are required to elucidate the role of alr in exocrine

pancreas development.

What is unique about ALR is that this protein is not only a

hepatic cytokine but also a sulfhydryl oxidase carrying out

fundamental redox reactions in cells. The sulfhydryl oxidase

activity of the yeast ALR ortholog, ERV1, is essential for the

survival of this single cell organism [41,50]. Recombinant

zebrafish Alr protein expressed from E.coli also binds FAD and

has sulfhydryl oxidase activity (Fig. 6), presenting similar

enzymatic characteristics as mammalian ALRs/yeast ERV1.

Through overexpression and morphant-rescue experiments,

we demonstrated that the sulfhydryl oxidase activity may not be

essential for Alr’s function in promoting liver outgrowth during

embryonic development. Overexpression of the enzymatically-

inactive mutant AlrC131S also promoted liver growth and

rescued the small-liver phenotype in alr morphants (Fig. 7).

Nevertheless, overexpression of AlrC131S promoted liver growth

less efficiently comparing to the wild type Alr (Fig. 7A).

Furthermore, although AlrC131S effectively rescued the alr

morphants, the average liver size of AlrC131S rescued embryos

is smaller than that of the wild type Alr rescued embryos

(Fig. 7B). This suggests that zebrafish alr most likely promotes

liver growth through both enzyme-dependent as well as enzyme-

independent signaling pathways.

Both enzyme-dependent and -independent signaling pathways

of ALR have been illustrated in cultured human hepatoma cells.

Extracellular ALR can activate the mitogen-activated protein

kinase (MAPK) cascade through its cell surface receptor

independent of its sulfhydryl oxidase activity [12,51]. On the

other hand, the ability of intracellular ALR to potentiate the

activator protein-1 (AP-1) pathway through JAB1 is dependent on

its enzymatic function [12]. Alr may use both the enzyme-

dependent (through AP-1 pathway) and enzyme-independent

signaling pathways (through MAPK pathway) to promote liver

growth during hepatogenesis.

Although we did not detect any secreted zebrafish Alr-V5 or

Alr-EGFP fusion protein in the media of cultured cells, it is

probable that Alr can be released by hepatocyte under specific

environmental conditions such as after liver injury. Incidentally,

although low level ALR was detected in medium of primary rat

hepatocytes by ELISA [9], no secreted ALR could be detected

when a rat ALR cDNA expression plasmid was transfected into

cultured COS cells by an in vivo functional assay [1]. Hence,

different detection methods, different cell types used and different

environmental conditions may generate varied results in terms of

ALR secretion. Therefore, it is highly probable that zebrafish Alr

can be secreted during hepatogenesis.

Alternatively, it can be speculated that exogenously introduced

AlrC131S may form functional heterodimers with the residual wild-

type Alr protein in alr morphants, thus partially rescued the morphant

phenotype and promoted liver growth. However, in alr morphants

with liver growth defects, the amount of alr mRNA is almost

undetectable up to 5 dpf (Fig. 3 and data not shown), suggesting that

the amount of Alr-AlrC131S heterodimers would be very low and thus

unlikely to be able to restore the liver defect in morphants to wild type

level (AlrC131S-AlrC131S homodimer is enzymatically inactive). Future

study of AlrC131S in an alr complete knockout zebrafish (if possible)

would help to exclude this second possibility.

There are two isoforms of ALR protein in mammals, with long

form contain about an additional N-terminal non-conserved region.

Both isoforms contain no signal peptide at the N-terminal. The

composition of the secreted ALR that stimulate hepatocyte

proliferation is still not very clear up to now [9]. The zebrafish Alr

(191 amino acids) is more similar to the long form mammalian ALR

in length. Expression of Alr-V5 and Alr-EGFP fusion proteins in

cultured human cells and zebrafish liver cells shows that Alr is

localized in both the cytosol and mitochondria, but not in the

nucleus or the culture medium (Fig. 5). Notably, the secretion of the

mammalian ALR into blood circulation is only sharply up-regulated

during liver regeneration after partial hepatectomy with concomitant

decrease in hepatic ALR protein [9]. The intracellular localization of

zebrafish Alr is also similar to the long form of human ALR205. It is

believed that the intracellular ALR is present in many cell types and

carries out fundamental cellular functions such as promoting

disulfide bond formation in proteins, Fe-S cluster formation and

cellular Fe homeostasis [4]. Indeed, when injected with high doses of

alr morpholino, the morphants exhibited severe defects in multiple

organs and embryonic death (data not shown). Under low dose

morpholino, it is likely that the residual amount of Alr is sufficient for

early embryonic development, but not sufficient to support normal

liver growth. Accordingly, alr morphants only showed a small-liver

phenotype, but not completely lack of liver growth. The clear

correlation of knockdown levels with different phenotypes and their

severeness supports the current model that Alr performs different

functions at different cellular locations and developmental stages.

In addition to liver, alr is also expressed at high levels ubiquitously

in early embryos (before segmentation) and later in the developing

brain and pharyngeal arches (Fig. 2). This is consistent with the alr

sequence-dependent severe developmental defects and early

embryonic death when high doses of morpholino were injected. It

therefore seems that a low level sulfhydryl oxidase activity of Alr is

essential for fundamental cellular survival. Hence the dose-

dependent and partial suppression of alr function through

morpholino-mediated knockdown presented a clear advantage over

the gene knockout approach, allowing the identification of a late

developmental role of alr in vertebrate liver organogenesis.

Incidentally, alr mutant in Drosophila is recessive lethal and

homozygous alr mutation leads to developmental arrest in flies [52].

Conclusion
In this study, we provide several experimental evidences revealing

the role of alr in vertebrate liver organogenesis. Using knockdown

and overexpression approaches, we demonstrated its positive

function in promoting liver growth. We further showed that

impaired proliferation but not increased apoptosis was the

underlying mechanism for the liver growth defect in alr morphants.

We show that zebrafish Alr naturally exist in dimer form, is also a

flavin-linked sulfhydryl oxidase. By combining biochemistry study

with developmental biology study, we show that zebrafish alr may

use both enzyme-dependent and enzyme-independent signaling

pathways to promote liver growth during hepatogenesis.
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Supporting Information

Figure S1 Comparison of ALR protein sequences.
Sequence alignment of ALR proteins were performed using

clustalX program. ALR protein sequences used are: NP_005253

(Homo sapiens) (long), NP_075527 (Mus musculus) (long),

EDM03859 (Rattus norvegicus) (long), NP_001082855 (Danio

rerio), NP_011543 (Saccharomyces cerevisiae). All the cysteines

are highlighted in red. In human, mouse and rat, methionines

labeled by blue are the starting amino acids of the short form ALR

proteins; in zebrafish, the conserved methionine at same position is

also highlighted by blue. Grey brackets mark the Erv1/ALR

domain. Green brackets indicate the known intra-molecular

disulfide bonds while green arrows indicate the cysteines residues

that form the inter-molecular disulfide bonds. The conserved

Arginines, which correspond to the position of the R194 mutation

in human ALR, are highlighted in purple.

(TIF)

Figure S2 Zebrafish Alr is the ortholog of mammalian
ALR and yeast Erv1p. A. Phylogenetic tree was constructed

using MEGA version 4 (Tamura, Dudley, Nei, and Kumar 2007).

The branches were validated by bootstrap analysis from 1000

replications, which were represented by percentage in branch

nodes. The scale bar under the tree indicates the p-distance. ALR

protein sequences used in this analysis are: NP_005253 (Homo

sapiens) (long), P55789 (Homo sapiens) (short), NP_075527 (Mus

musculus) (long), P56213 (Mus musculus) (short), EDM03859

(Rattus norvegicus) (long), NP_037354 (Rattus norvegicus) (short),

XP_414848 (Gallus gallus), AAH97922 (Xenopus laevis),

CAF89716 (Tetraodon nigroviridis), NP_001082855 (Danio rerio),

NP_608353 (Drosophila melanogaster), NP_490690 (Caenorhab-

ditis elegans), NP_011543 (Saccharomyces cerevisiae) (Erv1p),

NP_015362 (Saccharomyces cerevisiae) (Erv2p). B. Synteny

analysis of alr (gfer) with neighbor genes in zebrafish, chicken,

mouse and human genomes. Only one copy of alr gene was found

in the genomes of the four species. Homologous genes are labeled

by the same color. Arrow head shows the direction of that gene.

Tamura K, Dudley J, Nei M & Kumar S (2007) MEGA4:

Molecular Evolutionary Genetics Analysis (MEGA) software

version 4.0. Molecular Biology and Evolution 24:1596–1599.

(TIF)

Figure S3 Expression of alr in zebrafish exocrine
pancreas. Cross-sections of 4 dpf embryos after WISH with alr

probe were presented. A, cross section of embryo at the position of

liver, dash line circles the liver. B, cross section of embryo at the

position of anterior pancreas, the pancreas is circled by dash line.

Expression of alr is found in exocrine pancreas. C, cross section of

embryo at the position of posterior pancreas, dash line circles the

exocrine pancreas. L: liver; P: pancreas.

(TIF)

Figure S4 Liver growth is significantly inhibited in alr
morphants. Cryostat section was obtained from 5 dpf

Tg(lfabp:DsRed; elaA:EGFP) embryos. Red color is from the DsRed

expressed under lfabp promoter, indicating the liver. Blue color is

the nucleus staining by DAPI. Images in the same column are

sections from similar anterior-posterior position of liver.

(TIF)

Figure S5 Hepatocyte apoptosis is not elevated in alr
morphants. A–F, TUNEL assay performed on 4 dpf embryo liver

sections. White dashed lines outline the liver. White arrowheads

indicate some of the positively stained cells, which are undergoing

apoptosis. Very low levels of apoptosis are found in the developing

livers of wild type embryos and alr morphants. G, DNase treated

sample from 30 hpf embryos, as a positive control. H, brain section

from 30 hpf embryos, treated by heat shock (39 degree, 1 hour) to

induce apoptosis, as a positive control. L: liver; I: intestine. (Yabu et

al., 2001) Yabu, T., Todoriki, S., Yamashita, M., 2001. Stress-

induced apoptosis by heat shock, UV and c-ray irradiation in

zebrafish embryos detected by increased caspase activity and whole-

mount TUNEL staining. Fisheries Science 67, 333–340.

(TIF)

Figure S6 Cellular localization of Alr-EGFP in zebrafish
embryo and cultured cells. A. Alr-EGFP is mainly localized in

the cytoplasm in zebrafish embryo. The plasmid expressing Alr-

EGFP fusion protein under the CMV promoter, was injected into

zebrafish 1-cell stage embryos and these embryos were fixed at

shield stages (6 hpf) and processed for sectioning. The cryo-sections

were stained with mouse anti-GFP primary antibody and Alexa

Fluor 568 conjugated anti-mouse IgG secondary antibody. DAPI

was used to stain nucleus. Red color shows the predominant

presence of Alr-EGFP fusion protein in cytoplasm, but not nucleus.

B. Alr-EGFP is localized in both the cytosol and mitochondria.

HEK293T cells were transfected with Alr-EGFP expressing

plasmid. Cell fractionation followed by Western blot using anti-

EGFP antibody revealed that Alr-EGFP was localized in both the

cytosol and mitochondria in transfected HEK293T cells. The

mitochondrial porin voltage-dependent anion channel (VDAC) was

used as the mitochondria marker while a-tubulin was used as the

cytosolic marker. C. Alr was not secreted outside of cell. Alr-EGFP

is detected by anti-GFP antibody Western blot. The b-actin was

used as loading control. L, cell lysate; M, conditioned medium.

(TIF)
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