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Abstract

Background/Aims: The LDL receptor-related protein-1 gene (LRP-1) has been associated with obesity in animal models, but
no such association has yet been reported in humans. As data suggest this increase in fat mass may be mediated through a
mechanism involving the clearance of plasma triglyceride-rich lipoproteins (TGRL), where the LRP interacts with
apolipoprotein E (ApoE) on chylomicron remnants, we aimed to examine (1) whether there was an association between 3
single nucleotide polymorphisms (SNPs) on LRP-1 with body mass index (BMI) and (2) whether any association between LRP-
1 SNPs and BMI could be modified by polymorphisms on the ApoE gene when comparing the wild type e3/e3 genotype
against mutant ApoE allele (e2/e4) carriers.

Methods/Results: We used data from 1,036 men and women (mean age6SD = 49616 y) participating in the Genetics of
Lipid Lowering Drugs and Diet Network (GOLDN) Study. Mixed linear models, which controlled for age, sex, alcohol intake
and smoking, as well as family pedigree and center of data collection were calculated. Models that used LRP-1 genotype as a
predictor of BMI revealed that individuals who were homozygous for the minor allele at the LRP-1 I10701 locus had BMIs, on
average, 1.03 kg/m2 higher than major allele carriers (P = 0.03). In subsequent mixed linear models that included main
effects of LRP-1 I10701 SNP and ApoE alleles, and an interaction term the two genotypes, there was no interaction detected
between the LRP-1 I70701 genotype with either the ApoE e2 or e4 allele carriers (P.0.05).

Conclusions: This has implications for starting to understand pathways from genotype to human BMI, which may operate
through TGRL uptake at the LRP-1 receptor. This may pave the way for future research into individualized dietary
interventions.
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Introduction

The role of the LRP, alongside that of the LDL receptor, in the

uptake of chylomicron remnants has long been established [1]. The

LRP-1 gene is expressed in a number of tissues, including the liver,

the primary site of LRP-mediated chylomicron remnant clearance

[2]. In vitro LRP-1 elimination has been shown to lead to lipid

depleted cells [3] and LRP-1 knockout mice show fat storage

differences compared to wildtype mice, although results have been

bidirectional [3–6]. Changes in fat mass in LRP-1 knock-out mice

are thought to occur, in part, through the reduced catabolism and

uptake of TGRL [4]. The reduced clearance, and subsequent

accumulation of TGRL has been similarly associated with increased

fat mass in humans [7], yet to our knowledge, an association

between human BMI and LRP-1 variants has yet to be reported.

To enable chylomicron remnant binding and subsequent uptake,

the LRP-1 binds with ApoE on the surface of remnant particle [2,8,9].

Three major isoforms of ApoE exist (E2, E3 and E4) which are the

products of three alleles (e2, e3 and e4, respectively) at the single gene

ApoE locus. Variations in ApoE isoforms have been associated with

variation in the efficacy of ApoE binding to receptor sites [10] and,

from this, with differing lipid profiles. Meta-analysis across 45

population samples confirmed the differential effects of the ApoE

alleles on lipids; carriers of e2 had lower, and carriers of e4 had higher,

fasting plasma cholesterol values compared to e3/e3 genotypes [11].

The effect of different ApoE isoforms on lipids and LRP-1 mediated

TGRL uptake, indicates that ApoE remains a promising candidate to

study for effects on BMI, in conjuction with LRP-1 polymorphisms.

The first aim of these analyses was to evaluate an association

between three polymorphisms on the LRP-1 gene and body mass
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index (BMI) in humans, using a population sample of 1,036 men

and women between the ages of 18–87 years. The second aim was

to examine whether any association between BMI and LRP-1

identified in our sample was modified by ApoE allelic variants.

Materials and Methods

Participants
The GOLDN study population consisted of 1,328 men and

women in the Genetics of Lipid-Lowering Drugs and Diet

Network (GOLDN) study. All participants were white men and

women recruited from Minneapolis, Minnesota and Salt Lake

City, Utah. The primary aim of the GOLDN study was to

characterize the role of genetic and dietary factors on an

individual’s response to fenofibrate. The details of the GOLDN

study have been published elsewhere [12]. GOLDN consisted of

an initial screening visit (visit 0) during which participants were

asked to discontinue the use of lipid lowering drugs. Approxi-

mately 4 to 8 weeks later, baseline blood chemistries were

measured (visit 1). A day later (visit 2) participants’ blood samples

were collected before (fasting) and after (postprandial) participating

in a high fat meal challenge. On subsequent visits 3 and 4, fasting

and postprandial blood samples were collected after a 3-week open

label fenofibrate trial. For this analysis, we used blood draw and

BMI data collected at visit 2. This includes data only from subjects

who were willing to participate in the high fat meal intervention.

The final sample consisted of 1036 individuals across 187 families;

497 men and 539 women (mean 6 SD: 48.8616.2 y of age). The

protocol was approved by the Institutional Review Boards at the

University of Minnesota, University of Utah, Tufts University/

New England Medical Center, and the University of Alabama at

Birmingham. Written informed consent was obtained from all

participants.

Data collection
Clinical characteristics including anthropometric and blood-

pressure measurements were taken at the study clinics where a

fasting blood sample (used for the genotyping) was also drawn, as

described previously [12]. Questionnaires were administered to

collect demographic data and information on lifestyle attributes

and medical history.

Measures
Anthropomorphic and demographic measures. BMI

data were collected by trained research staff who were instructed

to take weight measurements over light clothing. BMI was

measured as weight in kilograms (kg) divided by height in meters

squared (m2). Age and sex were recorded by questionnaire.

Habitual alcohol (g/day) and smoking behavior (current/non) was

measured by the dietary history questionnaire (DHQ).

Genotype data. Genomic DNA was isolated from blood

samples using routine DNA isolation sets (Qiagen, Valencia, CA,

USA), using a TaqMan assay with allele-specific probes on the

ABI Prism 7900HT Sequence Detection System (Applied

Biosystems, Foster City, CA, USA) according to the

standardized laboratory protocols.

SNP selection. Three nonsynonymous SNPs on the LRP-1

gene on Chromosome 12 (positions 12q13.1-q13.3) were chosen

from literature reports of genetic associations or lipid-related

biological function [13–15].These were C766T (rs1799986) in

exon 3, I68477 (rs1800191) in intron 55 and I10701 (rs715948) in

intron 2. SNAP from the Broad Institute (http://www.

broadinstitute.org/mpg/snap/index.php) indicated that none of

the SNPs were in linkage disequilibrium with r..8.

The ApoE alleles were typed at the previously identified ApoE

locus. Given that e2 carriers and e4 carriers have both shown

effects on lipid measures in comparison to e3, but their effects may

not be in the same direction [11], we compared e2 carriers

(without including e4 carriers) to those with the e3/e3 genotype

and separately: e4 carriers (without including e2 carriers) to those

with the e3/e3 genotype.

As we were interested at the theoretical level of how ApoE

isoforms mediate the effects of LRP-1 SNPs, only those LRP-1

SNPs which showed an effect on BMI as a significant association

with BMI were examined for mediation by ApoE alleles.

Statistical analysis
All analyses were conducted in SAS (v9.2; SAS Institute, Cary,

NC). Hardy-Weinberg equilibrium (HWE) was determined using

x2 goodness-of-fit analysis. All SNPs were in HWE (p..05). For

genotype-phenotype associations examining a main effect of the

LRP-1 SNPs on BMI, regression analysis was conducting using the

‘‘PROC MIXED’’ command with genotypes modeled as a

dominant effect, age and age2, sex, smoking (measured as current

smoker or non-smoker), average total alcohol consumption/day,

and center of data collection as predictors, and BMI (logarithmi-

cally transformed) as the outcome. Pedigree membership was

treated as a random effect. To test for gene-gene interactions, the

same model was run, and we additionally included APOE genotype

as a predictor and an interaction term between LRP-1 and APOE

genotypes. To control for differences in group variances a

Kenward Roger approximation to the degrees of freedom for

the reference distribution was applied [16].

Results

Participant characteristics
Table 1 shows allele frequencies, APOE genotype frequencies,

age and sex by LRP-1 genotype.

Main effects of LRP-1 on BMI
An examination of BMI by genotype frequencies suggested

dominant modes of inheritance for the effects of LRP-1 on BMI

(Table 2). In mixed linear models that compared major allele

carriers to those homozygous for the minor allele, while controlling

for the covariates previously described, the rs1799986 and

rs1800191 SNPs were not significantly associated with BMI

(P..05; Table 2). However, carriers of the major allele of

rs715948 had BMIs, on average, 1.03 kg/m2 higher than those

homozygous for the minor allele (P = .03). However, this unadjusted

P-value did not remain significant after a Bonferroni correction for

multiple testing was applied.

Interactions between LRP-1 rs715948 and APOE
genotypes on BMI

Frequencies of e2 carriers and e3/e3 genotypes by LRP-1

rs715948 locus genotypes are shown in Table 3. For those who

carried the effect of the major allele at the LRP-1 rs715948 locus, no

significant interaction was observed with ApoE genotype (Table 4).

Discussion

In a large, epidemiological cohort we examined three SNPs on

the LRP-1 gene for associations with BMI, and an interaction with

ApoE genotype that may modify this association. We report that

overall, the major allele of the rs715948 SNP was associated with

BMIs 1.03 kg/m2 higher than those without the major allele, and

LRP, ApoE and BMI
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that this relationship is not modified by differences in ApoE

genotype.

Previously, LRP-1 knockout mice have been associated with

poorer TGRL clearance, although the direction of effect on BMI

is not clear. Hoffman et al report LRP-1 knockout mice to have a

lower fat mass, which in addition to the observed elevated energy

expenditure, was attributed reduced postprandial TGRL uptake

[4]. However, although Liu et al report similar perturbations in

postprandial TGRL clearance, they found LRP-1 knockout mice

to be associated with a 2-fold increase in fat mass compared to

wild-type mice, coinciding with an ‘obese phenotype’ which

included increased food intake, reduced energy expenditure and

decreased leptin [5]. Their association of LRP-1 knockout mice

with increased fat mass was supported by work by Terrand et al,

who found LRP-1 knockout mice to show increased body fat

arising from reduce lipolysis [6]. Although LRP-1 has been shown

to be upregulated in obese human adipose tissue [3], and increased

concentrations of TGRL, such as chylomicron remnants, have

been implicated in obesity in humans [7], this is the first study, to

our knowledge, to report an association between LRP-1 variants

and BMI in humans. We report a significant association between

SNP rs715948 in intron 2 of the LRP-1 gene (P = .03). This SNP is

in the cholesterol-lowering pathway, has previously been associ-

ated with cholesterol responses to statin therapy [17], but not to

other lipid or obesity-related phenotypes in humans. Animal

models suggest that impaired receptor-mediated TGRL chylomi-

cron remnant clearance in conjunction with decreased energy

expenditure and lipolysis may, in part, explain the 1.03 difference

in BMI we observed between those homozygous for the minor

allele and carriers of the major allele at the I10701 locus on the

LRP-1.

We observed that the association between the LRP-1 rs715948

SNP was not significantly modified by carrying either the e2 nor

the e4 allele at the ApoE locus. Therefore, the binding of the LRP-

1 receptor to the isoform of ApoE on the chylomicron is not

suggested as the mechanism by which LRP-1 variants affect BMI.

A closer examination of postprandial TGRL would confirm such

findings.

Table 1. N, mean age (standard deviation) and percentage of
males and ApoE e3 carriers, in the GOLDN study population
by LRP-1 genotype group.

Genotypes{ P{

aa aA AA

C766T

N 16 246 771

Gender, % male 31.25 45.93 48.9 0.29

Age, y 48.83 (14.84) 49.55 (16.12) 48.50 (16.24) 0.68

Current smokers, % 0 7.32 7.52 0.52

Alcohol intake, g/day 3.42 (2.69) 8.08 (29.53) 5.56 (16.54) 0.16

I10701

N 110 428 493

Gender, % male 50.00 48.83 46.45 0.69

Age, y 49.48 (17.69) 47.57 (15.94) 49.65 (16.02) 0.13

Current smokers, % 4.55 8.18 7.30 0.43

Alcohol intake, g/day 4.87 (9.09) 5.44 (18.41) 6.97 (23.50) 0.42

I68477

N 91 456 483

Gender, % male 48.24 47.37 47.25 0.96

Age, y 48.33 (15.88) 49.13 (16.59) 49.07 (15.51) 0.73

Current smokers, % 12.09 7.24 6.63 0.19

Alcohol intake, g/day 3.24 (8.16) 6.06 (21.25) 6.70 (21.05) 0.33

{a = minor allele; A = major allele.
{P-values were derived from tests of null hypothesis that no group is different,
using a 1-way ANOVA for continuous traits or the x2 test for categorical
variables.

doi:10.1371/journal.pone.0030732.t001

Table 2. BMI (kg/m2; standard deviation) distribution of the
GOLDN study population by LRP-1 genotype.

Genotypesa
Pb Padj

c

aa aA AA

C766T 30.41 (4.54) 29.03 (5.64) 28.05 (5.67) 0.28 .76

I10701 27.46 (5.84) 28.21 (5.65) 28.63 (5.62) 0.03 .09

I68477 29.15 (5.29) 28.24 (5.76) 28.24 (5.61) 0.24 .72

aa = minor allele; A = major allele.
bP-values were derived from mixed linear models with genotype frequency, age

and age2, sex, smoking, total alcohol and center of data collection as
predictors, and BMI (logarithmically transformed) as the outcome within a
dominant model (AA/Aa vs. aa). BMI Data are presented that are back
transformed for easy interpretation.

cP-value adjusted after a Bonferroni correction.
doi:10.1371/journal.pone.0030732.t002

Table 3. ApoE genotypes by LRP-1 I10701 genotype.

Genotypes{ P{

aa aA AA

e2 carriers; % 11.82 10.28 10.34 .89

e4 carriers; % 27.27 25.93 25.35 .91

e3/e3 carriers; % 58.18 59.81 59.23 .95

doi:10.1371/journal.pone.0030732.t003

Table 4. Parameter estimates from linear regression models
looking at the effects of LRP-1 I10701 SNP and ApoE isoforms
on BMI in the GOLDN study population.

Beta (b) SE Pa

e2 carriers vs. e3/e3 ApoE genotype

LRP-1 I10701 genotype 20.01 0.01 0.26

ApoE isoform 0.004 0.01 0.29

Interaction term 20.02 0.02 0.93

e4 carriers vs. e3/e3 ApoE genotype

LRP-1 genotype 20.02 0.01 0.01

ApoE isoform 0.03 0.01 0.52

Interaction term 20.02 0.02 0.28

aP-values were derived from mixed linear models, specifying a Kenward Rogers
correction on the estimator, with LRP-1 I10701 SNP and ApoE genotype
frequency, an interaction between ApoE and LRP-1 genotype frequency, age
and age2, sex, smoking, total alcohol and center of data collection as
predictors, and BMI (logarithmically transformed) as the outcome.

doi:10.1371/journal.pone.0030732.t004
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Our analysis was limited to white Americans of European

descent and it is not clear if these results generalize to other

ethnicities. In addition, replication is necessary as the finding of a

main effect of LRP-1 on BMI did not survive the correction for

multiple testing. Despite these limitations we provide evidence that

the LRP-1 locus contributes to variations in BMI, and that these

LRP-1 variations are not mediated by variations at the ApoE locus

in this relationship. This information is useful in starting to

understand the biological causes to differences in BMI, and

warrants replication in independent samples.
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