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Abstract

Mangiferin has been shown to have the effect of improving dyslipidemia. Plasma free fatty acids (FFA) are closely associated
with blood lipid metabolism as well as many diseases including metabolic syndrome. This study is to investigate whether
mangiferin has effects on FFA metabolism in hyperlipidemic rats. Wistar rats were fed a high-fat diet and administered
mangiferin simultaneously for 6 weeks. Mangiferin (50, 100, 150 mg/kg BW) decreased dose-dependently FFA and
triglycerides (TG) levels in plasma, and their accumulations in liver, but increased the b-hydroxybutyrate levels in both
plasma and liver of hyperlipidemic rats. HepG2 cells were treated with oleic acid (OA, 0.2 mmol/L) to simulate the condition
of high level of plasma FFA in vitro, and were treated with different concentrations of mangiferin simultaneously for 24 h.
We found that mangiferin significantly increased FFA uptake, significantly decreased intracellular FFA and TG accumulations
in HepG2 cells. Mangiferin significantly increased AMP-activated protein kinase (AMPK) phosphorylation and its downstream
proteins involved in fatty acid translocase (CD36) and carnitine palmitoyltransferase 1 (CPT1), but significantly decreased
acyl-CoA: diacylgycerol acyltransferase 2 (DGAT2) expression and acetyl-CoA carboxylase (ACC) activity by increasing its
phosphorylation level in both in vivo and in vitro studies. Furthermore, these effects were reversed by Compound C, an
AMPK inhibitor in HepG2 cells. For upstream of AMPK, mangiferin increased AMP/ATP ratio, but had no effect on LKB1
phosphorylation. In conclusion, mangiferin decreased plasma FFA levels through promoting FFA uptake and oxidation,
inhibiting FFA and TG accumulations by regulating the key enzymes expression in liver through AMPK pathway. Therefore,
mangiferin is a possible beneficial natural compound for metabolic syndrome by improving FFA metabolism.
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Introduction

A large body of evidence suggests that elevated plasma free fatty

acids (FFA) are a risk factor for metabolic syndrome, including

insulin resistance, atherogenic dyslipidemia and type 2 diabetes

[1,2]. Elevated FFA can inhibit the anti-lipolytic action of insulin,

interfere with insulin signaling, and inhibit insulin-stimulated

glucose uptake and glycogen synthesis [3,4]. Therefore, pharma-

cological agents that could effectively lower plasma FFA are likely

to have a significant effect on improving metabolic syndrome [5].

The liver is an important site of FFA removal from the blood

[6]. At rest, about 80% of plasma FFA is mainly transported to the

liver where they are either oxidized to generate energy in the form

of ATP, or re-esterified for storage as triglycerides (TG) [7,8]. Not

surprisingly, increased plasma FFA levels may result in intracel-

lular accumulation of lipid metabolites in the liver, leading to fatty

liver, liver insulin resistance and type 2 diabetes. Therefore, one

potential strategy for improving metabolic syndrome is not only to

reduce the level of plasma FFA, but also to promote FFA uptake

and oxidation instead of accumulation of intracellular TG in the

liver.

Mangiferin is a xanthone glucoside and exists in many kinds of

food and folk medicines such as mangoes and Anemarrhena

asphodeloides rhizomes. Mangiferin has many beneficial biological

activities, including anti-inflammatory, anti-oxidant and anti-

diabetic effects [9,10]. Recent studies showed that mangiferin

significantly reduced the level of plasma TG in diabetic animals

[11,12]. Plasma TG must first be hydrolyzed into FFA and

glycerol, and then is taken up and utilized by tissues in the form of

FFA [13,14]. Therefore, plasma TG metabolism is associated

closely with plasma FFA. However, there are no reports on

whether mangiferin can affect FFA levels or FFA metabolism in

liver. Therefore, the aim of our study was to investigate the effects

of mangiferin on plasma FFA levels, FFA metabolism and its

possible mechanisms. Using both in vivo and in vitro models, we

found mangiferin was able to decrease the levels of plasma FFA,

promote FFA catabolism, and inhibit the synthesis of FFA and TG

in liver through AMPK signaling pathway.

Results

Mangferin had no toxic effect in rats and HepG2 cells
Rats were fed with different concentrations of mangiferin (0,

100, 200, 400 mg/kg BW) for 30 days. There were no significant

effects on body weight, blood cell counting, hemoglobin, urea

nitrogen, creatinine, blood glucose, total cholesterol, triglycerides,

aspartate transaminase and alanine transaminase activity (Table

S1). This indicated that mangiferin was nontoxic up to the dose of
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400 mg/kg BW and was used in different doses for further studies.

At the same time, after 24 h mangiferin treatment, cytotoxicity

was observed when the concentration of mangiferin reached

400 mmol/L (data not shown). Therefore, mangiferin concentra-

tion was safe within 12.5–100 mmol/L/L in the present study.

Mangiferin decreased plasma FFA and TG levels, and
inhibited liver FFA and TG accumulations in
hyperlipidemic rat

At the end of 6 weeks, the rats in hyperlipidemia group had

higher levels of TC (P,0.05), TG (P,0.01) and FFA (P,0.01) in

both plasma and liver tissue compared with rats in normal control

(Table 1), indicating that the high-fat diet induced successfully

hyperlipidemic rats model with triglycerides, FFA and cholesterol

accumulations in the liver. Fenofibrate (a positive drug) and all

doses of mangiferin supplementation significantly decreased

plasma FFA level (P,0.05), and fenofibrate and mangiferin at

100 or 150 mg/kg BW significantly decreased plasma TG level

(P,0.01), and liver FFA (P,0.01) and TG (P,0.01) levels in

hyperlipidemic rats. In addition, fenofibrate and high dose of

mangiferin may decrease the weights of abdominal and epididy-

mal fat pads in hyperlipidemic rats (Table 1). Mangiferin had a

tendency of lowering TC in all the doses, but did not reach the

statistical significance.

Mangiferin regulated the key enzymes of FFA
metabolism and TG synthesis in liver of hyperlipidemic
rat

AMPK is a key mediator in the control of intracellular lipid

metabolism, including the uptake, synthesis and oxidation of fatty

acid in liver [20]. Mangiferin significantly activated hepatic

AMPKa subunit (P,0.05, Figure 1A) by phosphorylating

AMPKa at the Thr-172 residue in hyperlipidemic rats. The

downstream proteins of AMPK including CD36, CPT1, ACC

and DGAT2 were also affected by mangiferin treatment. The

expression of CD36 protein, which is involved in regulating FFA

uptake [21], was increased significantly by mangiferin (P,0.05,

Figure 1B). CPT-1 and ACC are the rate-limiting enzymes for

FFA b-oxidation and synthesis, respectively, in liver [22,23].

Mangiferin increased significantly the expression of CPT-1

(P,0.05, Figure 1C) and the level of ACC phosphorylation

(P,0.05, Figure 1D) which has been shown to reduce the activity

of the enzyme in a dose-dependent manner. Additionally, b-

hydroxybutyrate, a main intermediate metabolite of FFA

oxidation in liver [24], was increased significantly by mangiferin

in both plasma and liver of hyperlipidemic rats, which indicating

that FFA oxidation might be increased. DGAT2 is a key enzyme

that catalyzes the final step and rate-limiting reaction in TG

synthesis [25]. Mangiferin decreased DGAT2 expression signif-

icantly (P,0.05, Figure 1E) in liver of hyperlipidemic rats. These

results indicate collectively that mangiferin promotes the FFA

uptake and oxidation, and inhibits FFA and TG synthesis by

regulating the key enzymes expression in liver of hyperlipidemic

rats.

Mangiferin increased FFA uptake, decreased intracellular
FFA and TG accumulations in HepG2 cells

HepG2 cells were treated with OA (0.2 mmol/L) in order to

simulate the condition of high level of plasma FFA in animal

experiment. Mangiferin significantly decreased the OA con-

centration of cell culture medium in a dose-dependent manner,

and fenofibrate (positive control) at 100 mmol/L also signifi-

cantly decreased the OA concentrations (P,0.01, Figure 2A).

OA uptake by HepG2 cells was calculated by the concentration

of OA remaining in the medium after treatment. Compared

Table 1. Effect of mangiferin on fasting metabolic variables at 6 weeks in hyperlipemic rats.

Measurement Control Hyperlipidemia

Hyperlipidemia
+fenofibrate
(100 mg/kg BW)

Hyperlipidemia
+mangiferin
(50 mg/kg BW)

Hyperlipidemia
+mangiferin
(100 mg/kg BW)

Hyperlipidemia
+mangiferin
(150 mg/kg BW)

Body weight (g) 340.3624.9 378.5632.6## 368.1634.7 371.2628.3 369.7635.1 361.4636.7

Food intake (g/day) 26.5662.17 33.2563.98## 31.9763.01 32.2362.75 34.0262.70 32.1362.64

Liver weight (g) 8.4361.21 8.9761.33 8.7961.25 8.8861.24 8.8061.12 8.7161.08

Abdominal fat (g) 10.2361.28 15.1561.42## 11.1661.27** 14.4361.39 13.7961.41* 12.8161.34*

Epididymal fat (g) 8.7861.03 10.2361.24# 8.9860.98* 10.0261.15 9.4661.02 9.0461.12*

Plasma TC (mmol/L) 3.7060.47 4.2660.61# 3.8760.32* 4.1560.47 4.0260.39 4.0860.37

Plasma TG (mmol/L) 0.8960.12 1.4660.18## 0.9660.19** 1.3760.22 1.2460.16** 1.0560.10**

Plasma FFA (mg/dl) 484.3637.5 587.6641.4## 501.8636.2** 541.6630.8* 527.8633.9** 493.5638.1**

Plasma b-hydroxybutyrate
(mmol/L)

93.268.47 64.866.91## 87.569.17** 70.367.10 83.569.13** 90.6610.01**

Liver TC (mmol/g of liver) 5.8060.34 7.1860.37## 6.5160.32* 7.0260.30 6.9860.38 6.8760.36

Liver TG (mmol/g of liver) 4.0660.22 5.1360.32## 4.4360.37** 4.8960.33 4.4260.30** 4.1260.39**

Liver FFA (mmol/g of liver) 84.8614.4 153.5627.7## 104.6622.4** 139.1621.9 118.6621.3** 97.6623.8**

Liver b-hydroxybutyrate
(mmol/g of liver)

7.2360.71 4.2360.57## 6.8760.83** 4.8860.50* 5.8760.61** 6.4360.78**

Data are means 6 SD (n = 10),
#P,0.05
##P,0.01 indicate statistically significant differences when compared with control group.
*P,0.05 and
**P,0.01 indicate statistically significant differences when compared with hyperlipidemia group.
doi:10.1371/journal.pone.0030782.t001
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with only OA stimulation group, mangiferin at 25, 50 and

100 mmol/L increased the OA uptake by 22.4%, 24.2% and

32.4% respectively. In addition, mangiferin at 50, 100 mmol/L

and fenofibrate significantly decreased the content of intracel-

lular OA (P,0.05, Figure 2B) and TG (P,0.05, Figure 2C) in

HepG2 cells. Further, the actual numbers used to generate the

relative results of Figure 2 are listed in supplementary Table S2.

These results indicate that mangiferin could decrease the level

of FFA in medium and inhibit TG accumulation in hepatic

cells.

Mangiferin regulated the key enzymes of FFA
metabolism and TG synthesis in HepG2 cells

To further confirm the mechanism of mangiferin on improving

FFA metabolism and inhibiting TG synthesis in vitro, we

determined the protein levels of AMPK, CD36, CPT1, ACC

and DGAT2 in HepG2 cells by mangiferin supplementation.

Mangiferin significantly increased the phosphorylation levels of

AMPK and ACC (P,0.05, Figure 3A, 3D), the protein levels of

CD36 and CPT1 (P,0.05, Figure 3B, 3C), but decreased

significantly the protein level of DGAT2 (P,0.05, Figure 3E).

Figure 1. Effects of mangiferin on the proteins expression of FFA metabolism including AMPK, CD36, CPT1, ACC and DGAT2 in liver
of hyperlipidemic rats. Wistar rats were divided randomly into five groups (n = 10 per group): control group (fed an AIN-93G diet); hyperlipidemia
group (fed a high-fat diet); mangiferin-supplemented groups, fed the high-fat diet and different doses of mangiferin (50, 100, 150 mg/kg BW/d). The
experiment lasted for 6 weeks, and the liver was taken for western blot analysis. (A) AMPK phosphorylation level. (B) CD36 expression on cell
membrane. (C) CPT1 expression in mitochondrion. (D) ACC level and activity. (E) DGAT2 expression. * P,0.05 compared with hyperlipidemic group.
doi:10.1371/journal.pone.0030782.g001

Figure 2. Effects of mangiferin on OA in medium, intracellular OA and intracellular TG in HepG2 cells. HepG2 cells were incubated with
0.2 mmol/L OA only or with different concentrations of mangiferin (12.5, 25, 50, 100 mmol/L) or fenofibrate (100 mmol/L) simultaneously for 24 h. The
concentrations of OA in medium (A) and intracellular OA (B) after the incubation were determined by GC-MS. The intracellular TG (C) mass was
quantified by the enzymatic methods using a TG test kit. Data are presented as means 6 SD (n = 3). # P,0.05 and ## P,0.01 compared with the
normal control. * P,0.05 and ** P,0.01 compared with only OA stimulation group.
doi:10.1371/journal.pone.0030782.g002
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These data suggest that mangiferin could promote FFA uptake

and oxidation, inhibit FFA and TG synthesis by regulating the key

enzymes expression in HepG2 cells.

AMPK was involved in the effect of mangiferin on FFA
metabolism and TG synthesis in HepG2 cells

Compound C, an AMPK inhibitor, abolished almost completely

the activation of AMPKa by mangiferin. The effects of mangiferin

on OA uptake, intracellular OA and TG (Figure 4A) contents, as

well as the expression of AMPK downstream proteins, including

CD36, CPT1, P-ACC and DGAT2 were also suppressed signifi-

cantly after compound C treatment (P,0.05, Figure 4B). These

results strongly suggest that mangiferin exerts its effect on lowering

plasma FFA level, promoting FFA uptake and oxidation, inhibiting

FFA and TG synthesis via the AMPK signaling pathway in liver.

AMPK was phosphorylated and activated by AMP/ATP
but not LKB1 in mangiferin signaling in HepG2 cells

To investigate how mangiferin activates AMPK, we determined

the effect of mangiferin on upstream of AMPK, including the ratio

of AMP to ATP and LKB1 activity and protein expression [26].

Mangiferin increased the ratio of AMP to ATP in a dose-

dependent manner in HepG2 cells (P,0.05, Figure 5A). However,

neither the content of LKB1 nor the ratio of p-LKB1/LKB1 was

altered significantly by mangiferin (Figure 5B). These results

indicate that mangiferin activates AMPK by increasing the ratio of

AMP to ATP instead of LKB1 in present study.

Discussion

There is considerable public and scientific interest in the various

beneficial biological activities of mangiferin, including antioxidant,

anti-inflammatory and anti-diabetic effects [9,10]. However, there

are few studies about the effect of mangiferin on dyslipidemia.

Miura and Huang et al [11,27] reported only that mangiferin may

decrease the levels of blood TC and TG [11,12], and that the

mechanism is not yet clear. FFA is a major component of blood

lipids and plays a key role in regulating blood lipid levels,

especially in triglycerides metabolism [28]. In addition, elevated

plasma FFA is a risk factor for metabolic syndrome, which can

lead to hyperlipidemia, fatty liver and insulin resistance [2,29].

However, there is no report about the effect of mangiferin on FFA

levels and FFA metabolism.

In vivo, we used a high-fat diet to induce hyperlipidemia model

in rats. The rats in hyperlipidemia groups had higher body weight,

plasma TC, TG and FFA levels and liver TC, TG and FFA levels

compared to rats in normal control group. These results indicated

that the hyperlipidemic rats model with triglycerides and

cholesterol accumulation in the liver was induced successfully by

the high-fat diet. In order to study further the mechanism

improving FFA metabolism in vitro, HepG2 cells were treated with

OA (0.2 mmol/L) to simulate the condition of high plasma levels

of FFA in animal experiment. As a result, 0.2 mmol/L OA

increased significantly the intracellular TG content in liver cells, a

condition that is observed often when plasma FFA is elevated in

human and animal studies. Fenofibrate, a hypotriglyceride drug as

positive control agent, can reduce plasma FFA and hepatic TG

[30]. In our study, fenofibrate significantly increased FFA uptake,

and decreased intracellular FFA and TG in HepG2 cells,

indicating that using OA-treated HepG2 cells to study the effect

of mangiferin on FFA metabolism is feasible.

We have confirmed that the doses of mangiferin used in this

study are safe based on the toxicity experiment of 30-day feeding

test and MTT assay both in vivo and in vitro. Our study showed for

Figure 3. HepG2 cells were incubated with 0.2 mmol/L OA only or with different concentrations of mangiferin (12.5, 25, 50,
100 mmol/L) simultaneously for 24 h. Proteins were isolated from the cell lysates and analyzed by western blot analysis for AMPK (A), CD36 (B),
CPT1 (C), ACC (D) and DGAT (E) expressions. The experiments were repeated 3 times. Data are presented as means 6 SD (n = 3). * P,0.05 compared
with only OA stimulation group.
doi:10.1371/journal.pone.0030782.g003
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the first time that mangiferin decreased significantly plasma FFA

levels in hyperlipidemic rats and FFA levels in culture medium of

HepG2 cells. It is well known that plasma FFA is mainly

transported into the liver at rest. CD36 is the rate-limiting enzyme

in high-affinity peripheral FFA uptake in the liver [21,31]. We

have found that CD36 is involved in the increased FFA uptake

supplemented with mangiferin in liver of hyperlipidemic rats and

in OA induced HepG2 cells, a conclusion that is supported by the

increase of CD36 protein expression. Mangiferin increased FFA

uptake, decreased the liver FFA levels in hyperlipidemic rats and

in HepG2 cells, which indicates an increased FFA utilization in

liver. In the liver, FFA is converted intracellularly into fatty-acyl-

CoA to produce energy in the form of long-chain fatty-acyl-CoAs

(LCACoAs) through b-oxidation or esterification into TG [8]. b-

hydroxybutyrate (ketone body) is the main alternative energy

substrate to glucose, and is generated by hepatic fatty acid

oxidation in liver when plasma glucose and insulin are low [32].

Mangiferin increased the levels of b-hydroxybutyrate both in

blood and liver in our study, indicating that mangiferin could

increase FFA oxidation. In addition, CPT-1 is the rate-limiting

enzyme for LCACoAs transport from the cytoplasm into the

mitochondria in FFA b-oxidation. The activity of CPT-1 is

inhibited by malonyl-CoA. The inhibition of ACC activity leads to

a reduced malonyl-CoA production, resulting in the suppression of

FFA synthesis and, reciprocally, the enhancement of FFA b-

oxidation [33]. In our experiment, mangiferin increased signifi-

cantly CPT-1 protein expression and inhibited ACC activity in

liver of hyperlipidemic rats and in OA induced HepG2 cells,

indicating that mangiferin could significantly increase fatty acid b-

oxidation. DGAT2 is a rate-limiting enzyme that catalyzes the

final step in TG synthesis by facilitating the linkage of

diacylglycerol with a long chain fatty acyl-CoA [25]. Mangiferin

decreased the expression of DGAT2 protein in the liver of

hyperlipidemic rats and in OA induced HepG2 cells, indicating

that mangiferin could reduce the biosynthesis of intracellular TG

from fatty acid. Taken together, these observations suggest that

Figure 4. Effects of compound C on mangiferin induced FFA uptake, intracellular FFA, TG and FFA metabolism proteins expression
in HepG2 cells. HepG2 cells were pretreated 1 h with compound C, an AMPK inhibitor, and then treated with 100 mmol/L mangiferin and 0.2 mmol/
L OA for 24 h. OA in medium (To assess the uptake of OA) (A), intracellular OA (A), intracellular TG (A) and proteins expression of FFA metabolism
including AMPK (B), ACC (B), CD36 (B), CPT1 (B) and DGAT2 (B) were determined by western blot method. The experiments were repeated 3 times.
Data are presented as means 6 SD (n = 3). * P,0.05 and ** P,0.01 compared with only OA stimulation group.
doi:10.1371/journal.pone.0030782.g004

Figure 5. Effects of mangiferin on the ratio of AMP to ATP and LKB1 protein expression in HepG2 cells. HepG2 cells were incubated to
0.2 mmol/L oleic acid only or with different concentrations of mangiferin (12.5, 25, 50, 100 mmol/L) simultaneously for 24 h. The ratio of AMP to ATP
was detected by HPLC (A). The LKB1 protein expression was carried out by western blot analysis (B). The experiments were repeated 3 times. Data are
presented as means 6 SD (n = 3). * P,0.05 compared with only OA stimulation group.
doi:10.1371/journal.pone.0030782.g005
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mangiferin promotes fatty acid b-oxidation instead of esterification

in liver.

AMPK, an upstream regulator of CD36, CPT1, ACC and

DGAT2, is a critical enzyme involved in FFA metabolism [26]. It

plays an important role in lipid metabolism and FFA oxidation in

the liver [20]. Results from our study verified that the AMPK

pathway mediates the effect of mangiferin on FFA metabolism

toward an enhancement of fatty acid b-oxidation and inhibition of

TG synthesis in liver of hyperlipidemic rats and in HepG2 cells.

High ratio of AMP to ATP, and LKB1 as an upstream kinase, can

activate AMPK. In this study, mangiferin increases the ratio of

AMP to ATP in a dose-dependent manner, but has no effect on

LKB1 phosphorylation, indicating that the effect of mangiferin on

AMPK is accomplished through its effect on the ratio of AMP to

ATP. However, the mechanism of how mangiferin causes an

increase in the ratio of AMP to ATP needs to be studied further.

In conclusion, we investigated systematically the effect of

mangiferin on FFA levels and FFA metabolism, and its possible

mechanism for the first time. Mangiferin decreases the levels of

FFA in both plasma and liver tissue in hyperlipidemic rats,

promotes FFA catabolism by regulating the key enzymes of FFA

uptake and utilization and inhibiting intracellular TG synthesis in

liver. The effect of mangiferin on decreasing plasma FFA levels

and increasing FFA catabolism is possibly exerted through the

AMPK pathway by enhancing the ratio of AMP to ATP.

Therefore, mangiferin results in beneficial effects on FFA

metabolism, which may improve metabolic syndrome.

Materials and Methods

Animals
All rats were purchased from Shanghai SLAC Laboratory.

Animals were housed in cages individually in an environmentally

controlled room at 2162.0uC and 5065% humidity. Animals

were subject to a 12:12 h light:dark cycle and had access to food

and water ad libitum. After an acclimatization period of one week,

the animals were used in the following experiments.

Experiment I. Forty male rats and forty female rats

(100620 g) were divided into 4 groups respectively, 10 rats in

each group, treated with different concentrations of mangiferin (0,

100, 200, 400 mg/kg BW) by oral gavage for 30 days. The blood

chemistry results, hematologic measures, and liver enzyme values

were determined by using SYSMEX-SF-3000 Automatic

Hematology Analyzer (Sysmex corporation, Kobe, Japan).

Experiment II. Sixty male rats (220620 g) were divided

randomly into six groups (n = 10 in each group): control group, fed

an AIN-93G diet; hyperlipidemia group, fed a high-fat diet (48.1%

of energy derived from fat, 34.2% from carbohydrates, and 17.7%

from protein); positive drug group, fed a high-fat diet and

fenofibrate at dose of 100 mg/kg BW/d; mangiferin-

supplemented groups, fed the high-fat diet and different doses of

mangiferin (50, 100, 150 mg/kg BW/d). Mangiferin (.90%,

HPLC; Tianjin zhongxin pharmaceutical Group Co Ltd, Tianjin,

China) and fenofibrate was given by oral gavage in 1%

carboxymethyl cellulose buffer solution. Rats in the control and

hyperlipidemia groups were given 1% carboxymethyl cellulose

buffer only. After 6 weeks of mangiferin supplementation, all the

animals were fasted for 12 h until sacrifice. Rats were anesthetized

by pentobarbital sodium and blood samples were taken from

abdominal aorta into EDTA-tubes. Abdominal and epididymal fat

pads were removed and weighted separately. Liver was collected

and stored at 280uC for analysis. The experimental protocols

were approved by the Institutional Animal Care and Use

Committee of Harbin Medical University, and conducted in

compliance with the animal-use guidelines (SYXK (Hei) 2006-

010).

Reagents
Dulbecco’s Modified Eagle Medium (DMEM) was purchased

from GIBCO (Grand Island, NY). Fetal bovine serum (FBS) was

purchased from Sijiqing Co (Hangzhou, China). Mangiferin for

cell experiment, oleic acid (OA), fenofibrate and compound C

were obtained from Sigma-Aldrich (St. Louis, MO). Mangiferin

(90%, HPLC) for animal experiment were obtained from

Zhongxin Innova Laboratories (Tianjin, China). Mangiferin,

fenofibrate and compound C were dissolved in dimethyl sulfoxide

(DMSO) and diluted with culture medium. Antibodies against

AMP-activated protein kinase a (AMPKa), phosphor-AMPKa (p-

AMPKa), acetyl CoA carboxylase (ACC) and phosphor-ACC (p-

ACC) were purchased from Cell Signaling (Beverly, MA).

Antibody against fatty acid translocase (CD36) was purchased

from Cayman Chemical (Ann Arbor, MI). Antibodies against

LKB1, phosphor-LKB1, carnitine palmitoyltransferase 1 (CPT-1),

acyl-CoA: diacylglycerol acyltransferase-2 (DGAT2), GAPDH and

b-actin were purchased from Santa Cruz Biotechnology (Santa

Cruz, CA).

Cell culture and treatment
The HepG2 cell line was obtained from the Chinese Academy

of Science (Shanghai, China). The cells were maintained in

DMEM containing 10% (v/v) FBS and 1% antibiotic/antimycotic

at 37uC in an atmosphere containing 95% air and 5% CO2. The

cytotoxicity of mangiferin was determined by the 3-(4, 5-

Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT)

assay. When 70–80% confluence was reached, the cells were

treated with different concentrations of mangiferin (0, 12.5, 25, 50,

100 mmol/L) or 100 mmol/L fenofibrate (positive control) in

serum-free medium with 1% FFA-free bovine serum albumin

(BSA) in the presence of OA (0.2 mmol/L) for 24 h. In parallel,

HepG2 cells treated with an equivalent volume of DMSO (0.1%)

without OA were used as the normal control. HepG2 cells were

treated with OA (0.2 mmol/L) in order to simulate the condition

of high level of plasma FFA in liver cells. Compound C (25 mmol/

L) was added to HepG2 cells 1 h before treatment with mangiferin

to verify the AMPK signal pathway.

Determination of total cholesterol (TC), TG, FFA and b-
hydroxybutyrate in plasma and liver tissue

A portion of liver was homogenized and the lipids were

extracted with Chloroform and methanol (1:2 v/v) 2 times as

described by Bligh et al [15], and the supernatant were collected

for the determination of TC, TG and FFA. TC and TG were

determined by enzymatic colorimetric methods with commercial

kits (Zhongsheng, Beijing, China), FFA was determined by GC-

MS(TRACE GC/PolarisQ MS, Thermo Finnigan, USA) as

described previously by our laboratory [16]. b-hydroxybutyrate

concentrations in blood and liver were spectrophotometrically

assayed by commercial test kits (Co-health Ltd, Beijing, China)

[17].

Determinations of intracellular TG, intracellular OA and
OA uptake in medium in HepG2 cells

HepG2 cells were incubated with 0.2 mmol/L OA alone, or

with different concentrations of mangiferin (12.5, 25, 50,

100 mmol/L) or 100 mmol/L fenofibrate simultaneously in

serum-free medium with 1% FFA-free BSA for 24 h. The cellular

lipid was extracted using a previously described method [18]. Cell
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protein was determined by the Bradford method. The intracellular

TG mass was quantified spectrophotometrically at 490 nm using a

TG test kit (Zhongsheng, Beijing, China). The experiments were

repeated three times.

The concentration of OA remaining in the medium after

treatment was determined to assess the uptake of OA by HepG2

cells. OA was measured by GC-MS (TRACE GC/PolarisQ MS,

Thermo Finnigan, USA). Aliquots (1 mL) of cell culture medium,

or 200 mL of cell lysates in each group were spiked with an internal

standard (IS) working solution (200 mL heptadecanoic acid C17:0,

200 mg/mL), and the following method of sample pretreatment

and GC-MS conditions was used, as described previously by our

laboratory [16].

Western blot analysis for the key proteins and enzymes
of FFA metabolism

The proteins CD36, CPT-1, ACC, DGAT2, AMPK and LKB1

were determined by western blot analysis. Proteins from the

cultured cells or liver tissues were extracted with a RIPA lysis

buffer (50 mmol/L Tris, pH 7.4, 150 mmol/L NaCl, 1% Triton

X-100, 1% sodium deoxycholate, 0.1% SDS, 1 mg/mL leupeptin,

50 mmol/L sodium fluoride, 1 mmol/L sodium orthovanadate,

1 mmol/L phenylmethylsulfonyl fluoride). Protein concentrations

were determined by the Bradford method. Equal amounts of

protein were separated by SDS-PAGE, and electro-transferred

onto polyvinylidene difluoride (PVDF) membranes. The mem-

branes were blocked with 1% BSA and TBS-T (50 mmol/L Tris-

HCl, pH 7.5, 150 mmol/L NaCl, 0.1% Tween 20) for 0.5 h at

room temperature. The membranes were incubated overnight at

4uC with primary antibodies in TBS-T. The membranes were

washed three times with TBS-T (6 minutes each), and incubated

with appropriate secondary antibodies for 1 h at room tempera-

ture. The signal was amplified by color development using the

ProtoBlot II AP System with a stabilized substrate (Promega

Corporation, Madison, USA). Data were presented as the ratios of

target protein to b-actin. For each study, western blot analysis was

conducted three times and representative blots were shown.

Measurements of intracellular AMP and ATP in HepG2
cells

After the treatment as described above, cells were lysed in

300 m L media with 20 m L of 1 mol/L HClO4. HClO4 was

removed by mixed phase extraction employing tri-n-octylamine

and Freon 11 (11.75:13.25; v/v) [19]. Lysates were analzyed by

HPLC on a Waters C18 column, using a Waters 2695 Separations

Module and a 2487 Dual Absorbance Detector (Waters Corpo-

ration, USA). The HPLC system consisted of 0.1 mol/L

potassium phosphate buffer (contain 3 mmol/L tetrabutylammo-

nium hydrogen, pH = 5.85) and methanol (88:12) as the mobile

phase, with the detection wavelength at 254 nm, and the flow rate

at 1 mL/min. Experiments were repeated three times.

Statistical analysis
All data were analyzed for statistical significance with SPSS 13.0

software. Data were presented as means 6 standard deviation.

Statistical analysis used one-way ANOVA. P,0.05 was considered

to be statistically significant.
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