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Abstract

In legumes rhizobial infection during root nodule symbiosis (RNS) is controlled by a conserved set of receptor proteins and
downstream components. MtSYMREM1, a protein of the Remorin family in Medicago truncatula, was shown to interact with
at least three receptor-like kinases (RLKs) that are essential for RNS. Remorins are comprised of a conserved C-terminal
domain and a variable N-terminal region that defines the six different Remorin groups. While both N- and C-terminal regions
of Remorins belonging to the same phylogenetic group are similar to each other throughout the plant kingdom, the N-
terminal domains of legume-specific group 2 Remorins show exceptional high degrees of sequence divergence suggesting
evolutionary specialization of this protein within this clade. We therefore identified and characterized the MtSYMREM1
ortholog from Lotus japonicus (LjSYMREM1), a model legume that forms determinate root nodules. Here, we resolved its
spatio-temporal regulation and showed that over-expression of LjSYMREM1 increases nodulation on transgenic roots. Using
a structure-function approach we show that protein interactions including Remorin oligomerization are mainly mediated
and stabilized by the Remorin C-terminal region with its coiled-coil domain while the RLK kinase domains transiently
interact in vivo and phosphorylate a residue in the N-terminal region of the LjSYMREM1 protein in vitro. These data provide
novel insights into the mechanism of this putative molecular scaffold protein and underline its importance during rhizobial
infection.
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Copyright: � 2012 Tóth et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported by the Deutsche Forschungsgemeinschaft (DFG) (www.dfg.de)in frame of an Emmy-Noether grant (TO, project OT423/2-1) and
of the Priority Program SPP1212 PlantMicro (Pa493/5-1; MA-L and MP) of the DFG. Two consecutive research fellowships to KT provided by the Bayerisches
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Introduction

Root nodule symbiosis (RNS) in legumes requires a complex

molecular dialogue between the plant host and bacteria belonging

to the Rhizobiaceae family. Upon perception of different flavonoid

compounds released by the plant under nitrogen starvation,

rhizobia secrete strain-specific lipochitooligosaccharide signaling

molecules, called nod factors (NF), which are recognized by at least

two receptor-like kinases (RLKs). In L. japonicus two LysM-type

Nod Factor receptors NFR1 and NFR5 confer NF recognition

specificity [1,2,3]. They trigger downstream physiological and

morphological processes such as calcium-spiking, root-hair curling

and activation of gene expression [4,5]. In Medicago truncatula NFP

and LYK3 have been described to serve these functions [6,7,8].

However, the fact that initial responses to NFs can be observed in

an hcl1/lyk3 mutant indicates the presence of another LysM RLK

to be involved in NF perception. A closely related LYK4 protein

has been proposed to be a likely candidate for a NF receptor

component [8]. Phenotypical analysis of M. truncatula plants, where

the NF receptors have been post-transcriptionally silenced by

RNA interference (RNAi), and spatial analysis of receptor gene

expression support the hypothesis, that these proteins are not only

required for initial recognition of NFs prior to bacterial invasion

but for the entire intracellular infection process. This was also

suggested for the leucine-rich repeat RLK DMI2 from M.

truncatula [9,10]. While DMI2 and its homolog in L. japonicus

SYMRK [11] have been originally isolated based on their

infection phenotypes, recent genetic data suggest that SYMRK

is rather required for nodule organogenesis and activation of a

calcium-calmodulin dependent protein kinase (CCaMK) [12], a

protein that decodes NF induced calcium-spiking.

Upon perception of NFs the root hair curls around rhizobia and

entraps them in a micro-colony. Infection occurs via formation of

infection threads (ITs), invaginations of the plant plasma

membrane (PM) that surround rhizobia throughout the entire

symbiotic interaction [13,14]. While the IT progresses intracellu-

larly towards the root cortex, cell divisions occur directly below the

IT in outer cortical cells. They branch within the developing

PLoS ONE | www.plosone.org 1 January 2012 | Volume 7 | Issue 1 | e30817



nodule primordium and finally release rhizobia into symbiosomes.

These are spatially defined by the PM encapsulating the bacteria

(the symbiosome membrane) and contain differentiated bacteroids,

the nitrogen-fixing state of rhizobia.

We have recently shown that a Remorin protein from M.

truncatula (MtSYMREM1) is able to interact with the putative NF

receptors NFP and LYK3 as well as with DMI2. MtSYMREM1

localizes to infection threads within the nodular infection zone and

symbiosomes membranes and is required for bacterial infection

[15]. Remorins are plant-specific proteins that comprise a gene

family with 16 members in Arabidopsis thaliana while only 10 genes

have so far been identified in M. truncatula [16]. Members of all

Remorin groups can be found in all higher plants, except group 2

Remorins, which are only present in legumes and poplar. This

subgroup is comprised of two members. While MtSYMREM1 has

so far only been described to be activated in response to rhizobia

[15], the second gene is transcriptionally induced during

arbuscular mycorrhiza symbiosis [17]. Furthermore recent data

indicate that remorins belonging to the group 1 are function

during plant-viral [18] and plant-microbe interactions [19]. While

the exact mechanisms remain to be understood, the structural

composition of Remorins with their highly conserved C-terminal

region that harbors a coiled-coil domain and a set of conserved

positively charged and aliphatic amino acid residues suggest

similar core functions. In contrast, the N-terminal region is highly

variable or absent in between the different Remorin groups [16]

indicating functional specification.

Results

Evolutional divergence of L. japonicus LjSYMREM1
Legumes develop two main types of nodules. Medicago truncatula

develops indeterminate nodules that have persistent meristem

activity and are continuously infected. Other legumes such as Lotus

japonicus develop determinate nodules that loose the ability to get

infected and thus have a defined lifespan. Based on expression

profiles [20,21] we identified a REMORIN gene in L. japonicus that

was significantly induced during nodulation, a feature that was

also described for MtSYMREM1 in M. truncatula [15]. The

LjSYMREM1 gene (chr4.CM0004.60.r2.d; http://www.kazusa.

or.jp/lotus/) is comprised of 5 exons and 4 introns. Sequencing

the genomic fragment of the putative Medicago ortholog MtSYM-

REM1, revealed a gene structure similar to LjSYMREM1

(Figure 1A). Errors in the publically available annotation of

MtSYMREM1 (Medtr8g098650.1; http://www.medicagohapmap.

org/) led to a previously reported incomplete annotation [15].

Thus the MtSYMREM1 genomic sequence has been submitted to

GenBank (Accession number JQ061257). Phylogenetic analysis

Figure 1. Identification and analysis of orthologous SYMREM1 genes and proteins. The LjSYMREM1 sequence is similar to the previously
published one of MtSYMREM1 Both genes show the same exon-intron structure even though the MtSYMREM1 gene is comprised of longer introns (A).
Phylogenetic analysis based on 147 amino acid Remorin sequences using 101 unambiguously aligned residues in the conserved C-terminal region
identifies the group 2 (B). Amino acid sequences of 11 group 2 Remorins from legumes and poplar were aligned and analyzed in 172 positions (C).
MtSYMREM1 and LjSYMREM1 clearly cluster indicating that these proteins are orthologous to each other. Names marked with an asterisk were
introduced in [16].
doi:10.1371/journal.pone.0030817.g001
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revealed that LjSYMREM1 and MtSYMREM1 are closely related

and directly evolved from a common ancestral gene, by speciation

(Figure 1B–1C). They thus are orthologous genes.

Surprisingly, both proteins only share an overall similarity

67.1% (Table S1A) resulting from only 38.3% similarity in the N-

terminal region while the C-terminal part of the protein is rather

similar to MtSYMREM1 (85.3% similarity). Such low conserva-

tion was also found when comparing the N-terminal region of

MtSYMREM1 with those of the closest homologs in soybean,

poplar, common bean and grape wine (38.7% similarity) (Table

S1A). This sequence divergence between the N-terminal regions of

the SYMREM1 proteins of Medicago and Lotus is in sharp contrast

to scores found for the symbiotic receptor-like kinases NFP/NFR5

and DMI2/SYMRK, the so-called ‘common symbiosis’ proteins

DMI1/POLLUX, DMI3/CCAMK, IPD3/CYCLOPS, the pu-

tative transcription factors NSP2 and NIN and the late nodulin

leghemoglobin 1 where the average sequence similarity is 81.9%

with NIN only showing 67.5% similarity between the two legumes

(Table S1B). This high sequence divergence of Medicago and Lotus

SYMREM1 proteins that suggests high evolutionary pressure on

the N-terminal region prompted us to functionally characterize the

Lotus LjSYMREM1 protein, to analyze the contributions of the

individual domains to SYMREM1 localization, function and to

the interaction with the symbiotic RLKs NFR1, NFR5 and

SYMRK.

Overexpression of LjSYMREM1 increases nodulation
To show the importance of LjSYMREM1 genetically, we

intensively screened the L. japonicus mutant population at RevGen,

Norwich, UK (http://www.lotusjaponicus.org/tillingpages/home

page.htm) by a Targeted Induced Local Lesion in Genomes

(TILLING) approach. Unfortunately, no potential homozygous

knock-out mutant could be obtained while 15 non-allelic

mutations that were identified with six being located in non-

coding regions, four missense mutations, three silent mutations

and one being located at the splice site did not show any

phenotypical differences (data not shown). Thus we generated a

LjSYMREM1:mOrange fusion construct that was driven by the

Lotus poly-ubiquitin promoter (pUbi) [23] to assess the nodulation

phenotype upon overexpression of LjSYMREM1. Transgenic roots

expressing this construct were generated and inoculated for 28

days with Mesorhizobium loti (MAFF DsRed). Roots over-expressing

LjSYMREM1 developed significantly more mature nodules

(24.6%; p,0.01) without any macroscopical alterations

(Figure 2A) compared to the empty vector control while both

genotypes exhibited similar numbers of immature nodules

(bumps). However, transgenic roots overexpressing LjSYM-

REM1:mOrange did not show more infection threads at 28 dpi

(neither mature nor aborted infection threads; data not shown).

To confirm overexpression of the construct we isolated proteins

from transgenic roots expressing the pUb:LjSYMREM1:mOrange

construct and showed presence of the fusion protein at different time

points (Figure 2B, left panel). In contrast LjSYMREM1:YFP

protein expressed in stable transgenic lines under control of the

native promoter (described below) could only be detected in roots 15

days after inoculation with M. loti (Figure 2B, right panel).

Expression of the transgene was also verified by microscopy prior

to phenotypical analysis where patterns as described later in the text

were observed. However, natively expressed LjSYMREM1 protein

was never detected microscopically in root cells (see below).

Spatial expression of the LjSYMREM1 gene
Next we assessed spatio-temporal expression of LjSYMREM1

since such data have not been provided for any SYMREM1 gene.

Thus we cloned a 975 bp fragment of the putative LjSYMREM1

promoter (pLjSYMREM1) and generated transcriptional fusions to

the b-glucuronidase (GUS) gene. The pLjSYMREM1:GUS reporter

construct was transformed into L. japonicus roots using Agrobacterium

rhizogenes mediated gene transfer. No GUS staining was observed

in uninoculated transgenic roots after five hours of staining

(Figure 3A). However, some weak staining of vascular tissue and

root tips was occasionally observed after extended staining time,

but this was also observed in roots transformed with the empty

GUS-vector and was thus regarded as background staining (data

not shown). To test promoter activation upon application of

isolated NFs we applied 1028 M isolated Mesorhizobium loti NFs as

a droplet in the root hair elongation zone above the root tip to

these transformed roots. This zone was previously described to be

most susceptible to rhizobial infections [22]. GUS-activity was

observed 24 hours post inoculation (hpi) in epidermal and cortical

cells in the area where NFs were applied confirming inducibility of

the LjSYMREM1 gene by these bacterial signaling molecules

(Figure 3B; S1A). Next we tested promoter activation during

symbiotic interaction in transgenic roots carrying the pLjSYMREM1:

GUS construct. Plants were inoculated with M. loti (expressing a

Figure 2. Overexpression of LjSYMREM1 leads to increased
nodule numbers. LjSYMREM1 was overexpressed as a mOrange
fusion protein in transgenic L. japonicus roots (A). Nodule number and
morphology was assessed 28 dpi with M. loti (MAFF303099-DsRed).
Nodules were grouped into mature/pink and immature/white nodules
and counted. Nodule morphology was not altered as indicated by the
representative inlets above. Scale bars indicate 500 mm. Error bars
represent standard errors and significance levels that were determined
by student’s t-test are indicated by an asterisk (p,0.01). Western Blot
analysis to determine expression levels of LjSYMREM1 in transgenic
roots (B). Proteins from transgenic roots of chimeric plants expressing a
pUbi:LjSYMREM1:mOrange construct (left) and stable transgenic plants
expressing a pLjSYMREM1:LjSYMREM1:YFP construct (right) were trans-
ferred to a PVDF membrane and probed with the respective antibodies.
Amounts of proteins loaded transferred the membrane is indicated by
Amido black staining.
doi:10.1371/journal.pone.0030817.g002
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fluorescent DsRed marker) by application of rhizobia to the whole

root system and stained for GUS-activity 2, 4, 6 and 21 days post

inoculation (dpi). As shown after NF application LjSYMREM1

promoter activity was observed in a distinct zone above the root

tip at 2 dpi (Figure 3C). Roots that had been inoculated for four

days showed strong b-glucuronidase-activity that localized specif-

ically around nodule primordia with progressing bacterial

infection, while the epidermal staining, that was observed at pre-

infection stages, was entirely diminished in these roots (Figure 3D).

From 4 dpi onwards GUS-staining coincided with the presence of

bacteria. In developing and mature nodules GUS-activity was

detected in infected cells in the central zone of the nodule hosting

nitrogen-fixing bacteroids but not in outer cortical cells (Figure 3E–

3F). This was confirmed by sectioning these nodules prior to GUS

staining. There, LjSYMREM1 promoter activity was clearly found

in inner nodule parenchyma cells that were not infected, as well as

in infected cells (Figure S1B).

Localization of LjSYMREM1 in legume nodules
To study localization of the native LjSYMREM1 protein, we

generated a construct where the promoter together with the intron-

containing version of LjSYMREM1 that was amplified from genomic

DNA was cloned and fused to the yellow fluorescent protein (YFP;

gLjSYMREM1:YFP). Using A. tumefaciens mediated gene transfer we

created stable transgenic lines in the L. japonicus ecotype MG-20

background. In T2 plants, we could not detect distinguishable YFP

fluorescence in NF-treated roots due to high levels of intrinsic auto-

fluorescence. However, a clear and specific YFP signal was detected

in infected cells of mature nodules at 21 dpi (Figure 4A–4H). In

comparison no YFP signal was detected in untransformed control

nodules of MG-20 wild-type plants (21dpi) (Figure 4I–4L). In

transgenic nodules the gLjSYMREM1:YFP fluorescence co-localized

with the DsRed signal derived from M. loti expressing this fluorophore

(Figure 4D,4G,4H and Figure S2A) suggesting localization of the

protein on symbiosome membranes surrounding bacteroids in

infected cells. A more detailed view on nodular infection threads

also showed presence of LjSYMREM1 on these infection structures

(Figure S2B). These data are in agreement with localizations reported

for MtSYMREM1 that was detected by immuno-localization

experiments on nodular ITs in the infection zone and on symbiosome

membranes of indeterminate Medicago nodules [15].

The C-terminal domain of LjSYMREM1 is mediating PM
localization

The LjSYMREM1 protein is comprised of two main parts, the

conserved C-terminal region with a strong prediction for a coiled-

coil domain (COILS probability .90%) and the variable N-

terminal region. While the C-terminal region (amino acids 79–

207; LjSYMREM1C) has a predicted globular structure (Glob-

Doms by Russell/Linding definition), almost only random coils

and unfolded structures are predicted for the N-terminal part

(amino acids 1–78; LjSYMREM1N). Next we identified the

domain responsible for PM localization. LjSYMREM1N and

LjSYMREM1C regions were individually fused to the mOrange

fluorophore and expressed under control of the Lotus polyubiquitin

promoter in L. japonicus hairy roots (Figure 5A–5C). As expected

the full-length LjSYMREM1 protein localized to the periphery of

root epidermal cells (Figure 5A) indicating membrane association

of the protein. This localization was also detected when expressing

LjSYMREM1C (Figure 5B) while LjSYMREM1N localized to the

cytosol and the nucleus (Figure 5C) indicating that the PM binding

motif is located in the C-terminal region of the protein. However,

Figure 3. Analysis of LjSYMREM1 promoter activity during rhizobial infection. Uninoculated transgenic roots transformed with the
promoter:GUS construct (A). Application of 1028M purified Nod Factors for 24 hours induced promoter activity in the root infection zone (1–5 cm
above the root tip) (B). Root 48 hours after inoculation with DsRed expressing M. loti MAFF303099 (no infections) (C). Root segment with nodule
primordia at 4dpi (D). Red fluorescence deriving from the bacteria shows their presence at the root surface. Young nodule at 6dpi with bacteria
infecting the cortex (E). Mature nodules at 21dpi that are entirely infected by rhizobia (F). Bars indicate 500 mm.
doi:10.1371/journal.pone.0030817.g003
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nuclear localization of the LjSYMREM1N:mOrange construct

was not expected, but due to the small size and the unordered

structure of the N-terminal region, the fusion may not interfere

with the nuclear import of free fluorophores.

LjSYMREM1 oligomerizes and interacts with symbiotic
RLKs

To understand the roles of the domains we tested interactions

between individual LjSYMREM1 domains and other proteins.

Since the in planta approaches currently require expression of the

proteins in a heterologous system such as N. benthamiana leaves we

first tested whether localizations of these constructs follows those

observed in Lotus roots. Indeed the full-length protein as well as

LjSYMREM1C localized to the PM (Figure 5D–E) as it was also

shown for NFR1 (Figure 5F). In contrast, LjSYMREM1N was

detected in the cytosol (Figure 5G). Co-localization of LjSYM-

REM1N with free Cerulean fluorophore protein in N. benthamiana

leaves confirmed cytosolic localization (Figure 5H–5I).

As a proof of concept we then tested for possible interactions

between the LjSYMREM1 protein and the symbiotic RLKs

NFR5, NFR1 and SYMRK from L. japonicus using Bimolecular

Fluorescence Complementation (BiFC) (Figure 6A–6I) and the

yeast split-ubiquitin system (SUS) (Figure 6J) to assess if

LjSYMREM1 exhibits the same interaction patterns as its

homolog MtSYMREM1.

For BiFC (also termed split-YFP), we individually fused the

proteins to the N- (YN) and C-terminal (YC) halves of YFP and

expressed different combinations in leaves of N. benthamiana for two

days. Interaction between proteins should result in re-assembly of

the functional YFP protein and thus in fluorescence at the sites of

interaction. Co-expression of LjSYMREM1:YC and LjSYMRE-

M1:YN resulted in strong fluorescence in epidermal cells indicating

interaction of the proteins (Figure 6A). This is in agreement with the

previously reported homo-oligomerization when expressing YC:Mt-

SYMREM1 and YN:MtSYMREM1 together in N. benthamiana

leaves [15]. When both proteins were C-terminally fused to the

individual halves of YFP hetero-oligomerization was also observed

between LjSYMREM1 and MtSYMREM1 (Figure 6B). In contrast

co-expression of LjSYMREM1:YC and YN:MtSYMREM1 did not

show fluorescence (Figure 6C) presumably since both halves of the

YFP protein were physically separated by changing the fusion

direction. Thus they served as negative controls. Due to cleavage of

the fluorescent tag of a YFP:LjSYMREM1 construct in planta (data

not shown), reciprocal experiments could not be performed. Next,

we fused the Lotus RLKs NFR5, NFR1 and SYMRK to the N-

terminal half of the YFP protein and co-expressed them together

with LjSYMREM1:YC. Interaction between LjSYMREM1 and the

RLK proteins was detected in all three cases (Figure 6D–6F).

Fluorescence localized to the periphery of the cells indicating PM

resident interactions of the proteins. However, expression frequently

led to formation of PM associated foci (inlet Figure 6E). Interest-

ingly, no fluorescent signal was detected when these RLKs were co-

expressed with the YC:MtSYMREM1 construct (Figure 6G–6I).

To verify the RLK interaction data we used the yeast split-

ubiquitin system. Similar to the principle of BiFC the ubiquitin

protein was split in two halves. Upon protein interaction re-

assembly of the full ubiquitin molecule occurs. The assembled

ubiquitin serves as a recognition site for proteolytic cleavage that

results in the release of the LexA transcriptional activator that is

fused to a VP16 DNA binding domain that are coupled to the C-

Figure 4. Stable transgenic Lotus japonicus plant expressing gLjSYMREM1:YFP. A genomic construct consisting of the LjSYMREM1 native
promoter (pLjSYMREM1) and the LjSYMREM1 gene was fused to YFP (gLjSYMREM1:YFP). Roots were inoculated with M. loti MAFF303099-DsRed and three
week old nodules of stable transgenic T2 plants were analyzed as 150 mm thick sections. Nodule of a transgenic Lotus plant shows strong YFP-
fluorescence in infected cells that co-localizes with M. loti (A–D). Close-ups of infected (yellow) and uninfected (ui; no fluorescence) cells at the
periphery of the nodule cortex (E–H). Vacuoles (V) are visible in the center of infected cells. Remnant trans-cellular infection threads lacking
gLjSYMREM1:YFP protein are marked with an asterisk. Cross-section of an untransformed control nodule shows no fluorescence (I–L). Bars indicate
100 mm (A–D, I–L), 20 mm (E–G) and 10 mm (H). BF = bright-field.
doi:10.1371/journal.pone.0030817.g004
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terminal half (Cub). Diffusion of this construct into the nucleus

leads to activation of a HIS3-reporter enabling the yeast to

complement its histidine auxotrophy and thus growth on medium

lacking histidine. For these assays we generated Cub:LjSYM-

REM1 fusions while the C-termini of the RLKs were fused to the

mutated N-terminal part of ubiquitin (NubG) that is unable to

auto-interact with Cub. As negative control we co-expressed the

yeast resident ER protein Alg5 as a Cub construct together with

the RLKs while Alg5:NubG was used as control to test auto-

activation of the reporter system by Cub:LjSYMREM1. Yeast was

grown on medium depleted in leucine and tryptophan (2LW) to

select for the presence of both plasmids. To select for positive

protein interactions these colonies were stamped onto 2LWH

medium that was additionally depleted in histidine and supple-

mented by 15 mM 3-amino-1,2,4-triazole (3-AT) to suppress

residual levels of endogenous histidine biosynthesis. Yeast growth

was sustained when Cub:LjSYMREM1 was co-expressed with the

Lotus RLKs indicating an interaction between these proteins while

no growth was observed when these proteins were co-expressed

with the negative controls Alg5:NubG and Alg5:Cub (Figure 6J).

The C-terminal LjSYMREM1 domain is required for
oligomerization and receptor interactions

To assess the individual contributions of both protein regions for

Remorin oligomerization LjSYMREM1 (full-length), LjSYM-

REM1C and LjSYMREM1N were tested on a one-to-one basis.

Cytoplasmic localization of LjSYMREM1N (Figure 5C, 5G) only

allowed the use of the NubG fusion because the split-ubiquitin

assay requires the bait construct (Cub) to be anchored to the

plasma membrane, in order to avoid auto-activation of the

reporter gene. Co-expression of the LjSYMREM1C construct with

full-length LjSYMREM1 resulted in yeast growth under selective

conditions indicating that oligomerization of the LjSYMREM1

protein occurs along the C-terminal region of the protein

(Figure 7A). Co-transformation of LjSYMREM1N with either

LjSYMREM1C or full-length LjSYMREM1 resulted in slight

yeast growth on selective conditions to the same extent as observed

in the negative controls (Figure 7B). Thus the N-terminal region

has no major contribution on LjSYMREM1 oligomerization.

To test domain-specific interactions with the RLKs we co-

expressed the different LjSYMREM1 constructs together with the

Lotus RLKs NFR1, NFR5 and SYMRK. Co-transformation of the

LjSYMREM1C construct with the individual RLKs resulted in

yeast growth under triple selective conditions indicating a strong

interaction (Figure 7A). Since co-expression of the negative control

Alg5:NubG resulted in almost no yeast growth it can be concluded

that the observed interactions specifically result from the RLK-

LjSYMREM1 interaction. In contrast, no interaction was found

when these RLKs were co-transformed with LjSYMREM1N

(Figure 7B). However, yeast grew on –LWH plates after co-

Figure 5. Expression of LjSYMREM1 variants in L. japonicus roots and N. benthamiana leaves. Clones derived from cDNA of LjSYMREM1
were C-terminally tagged with the mOrange fluorophore and expressed under control of the Lotus polyubiquitin promoter in transgenic L. japonicus
roots (A–C) and as a CaMV-35S promoter-driven construct in leave epidermal cells of N. benthamiana (D,E,G). The full-length (FL) protein and the C-
terminal region of LjSYMREM1 (LjSYMREM1C) are associated to the PM while the N-terminal region (LjSYMREM1N) is cytosolic indicated by visible
cytoplasmatic strands. In addition NFR1:Cerulean (F) and free Cerulean (H) were expressed in N. benthamiana leaves resulting in PM and cytosolic
localization, respectively. Bars indicate 200 mm (A–C) and 50 mm (D–I).
doi:10.1371/journal.pone.0030817.g005
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Figure 6. Interactions between LjSYMREM1 and symbiotic RLKs. Bimolecular complementation (BiFC) experiments show that LjSYMREM1 is
able to interact with itself and MtSYMREM1 is indicated by the presence of YFP fluorescence (A,B). However, no signal was observed when the
MtSYMREM1 protein was N-terminally fused to one half of the YFP protein (C). This demonstrates that overexpression alone is not sufficient to re-
assemble the YFP protein. LjSYMREM1 is also able to interact with the three RLKs NFR5, NFR1 and SYMRK (D–F). Bars indicate 40 mm. Occasionally
fluorescent foci were observed (E, inset). The yeast split-ubiquitin assay was used to test interactions between full-length LjSYMREM1 itself and the
RLKs NFR1, NFR5 and SYMRK (J). The coding regions were fused to the C-terminal half (Cub) and the N-terminal half (NubG) of ubiquitin and
interaction was tested on an individual basis. Yeast growth on medium lacking leucine and tryptophan (2LW) shows the presence of both constructs.
Interaction was tested on medium additionally lacking histidine (2LWH) that was supplemented with 15 mM 3-amino-1,2,4-triazole (3-AT) to
suppress residual levels of endogenous histidine biosynthesis. The yeast resident ER protein Alg5 was used as negative control (Alg5:NubG and
Alg5:Cub) (J).
doi:10.1371/journal.pone.0030817.g006
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transformation of the RLKs with the positive control Alg5:NubI

proving expression of the fusion proteins (Figure S3).

Since both yeast split-ubiquitin and BiFC assays are mostly

suitable to qualitatively detect stable protein-interactions we

performed fluorescence lifetime imaging microscopy (FLIM) to

characterize and quantify interaction by Foerster resonance

energy transfer (FRET). We used a Cerulean-mOrange FRET

pair, where one protein is fused to the donor fluorophore

(Cerulean) while the second protein is fused to mOrange which

functions as energy acceptor [24]. FRET occurs when both

fluorophores are brought into physical proximity (,10 nm) by

interaction of the target proteins. In brief, when measuring FRET

by FLIM (FLIM-FRET), the average time electrons of the donor

molecule (after photon absorption) stay in the excited state is

determined by measuring the exponential ‘decay’ rate by time-

resolved measurement of the emitted photons. This is then

transformed into ‘fluorescence lifetime’ values. Upon occurrence

of FRET, the Cerulean fluorescence lifetime becomes shorter (the

‘decay’ is faster) because the excited donor-electrons drop to the

ground state faster, due to the direct energy transfer to the

acceptor (mOrange).

For this approach we used the mOrange fusions with

LjSYMREM1, LjSYMREM1C and LjSYMREM1N while

NFR1, which was taken as a representative RLK, was fused to

the Cerulean protein. N. benthamiana leaves were co-infiltrated

three times independently with A. tumefaciens carrying the

respective fusion constructs. FLIM-FRET data recording was

performed two days post infiltration. For every tested combination

(see Table S2), 6–13 lifetime images were collected per tobacco

leaf (n = 3–5). To determine the Cerulean lifetime under non-

interacting conditions we expressed NFR1:Cerulean alone. To

assess a possible effect of acceptor fluorophore over-accumulation

on the donor lifetime, NFR1:Cerulean was expressed together

with free mOrange. No significant differences between lifetimes of

solely expressed NFR1:Cerulean (2.1860.013 ns) and NFR1:Cer-

ulean/free mOrange (2.1660.014 ns) were detected (Table S2)

indicating that acceptor-accumulation did not have any impact on

the donor lifetime. When co-expressing NFR1:Cerulean and

LjSYMREM1:mOrange the Cerulean lifetimes were significantly

reduced to 1.9960.022 ns, corresponding to a FRET efficiency of

8.8%. Similar values were obtained when NFR1:Cerulean and

LjSYMREM1C:mOrange were co-expressed. The observed life-

time decreased to 1.9760.021 ns with a FRET efficiency of 9.6%

clearly indicating physical interaction of NFR1 and the C-terminal

region of the LjSYMREM1 protein (Table S2). Moderately but

also significantly reduced lifetimes were measured when co-

expressing NFR1:Cerulean and LjSYMREM1N:mOrange

(2.0960.019 ns; FRET efficiency of 4.1%) (Table S2). These data

indicate that primarily the C-terminal region of LjSYMREM1,

containing the coiled-coil domain, contributes to NFR1-LjSYM-

REM1 interaction while the N-terminal region only weakly or

transiently interacts with NFR1.

Phosphorylation of LjSYMREM1 by kinase domains of
NFR1 and SYMRK

As shown above the C-terminal region of the LjSYMREM1

forms a stable interaction with the RLKs while the N-terminal

domain may undergo weak or transient interaction. Since

Remorins were reported to be phosphorylated in vivo

[25,26,27,28] we decided to test if the putative transient

interactions between the RLKs and the LjSYMREM1N domain

is a result of rapidly occurring protein phosphorylation. Contact

between proteins should occur along the intracellular region

(juxtamembrane region, kinase domain and C-terminal region) of

the RLKs since Remorins are anchored to the cytosolic face of the

PM [18]. Therefore, we tested if the cytoplasmic domains (CDs) of

these symbiotic RLKs are able to phosphorylate LjSYMREM1 in

vitro. It should be noticed that NFR5 is a pseudokinase that lacks

several kinase subdomains including the activation loop and has

recently been shown to lack kinase activity in vitro [1,29]. Purified

LjSYMREM1 was tested with the recombinant CDs of NFR1,

NFR5 and SYMRK. As illustrated in Figure 8A SYMRK was able

to phosphorylate LjSYMREM1. A clear, but weaker, phosphor-

ylation of LjSYMREM1 was found when the protein was

incubated with NFR1 alone or in the presence of both NFR1

and NFR5. No phosphorylation was observed when purified MBP

protein was used as substrate of NFR1, demonstrating that the

phosphorylation of LjSYMREM1 did not derive from phosphor-

ylation of the MBP tag (Figure S4).

Figure 7. The C-terminal domain of the LjSYMREM1 protein mainly contributed to protein interactions. The yeast split-ubiquitin assay
was used to test interactions between the LjSYMREM1 variants and the RLKs NFR1, NFR5 and SYMRK. The coding regions were fused to the C-
terminal half (Cub) and the N-terminal half (NubG) of ubiquitin and interaction was tested on an individual basis. Yeast growth on medium lacking
leucine and tryptophan (2LW) indicates presence of both constructs. Interaction was tested on medium additionally lacking histidine (2LWH) that
was supplemented with 15 mM 3-amino-1,2,4-triazole (3-AT) to suppress residual levels of endogenous histidine biosynthesis. The yeast resident ER
protein Alg5 was used as negative control (Alg5:NubG and Alg5:Cub). Yeast growth was sustained on –LWH medium indicating strong interaction of
the RLKs and Remorins variants with LjSYMREM1C (A). Weak interaction of LjSYMREM1N with the RLKs and Remorins variants indicates minor or
transient contribution of the N-terminal region to protein interactions (B). Pigmentation of yeast indicates severe adenine deficiency as a
consequence of lacking interaction. A series of three dilutions (non-diluted, 1021 and 1022) are shown in each panel from left to right).
doi:10.1371/journal.pone.0030817.g007
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To map the phosphorylation sites on the LjSYMREM1 protein,

phosphorylation reactions were repeated under non-radioactive

conditions, LjSYMREM1 bands were excised from the SDS–

polyacrylamide gel and tandem mass spectrometric analysis (MS/

MS) was performed. Phosphorylated residues were neither

detected on the LjSYMREM1 nor on the MBP proteins in the

absence of NFR1 and SYMRK, indicating the absence of

LjSYMREM1 and MBP phosphorylation by bacterial kinases.

MS/MS analysis of LjSYMREM1 phosphorylated by NFR1 and

SYMRK revealed that serine S48 and threonine T49 located

within the N-terminal region of the SYMREM1 protein, were

phosphorylated by these kinase domains, respectively (Figure 8B–

8C). The obtained Mascot score were 54 for the T49 and 57 for

phosphorylation of the S48 while the MS/MS spectra did not

permit us to rule out that only one of the residues was

phosphorylated. However, bioinformatic predictions (NetPhos2.0)

indicate high P-site probabilities for S48 (0.994) while T49 is

unlikely to represent an active P-site (score 0.180). These results

are also supported by the fact that S48 is conserved in both

MtSYMREM1 and LjSYMREM1 while T49 can only be found in

the Lotus protein. Despite a high LjSYMREM1 sequence coverage

(92%) the possibility cannot be excluded that S91, S130 and/or

T131 may also be phosphorylated, as the 89-VESQK-93 and 127-

KASTQAK-134 peptide fragments could not be detected during

the experiments.

To test this we purified recombinantly expressed LjSYM-

REM1C and LjSYMREM1N proteins and used them indepen-

dently in a kinase assay with SYMRK that was shown to be the

strongest phosphorylating kinase (Figure 8A). Indeed SYMRK

could phosphorylate LjSYMREM1C indicating the presence of an

additional phosphorylation site in the C-terminal region. Interest-

ingly, when LjSYMREM1N was co-incubated with SYMRK, no

phosphorylation of this domain was detected (Figure 8D) suggest-

ing that the C-terminal region form a stable kinase-LjSYMREM1

interaction that subsequently allows phosphorylation of the

Remorin N-terminal domain.

Discussion

Despite the fact that most signaling proteins involved in RNS

are highly conserved between M. truncatula and L. japonicus,

SYMREM1 proteins from legumes show a remarkable variability

in their N-terminal regions (Figure 1; Table S1) indicating either

high evolutionary pressure on group 2 N-terminal regions or

dispensability of the domain. Given the emerging roles of

Remorins to act as novel modulators in plant signaling cascades

Figure 8. NFR1 and SYMRK kinase domains are able to phosphorylate LjSYMREM1 in vitro. Recombinant proteins purified from E. coli
were tested for phosphorylation in vitro. LjSYMREM1 was N-terminally fused to the maltose binding protein (MBP). While NFR1 and NFR5 kinase
domains (CD; cytosolic domains of the RLKs were used) were used as untagged proteins, SYMRK-CD contained a His-tag at its C-terminal end.
Phosphorylation was visualized by detection of integrated radioactively labeled c-32P-ATP. Both CDs were able to phosphorylate LjSYMREM1 even
though NFR1 to a lower extent than SYMRK (A). Autophosphorylation of NFR1 and SYMRK kinase domains as well as trans-phosphorylation of NFR5-
CD (inactive) by NFR1 were observed. Presence of NFR5 did not change the level of LjSYMREM1 phosphorylation. Protein staining of the SDS-PAGE
shows presence of used proteins. Due to high kinase activity of SYMRK-CD protein amounts used for the assay were decreased to 0.25 mg and thus
not visible on the gel (A). Representative MS/MS spectra of phosphorylated peptide ESQNAESSNSpTLTITR (NFR1-LjSYMREM1) (B) and
ESQNAESSNpSTLTITR (SYMRK-LjSYMREM1) (C) were obtained when mapping the phosphorylation sites S48 and T49 on the LjSYMREM1 protein,
respectively. While SYMRK was able to phosphorylate the C-terminal part of the protein, the LjSYMREM1 N-terminal region alone could not be
phosphorylated in vitro (D).
doi:10.1371/journal.pone.0030817.g008
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we therefore characterized the LjSYMREM1 protein from Lotus

japonicus in more detail with the aim to determine its spatio-

temporal regulation and domains within the protein that

contribute to the RLK-Remorin complex formation. The finding

that purified NFs were sufficient to induce the promoter in root

epidermal and cortical cells and that LjSYMREM1 expression

followed nodule primordium formation supports putative role of

the protein during initial stages of rhizobial infection. Epidermal

activation of the promoter was entirely abolished during nodule

organogenesis and infection while GUS staining was continuously

observed in infected cells of mature determinate nodules of Lotus

(Figure 3) where the native LjSYMREM1 protein strongly

accumulates (Figure 4). Whether the spatial expression of the

Lotus RLKs NFR1, NFR5 and SYMRK matches the profile of

LjSYMREM1 during later stages of the nodulation process remains

to be studied. However, continuous expression of the orthologous

RLKs from M. truncatula in nodule primordia has been shown

while in nodules transcripts have only been detected in the

infection zone [6,9,30]. These data suggest roles of these RLKs

also during later stages of infection. Whether the receptors are also

present on symbiosome membranes has not been reported, yet.

LjSYMREM1 is also present on trans-cellular infection threads

that connect infected cells in mature nodules (Figure S2B). These

data complement the findings that MtSYMREM1 localizes to

nodular infection threads within the infection zone (zone II) [15],

however no MtSYMREM1 protein was detected on remnant

trans-cellular infection threads in the fixation zone (zone III) of

Medicago nodules (Ton Timmers, LIPM Toulouse, personal

communication).

In order to better understand the biology of Remorins and the

structural requirements for RLK-Remorin interactions we sepa-

rated the N- and C-terminal regions according to the presence of

the coiled-coil domain in the C-terminal part and the lack of

sequence conservation compared to other Remorins in the N-

terminal region. As expected, due to the fact that PM association

has been suggested for the entire Remorin family, the solely

expressed C-terminal region localized to the plasma membrane

(Figure 5) while the N-terminal region does not contribute to the

subcellular localization of LjSYMREM1. Furthermore data

presented here show that both, Remorin oligomerization and

interaction with RLKs are mainly mediated also by the C-terminal

part as shown in yeast (Figure 6), by FLIM analysis (Table S2) and

by in vitro kinase assays (Figure 8B). The lack of fluorescence in the

BiFC assay when co-expressing Yc:MtSYMREM1 and LjSYM-

REM1:Yn (Figure 6) indicates that Remorins may assemble in a

parallel fashion leading to a physical distance of the split YFP

halves and thus the lack of fluorescent signal. Whether

phosphorylation of C-terminal residues is required for oligomer-

ization remains to be studied. However, the fact that Yc:MtSYM-

REM1 does not interact with any of the Lotus RLKs (Figure 6) may

also suggest that the N-terminal region of the both homologs has a

steric impact on these interactions. Thus the function of the N-

terminal region remains to be studied in detail and will likely

provide further functional insights into SYMREM1 function.

Coiled-coil motifs are well known domains required for protein-

protein interactions and several CCD containing proteins involved

in cellular signaling processes have been described [31,32]. This

domain has been previously hypothesized to be involved in

Remorin oligomerization [33]. Since PM association of LjSYM-

REM1 is mediated by residues in the C-terminal region (Figure 5)

we assume that LjSYMREM1C tightly associates with the kinase-

and/or juxtamembrane domains of the receptors in close

proximity to the PM. However, our FLIM data indicate that the

N-terminal region weakly or transiently interacts with the RLK

cytoplasmic domains (Table S2). In line with this we mapped the

NFR1 and SYMRK phosphorylation site (S48/T49) to the N-

terminal region of LjSYMREM1 (Figure 8). This phosphorylation

possibly requires formation of a stable receptor-Remorin complex

in vivo. It remains to be investigated whether phosphorylation of

S48 induces a conformational change in the N-terminal region of

the protein that allows interaction with other proteins and how

specificity for recognition of interaction partners is achieved.

Molecular scaffold proteins are able to recruit proteins in

membrane subdomains such as membrane rafts and facilitate

assembly of multi-component signaling complexes. We hypothe-

size that LjSYMREM1 also serves such function. However, the

fact that NFR1 and NFR5 are able to interact with each other in

the absence of LjSYMREM1 at least when heterologously

overexpressed in N. benthamiana [29] implies that the protein

might be required for recruitment of RLKs into membrane rafts

and to facilitate complex assembly in these subdomains. The fact

that a large-scale proteomic study of M. truncatula membrane raft

localized proteins did not identify LYK3, NFP or DMI2 in

membrane rafts [34] may rather reflect low abundance of the

RLK proteins. However it was recently nicely shown that LYK3

localizes to mobile membrane micro-domains in Medicago root

hairs. Application of Nod Factors immobilized these foci and led

to co-localization with the flotillin protein FLOT4 [35] that has

been previously shown to be required during rhizobial infections

[36]. It remains an intriguing question for the future if direct

interactions between symbiotic RLKs and flotillins together with

remorin proteins occur.

Materials and Methods

Phylogenetic and sequence analyses
Alignments and phylogenetic trees were computed using the

CIPRES web-portal. Alignments were computed with MAFFT

6.822 (JTT matrix, E-INS-i setting) and RAxML 7.2.7 for fast

maximum likelihood analyses [37]. For RAxML, the JTT PAM

matrix for amino acid substitutions was chosen and the

GTRGAMMA model was used for both, the bootstrapping phase

and the final tree inference model, with 1000 bootstraps.

The 147 Remorin protein sequences available from public

databases were analyzed to study their relationship, using 101

unambiguously aligned amino acid positions of the conserved C-

terminal region. A second dataset contained 96 aligned sequences

of group 2 Remorins only, allowing the analysis of 172 positions.

For sequence comparisons (Table S1 A–C) sequences were

pairwise aligned using the EMBOSS Stretcher Algorithm (http://

www.ebi.ac.uk/Tools/psa/emboss_stretcher/).

Plant Growth, Hairy Root Transformation and Stable
Transformation

Transgenic roots were generated using Agrobacterium rhizogenes

AR1193 [38] carrying the relevant construct. Roots of all plants

were removed and seedlings were dipped into Agrobacterium

suspension. Transformed plants were plated onto Gamborg’s B5

medium [39], incubated in dark for 2 days before being grown at

24uC (8 h dark/16 h light, 60% humidity). Removal of Agrobac-

teria was achieved by transferring plants on Gamborg’s B5

medium containing Cefotaxim 5 days after transformation.

Four weeks after transformation, plants were infected with

Mesorhizobium loti MAFF 303099 (expressing DsRed fluorophore)

and grown in glass jars on sand-vermiculite (1:1) mixture for the

time indicated in the individual experiments.

Stable transformation of Lotus japonicus MG20 wild-type plants

was performed as described earlier [40] with slight modifications.
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The offspring of primary transformed plants (T2) was selected by

hygromycin resistance and grown in glass jars on sand-vermiculite

and were infected with M. loti MAFF 303099.

Promoter Analysis - Histochemical GUS-Staining/
ß-Glucuronidase Assay

For analysis of promoter activity a 975 bp fragment upstream of

the translational start codon was cloned into pBI101 binary vector

and fused to the uidA (GUS) reporter gene. Transgenic roots of

composite plants carrying the 975 bp construct as well as the

empty vector - as negative control - were harvested periodically

one week after inoculation with M. loti MAFF 303099 and

incubated in GUS-staining solution (0.1 M NaPO4; 1 mM EDTA;

1 mM K3Fe(CN)6; 1 mM K4Fe(CN)6; 1% Triton-6100; 1 mM X-

Gluc) at 37uC in dark for 5 hours.

For imaging nodules were embedded in 5% Low-melt Agarose

and sectioned via a Leica VT1000s Vibratome into 100 mm thick

sections. For GUS-staining (Figure S1) nodules were sectioned

prior to GUS staining and staining was performed over-night.

Cloning and Constructs
All cloning steps (if not specifically indicated) were performed

using Gateway technology. Created entry clones were verified by

sequencing. All LjSYMREM1 and RLK constructs are based on

cDNA templates until stated differently. SYMRK constructs that

were used for in planta expression derived from genomic based

clones.

For BiFC vectors were used as described earlier [15]. For FLIM

analysis p35S-GW-Cerulean-nos and p35S-GW-mOrange-nos

[41] vectors were used.

To analyze the localizations of LjSYMREM1 in the homolo-

gous L. japonicus background, we generated C-terminal fusions of

the different LjSYMREM1 constructs to mOrange fluorophore in

a vector that was described earlier [23] where the mOrange

fluorophore was inserted after the recombination cassette.

To generate a stable L. japonicus line for protein localization

expressed under its native promoter, we fused a 975 bp native

promoter sequence and the full-length genomic sequence of

LjSYMREM1 C-terminally to the eYFP fluorophore using the

pH7YWG2.0 vector (modified after [42]) after removal of the

CaMV-35S-promoter.

Protein Extraction and Western-blot Analysis
Total protein extraction was performed from transgenic Lotus

roots expressing LjSYMREM1-mOrange under control of the

Lotus polyubiquitin promoter and from roots of the stable

transgenic plants expressing LjSYMREM1-YFP under its endog-

enous promoter. Roots were ground in liquid nitrogen and

homogenized in denaturating buffer (10 mM EDTA, 50 mM

Hepes, 150 mM NaCl, 10% Sucrose, 5 M Urea, 2 M Thiourea,

1% Triton-X 100, 1% SDS, 2 mM DTT, plant protease inhibitor

cocktail from Sigma) and incubated for 1 hour at 37uC. Proteins

were separated on a 12% SDS gel and transferred overnight at

4uC onto PVDF membranes. Membranes were blocked in 5%

milk in TBS (with 0.1% Tween 20) and incubated overnight at

4uC with primary antibody. For detection of mOrange and the

YFP fluorophore primary a-DsRed (rabbit, polyclonal; 1:5000)

and primary a-GFP (mouse, monoclonal; 1:5000) antibodies were

used, respectively.

Yeast two-hybrid interaction assay
We used the yeast split-ubiquitin system (SUS) for testing

protein-protein interactions using the NMY32 yeast strain. The

Remorin constructs were cloned into the bait vector pBT3-N (Cub

– C-terminal half of the Ubiquitin molecule – N-terminal fusion to

the protein) and into the prey vector pDSL-Nx (NubG – mutated

N-terminal Ubiqutin domain - N-terminal fusion to the protein)

using SfiI restriction sites. RLK bait constructs were cloned into

pTMBV4 (NFR1, SYMRK) and in pBT3-C (NFR5). For using

the RLKs as prey constructs genes were cloned into pDL2xN. Co-

transformations to investigate and confirm interactions and crude

protein extraction were performed as described by the manufac-

ture (DUALsystem). Transformants were tested for interactions on

SD (0.67% yeast nitrogen base, 2% glucose, 2% Bacto-agar and

amino acid mix) without the appropriate auxotrophic markers and

in the presence of 15 mM 3-amino-1,2,4-triazole (3-AT) in

different dilution series: ND (non-diluted), 1021, 1022 up to 1025.

BiFC studies and FLIM-FRET analysis
BiFC experiments were performed as described earlier [29].

Imaging was performed with a spectral TCS SP5 MP confocal

laser-scanning microscope (Leica Microsystems, Mannheim,

Germany) using an argon laser at an excitation wavelength of

514 nm. The water immersion objective lens HCX PL APO

20.060.70 IMM UV was used for imaging tobacco epidermal cells

for confocal imaging and FLIM analysis.

For FLIM-FRET analysis Agrobacterium-infiltration of tobacco

leaves was performed as described above using A. tumefaciens

GV3101 C58 carrying the respective constructs. For confocal laser

scanning microscopy (CLSM) Cerulean fusion proteins were

excited with a 405 nm diode laser, whereas mOrange fusion

proteins were excited with a 514 nm argon laser line [41].

Cerulean fluorescence emission was detected between 485 and

535 nm, whereas mOrange fluorescence emission was detected

between 545 and 600 nm. For spectroscopic analysis, the emission

spectra of Cerulean and mOrange were recorded by l-scanning

between 450–590 nm and 540–720 nm, respectively.

For FLIM-FRET measurements, multiphoton (MP) excitation

was used. Cerulean was excited with 810-nm light using a Spectra

Physics Ti:Sapphire Mai Tai laser running at 80mhz with 1.2 ps

pulse lengths. A FLIM PMT detector build in the spectral

scanhead of the above mentioned microscope (Becker & Hickl

[B&H] FLIM setup, implemented by Leica Microsystems,

Mannheim, Germany) was used for time resolved photon

detection for 5 min in 64 scanning cycles (<5 s/cycle) at a spatial

resolution of 2566256 pixel, using the B&H photon counting

software TCSPC 2.80. The MP excitation laser-power used was at

setting that resulted in less then 10% photobleaching over the

5 min measuring time.

Selected magnified areas of the cells were then subjected to

analyses performed with the B&H SPCImage software. Signifi-

cance levels were calculated by student’s t-test (with p,0.01 being

significantly different).

In Vitro Phosphorylation Assay
For this study the different LjSYMREM1 constructs were fused

to the C-terminus of E. coli maltose-binding protein MalE (MBP)

in pKM596 using the pENTR/TEV/D-TOPO entry clones.

Proteins were expressed in E. coli Rosetta cells upon induction with

0.5 mM IPTG, cells were harvested after incubation at 21uC for

6 hours. Proteins were purified by amylose resin affinity

chromatography (binding buffer: 20 mM Tris-HCl pH 7.4,

200 mM NaCl, 10 mM ß-mercaptoethanol, 1 mM EDTA and 1

protease inhibitor tablet per 200 ml) and eluted samples (elution

buffer: 20 mM Tris-HCl pH 7.4, 200 mM NaCl, 10 mM ß-

mercaptoethanol, 1 mM EDTA, 10 mM maltose and 1 protease

inhibitor tablet per 200 ml) were tested on 10% SDS gel.
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Purified MBP-LjSYMREM1, MBP-LjSYMREM1c and MBP-

LjSYMREM1N were incubated with the respective kinases

(NFR1-CD (residues 254–622), NFR5-CD (residues 276–596),

SYMRK-CD (residues 541–923)) for 45 min in kinase buffer

(10 mM HEPES pH 7.4; 2 mM MgCl2; 2 mM MnCl2; 0.2 mM

DTT; 2 mM ATP). For radioactive labeling proteins were

incubated as described above in the presence 10 mCi [c-32P]ATP.

In Gel Digestion
Protein bands were excised from the SDS gels and bands were

cut into 11 mm3 pieces and destained with 30% acetonitrile. The

samples were reduced with 10 mM dithiothreitol in 25 mM

ammonium bicarbonate for 30 min at 56uC and subsequently

alkylated with 55 mM iodoacetamide in 25 mM ammonium

bicarbonate for 45 min at room temperature in the dark. Then,

the gel pieces were washed with water and ACN and dried under

vacuum. Finally, proteins were digested with trypsin (1:20, w/w) in

25 mM ammonium bicarbonate (pH 8.0) overnight at 37uC.

Phosphopeptide enrichment with TiO2 micro-column
Peptides were extracted from the gel by 5% FA 30% ACN.

Phosphopeptides were enriched using micro-column as described

earlier [43,44]. A small C8 plug (3 M C8 disk) was made using a

HPLC syringe and placed at the constricted end of the Geloader

tip. The TiO2 material in 100% ACN was packed on top of the

C8 plug. The dried peptides were resuspended with 50 ml of TiO2

loading buffer and directly loaded onto the TiO2 micro-column.

After washing one time with 20 ml loading buffer and twice with

20 ml washing buffer (80% ACN, 1% TFA), the bound peptides

were eluted with 20 ml 1 M NH3?H2O and 5 ml of 0.5 M

NH3?H2O in 30% ACN. The elution was acidified with 1 ml

100% formic acid and dried prior to LC-MS analysis.

LC MS/MS Analysis and Data Interpretation
LC-MS/MS analysis was performed using a nanoliter flow

EasyLC system (Thermo Fisher Scientific, Odense, Denmark)

interfaced to an LTQ-Orbitrap XL mass spectrometer (Thermo

Fisher Scientific, Bremen, Germany) as described earlier [29,45].

Supporting Information

Figure S1 Sections of nodules expressing an pLjSYM-

REM1:GUS construct. The construct was expressed in L.

japonicus roots and GUS staining was performed 24 hours after

Nod Factor application (A) and 21 dpi with M. loti (B). GUS

staining was found in outer and inner root cortical cells (A),

infected cells of nodules containing nitrogen-fixing bacteroids as

well as in outer parenchyma cells that are not infected by the

bacteria (B). Root material and nodules were sectioned after or

prior to GUS staining that was performed over-night, respectively.

Scale bars indicate 25 mm (A) and 500 mm (B).

(TIF)

Figure S2 LjSYMREM1:YFP localizes to the symbio-
some membrane and to nodular infection threads. A

genomic construct consisting of the LjSYMREM1 native promoter

and the LjSYMREM1 gene was fused to YFP. Roots were

inoculated with M. loti MAFF303099 and three week old nodules

of stable transgenic T2 plants were analyzed. Infected cells were

disrupted by mechanical force to separate symbiosomes. Individ-

ual symbiosomes showed clear YFP fluorescence indicating

presence of LjSYMREM1 on the symbiosome membrane (A).

YFP fluorescence was also detected on nodular infection thread

remnants that are found in between infected cells (B). Bars indicate

5 mm (A) and 10 mm (B).

(TIF)

Figure S3 All membrane-anchored clones were ex-
pressed in the yeast split-ubiquitin system. The NubI

tag is able to reconstitute together with Cub to the full-length

ubiquitin and thus activates expression of the HIS3-reporter. Yeast

growth on medium lacking leucine and tryptophan (2LW) shows

the presence of both constructs. Interaction was tested on medium

additionally lacking histidine (2LWH) that was supplemented

with 15 mM 3-amino-1,2,4-triazole (3-AT) to suppress residual

levels of endogenous histidine biosynthesis.

(TIF)

Figure S4 NFR1 and SYMRK kinase domains are
unable to phosphorylate maltose binding protein
(MBP). MBP was recombinantly expressed and purified. Since

no phosphorylation of MBP was detected in kinase assays it can be

concluded that phosphorylation that was observed with MBP-

LjSYMREM1 does not derive from MBP phosphorylation.

(TIF)

Table S1 Group 2 remorins exhibit unusual sequence
diversity in their N-terminal region. Sequence comparison

of full-length (overall), N- and C-terminal protein sequences of

legume remorins that were found to be most closely related to each

other (Figure 1) revealed that sequence conservation of the C-

terminal region is in accordance with similarities of other legumes

signaling proteins (Table S1B) while the N-terminal region is

unusually diverse (Table S1A).

(DOCX)

Table S2 Testing interaction between LjSYMREM1
domains and NFR1 by FLIM analysis. LjSYMREM1:mOr-

ange and NFR1:Cerulean were co-expressed in N. benthamiana

leaves under control of the CaMV 35S-promoter. Shorter

Cerulean lifetimes indicate interaction between the proteins.

Strong interaction was observed between NFR1 and LjSYM-

REM1FL/LjSYMREM1C while mild but significant reduction in

lifetime was also observed between NFR1 and LjSYMREM1N.

Numeric values are provided in the table inset. Significance levels

were calculated by student’s t-test (with p,0.01 being significantly

different). Free mOrange was co-expressed with NFR1:Cerulean

to demonstrate that simple protein accumulation by over-

expression of the acceptor fluorophore is not sufficient to reduce

donor lifetimes.

(PDF)
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