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Abstract

Multi-isotope imaging mass spectrometry (MIMS) associates secondary ion mass spectrometry (SIMS) with detection of
several atomic masses, the use of stable isotopes as labels, and affiliated quantitative image-analysis software. By
associating image and measure, MIMS allows one to obtain quantitative information about biological processes in sub-
cellular domains. MIMS can be applied to a wide range of biomedical problems, in particular metabolism and cell fate [1,2,3].
In order to obtain morphologically pertinent data from MIMS images, we have to define regions of interest (ROIs). ROIs are
drawn by hand, a tedious and time-consuming process. We have developed and successfully applied a support vector
machine (SVM) for segmentation of MIMS images that allows fast, semi-automatic boundary detection of regions of
interests. Using the SVM, high-quality ROIs (as compared to an expert’s manual delineation) were obtained for 2 types of
images derived from unrelated data sets. This automation simplifies, accelerates and improves the post-processing analysis
of MIMS images. This approach has been integrated into ‘‘Open MIMS,’’ an ImageJ-plugin for comprehensive analysis of
MIMS images that is available online at http://www.nrims.hms.harvard.edu/NRIMS_ImageJ.php.
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Introduction

We developed software to automatically segment quantitative

images obtained with multi-isotope mass spectrometry (MIMS).

To understand the turnover of proteins, we developed MIMS, a

method that could reveal new protein synthesis with high spatial

resolution, in adult animals, in vivo, and without transfection of

cells or over-expression of protein. We provide mice with a diet

enriched with the stable isotope 15N, which has a low natural

abundance. Newly synthesized proteins would therefore contain
15N in nearly the same proportion as in the enriched food. To

detect the location of 15N-tagged protein, we fix and section tissues

as for histology, and we use MIMS to measure the ratio of 15N to
14N at each location in a field ranging from a few to 100 mm.

Because each pixel in an image is created from counts of specific

atomic masses, the extent of 15N incorporation can be measured

with exceptional spatial resolution and a precision that depends

only on the time allowed to acquire an image. Because MIMS is

based on stable isotopes, it is applicable to human studies.

MIMS combines a new type of secondary ion mass spectrom-

eter, the use of stable isotope reporters, and intensive computation.

Secondary Ion Mass Spectrometry is based upon the sputtering of

a few atomic layers from the surface of a sample, induced by a

‘primary ion’ bombardment. Images are obtained by stepping the

primary ion beam across the sample. For each step location on the

sample, the number of secondary ions sputtered is recorded.

MIMS images represent the variation in intensity of each selected

secondary ion species across the pixels of the area scanned. We

locate and measure the experimentally induced enrichment of a

specific stable isotope in a sample by deriving a ratio image from

the pixel-wise division of individual masses (e.g. ratio
12C15N2/12C14N2). For further discussion of the instrumentation

and methods described see [1,2].

A critical step in the MIMS image analysis is the definition of

regions of interest (ROIs)—groups of neighboring pixels exhibiting

a distinct set of features that distinguish them from the

surrounding area—from which statistics are collected and

interpreted. Images acquired with MIMS have a dynamic range

of 16 bits, and the resulting ratio images generate far more

information than can be easily displayed using simple gray or color

level methods. In order to show this high dynamic range ratio

data, and to de-emphasize values resulting from data with few

counts, we have developed a method based on a hue saturation

intensity transformation (HSI) [1,2] of the ratio image. The hue

codes for the ratio value, and the intensity at a given hue codes for

the number of ions detected. The HSI ratio display allows us to

take full advantage of our increased perception of color and of the

quantitative information contained in each mass image. It enables

PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e30576



identification of ROIs with significant excess of the 15N label (or

any other isotopic label) by a means that is independent of visual

recognition of expected histological structures. Figure 1A–C shows

a MIMS image (12C14N and 12C15N mass images, and the
12C15N/12C14N ratio image) of a tissue section from the inner ear

of a mouse (specifically the cochlea), and Figure 1D shows the HSI

of the 12C15N/12C14N ratio of that same image. Yet, even with the

HSI image as a guide, the manual delineation of ROIs is

extremely time consuming and rarely encompasses the informa-

tion contained in an entire image.

Here we describe the automatic derivation of MIMS image

ROIs by segmentation after algorithm training. Indeed, detecting

ROIs is not unlike image segmentation, where the goal is the

partitioning of an image into non-overlapping, constituent regions

that are homogeneous with respect to some characteristic.

Common image segmentation methods range from simple

thresholding to sophisticated approaches of edge and surface

detection [4]. Segmentation is particularly challenging in the

medical imaging domain, since data generated from magnetic

resonance imaging (MRI) or computed tomography (CT) are

inherently complex and noisy. Machine learning methods have

been used successfully to tackle these issues [4,5].

To segment MIMS images, we have utilized a Support Vector

Machine (SVM) [6,7,8,9]. SVMs have been applied to numerous

and highly varied types of biological data, of which some examples

are: microarray gene expression data for both gene function

classification [10] and cancer classification [11], protein secondary

structure prediction [12], detection of microcalcifications in

mammograms [13], and proteomic time-of-flight mass spectrom-

etry data [14]. Classification using an SVM involves training a

model on a defined set of data in which each data point is

represented in an experiment-dependent feature space and

assigned to a certain class. If there are d measured parameters,

the ranges of these parameters create a space of d dimensions

containing the measured data points. For any one of these

parameters, the range of values can be partitioned so that each

component of the partition represents a class. Briefly, in an SVM a

space of dimension d is partitioned by d-1 dimensional hyperplanes

denoting different classes of data points. Here a hyperplane is the

higher dimensional analog to a plane partitioning a 3 dimensional

space into 2 classes. A short discussion of SVMs can be found in

(Text S1, Figure S1, Figure S2). More in-depth descriptions can be

found in [15] and [16], and an overview of SVMs applied to

biological data can be found in [17].

The model can be subsequently applied to data points of

unknown class in order to infer the class membership of each data

point. The classification of each pixel in a MIMS image can be

regarded as a full segmentation, and local clusters of pixels of the

same class represent potential regions of interest. We present results

from the application of the method to two different types of MIMS

images and investigate its usefulness for streamlining data analysis.

Results

Experimental Data
We present results obtained using our algorithm to segment

quantitative MIMS images of mouse cochlea and brain. These

images were generated in studies of protein turnover after

incorporation of 15N, which was provided in the mouse chow.

Cochlea images (Figures 1 and 2A–D) are from a study of protein

turnover using a diet slightly enriched with 15N-leucine [1].

Figure 2B is the complete segmentation result of 2A. Insets marked

in 2A and 2B are shown in 2C and 2D, respectively. Regions of

interest have been defined by an expert to denote different classes

within the images and are visible in Figure 2C (white borders). All

pixels within the ROIs are used as ground-truth example data

points for their respective class. Figure 2D (inset from 2B) shows

the segmentation result in detail with the boundaries of ROIs

highlighted in white. Brain images (Figures 2E–H) are from a

study with highly 15N enriched spirulina chow (isotope enrichment

.98%) [18]. Figure 2E shows the 12C15N/12C14N HSI from a

tissue section of the hippocampal region of a mouse brain.

Figure 2F is the complete segmentation result of 2E. Insets marked

in 2E and 2F are shown in 2G and 2H, respectively. The expert-

defined ROIs are visible in 2G (white borders), and the

segmentation result is seen in detail with the boundaries of ROIs

highlighted in white in Figure 2H. A figure detailing the

acquisition of the brain images may be found in (Figure S4).

The validation of image segmentation by the algorithm must

take into account several characteristics specific to MIMS. Expert

analysis should sample various regions of the image that

correspond to specific biological structures, either directed by

the histology of the image (e.g., Figure 1A) or by the level of label

incorporation (e.g., Figure 2A, E). While an expert had previously

defined classes and training data for both MIMS images, the

amount of expert-annotated data points varies between classes as

well as between images.

Feature Space and SVM-Based Segmentation
The data points to be classified by the SVM are the pixels in the

MIMS image. Here, ‘‘pixel’’ refers to a specific position within the

raster used to image the sample. Since MIMS measures multiple

Figure 1. MIMS images of mouse cochlea tissue sections.
Quantitative images based on measured masses of 12C14N2 (A) and
12C15N2 (B), representing the detected amount of the respective
nitrogen isotopes at each pixel. Dividing the values at each pixel results
in a ratio image (C), which determines the isotopic ratio of nitrogen at
each position within the section. (D) is the 12C15N/12C14N HSI of the
data. Scale bars on (C) and (D) range from the natural ratio to the value
in the 15N-enriched chow, which corresponds to the maximum ratio
that could be reached in newly synthesized protein (multiplied by
10000). Field 41641 mm, 5126512 pixels, acquisition time 240 minutes.
doi:10.1371/journal.pone.0030576.g001

MIMS Segmentation
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isotopic masses at each position, each pixel is in fact represented by

a set of intensities (one for each measured mass). Also, since the

SVM is able to use information from all measured masses at the

same time, the classification is not restricted to any single mass or

ratio image, but can be applied to all or part of the of the MIMS

data, here simply referred to as ‘‘MIMS image.’’ It should be

stated, however, that the inclusion of all mass or ratio images is

neither required nor necessarily desirable. Explicitly in the

Figure 2. HSI images, Expert ROIs, and Segmentation Results. (A) is the 12C15N/12C14N HSI image of a mouse cochlea section with a field of
41641 mm, 5126512 pixels, and acquisition time of 240 minutes. Scale bars range from the natural ratio to the value in the slightly 15N-enriched
chow, which corresponds to the maximum ratio that could be reached in newly synthesized protein (multiplied by 10000). (B) is a complete
segmentation of (A). (C) and (D) are insets of (A) and (B), respectively. (C) shows expert freehand-drawn ROIs (white borders) used for training the
SVM. (D) is the complete segmentation of (C). We chose 6 classes of ratio value ensembles guided by the HSI image and represented in (B) and (D) by
6 hues spanning the rainbow colors from blue (lowest ratio) to red (highest). The SVM used the 12C14N quantitative MIMS image and the derived
12C15N/12C14N ratio image. (E) is the 12C15N/12C14N HSI image of a mouse brain section, field 50650 mm, 2566256 pixels, acquisition time of
11 minutes. Scale bars range from the natural ratio to the maximum value measured in the brain after feeding with a maximally 15N-enriched chow
(,98%). (F) is a complete segmentation of (E). (G) and (H) are insets of (E) and (F), respectively. (G) shows expert freehand-drawn ROIs (white borders)
used for training the SVM. We chose 6 classes of ratio value ensembles guided by the HSI image and represented in (F) and (H) by 6 hues spanning
the rainbow colors from blue (lowest ratio) to red (highest). The SVM used only the derived 12C15N/12C14N ratio image. ROI boundaries (which have
zero width) in (C) and (G) have been thickened to 1 pixel for clarity.
doi:10.1371/journal.pone.0030576.g002

MIMS Segmentation
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algorithm evaluations that follow in the case of the cochlea data,

both the 12C14N mass image (Figure 1A) and the 12C15N/12C14N

ratio image (Figure 1C) are given to the SVM. In the case of the

brain data, only 12C15N/12C14N ratio images (as represented in

the HSI images presented in Figure 2E) are used for reasons

explained below in the section ‘‘Cross Segmentation’’. Each data point

in a MIMS image is described by the following set of features: the

pixel intensity value, the mean of intensity values of neighboring

pixels, the standard deviation of this mean, and finally the

magnitude of intensity value gradient in this neighborhood.

The intensity value is an estimate of the abundance of an atomic

mass within the sample at the pixel’s location, and the direct result

of the measurement. Because we are interested in areas of

homogeneous relative intensities, we consider a local intensity

distribution with respect to each pixel’s neighborhood. In addition,

MIMS measurements can be noisy due to low ion counts,

specifically low-count mass images and ratio images where the

noise of the lower-count mass dominates. In order to make up for

sampling errors in a single pixel’s intensity, neighboring pixels are

taken into account during classification. Both the mean and

standard deviation of intensities of adjacent pixels are calculated as

two additional features for the SVM. The size of this neighbor-

hood can be increased, for example to accommodate varying levels

of noise between measurements. The distributional information,

however, might be misleading at the border of segments where

neighboring pixels belong to different classes. In order to detect

these boundaries, we also include an approximated gradient

magnitude calculation for each pixel as a fourth feature.

Overall, the SVM and the testing account for the following: 1)

all four features (pixel value, as well as neighborhood mean,

standard deviation, and gradient magnitude) are derived from

each of the mass and/or ratio images individually without

positional information in the feature space; 2) the desired

segmentation is multi-class; 3) there is no complete expert

segmentation; 4) the underlying distribution of protein turnover

(in the case of both the cochlea and brain images) is unknown and

is comprised of an unknown number of sub-populations; 5) the

expert decides how many classes exist in the data. The first two

facts result in a rich feature space, integrating information from

multiple isotopic species in order to differentiate between classes in

the complex MIMS data set. The use of an SVM and of this

feature space is based on the work of Zawadzki et al. [19].

During classification, each data point is assigned to a class based

on its feature representation. A classification of all pixels in a MIMS

image represents a full segmentation. One segment is defined as a

set of connected pixels belonging to the same class. Derivation of

regions of interest is straightforward by tracing the borders around

connected pixels that are assigned to the same class. If the size of an

ROI of a given class falls below a user-defined number of pixels, it is

integrated into its surrounding segment. Furthermore, if there are

segments of sufficient size completely contained within another

segment, their area is subtracted from the surrounding segment.

The user can control this behavior by varying the size threshold, and

the subtraction guarantees that a pixel can never be assigned to

more than one ROI.

Performance Metrics
To assess the predictive performance of our SVM approach, we

investigated its ability to reproduce results generated by the expert

sampling the image via manual selection of ROIs. We compared

predicted class memberships of individual pixels to this expert-

selected class assignment. To account for possible variation in

performance between different classes, we assessed each class

individually by calculating ‘‘recall’’ and ‘‘precision.’’ Recall of class

‘‘C’’ is the percentage of pixels correctly classified. It is calculated

by the number of pixels correctly classified by the SVM as ‘‘C’’

(belonging to class C defined by the expert) divided by the total

number of pixels belonging to class ‘‘C’’ as defined by the expert,

giving the equation: recall = N*
C/TC. Here N*

C denotes the number

of pixels correctly classified as ‘‘C’’ by the SVM and TC the total

number of pixels belonging to class C as assigned by the expert.

Precision of class ‘‘C’’ is calculated by the number of pixels

correctly classified as ‘‘C’’ divided by the total number of pixels

classified as ‘‘C’’ (correct and incorrect assignments of the

algorithm), giving: precision = N*
C/(N*

C+NuC). Here NuC denotes

the number of pixels incorrectly classified as ‘‘C’’. Both metrics are

given as percentages in the following paragraphs. When assessing

total performance, an evaluation based on both the recall and

precision for each class avoids introducing bias due to unequal

class sizes, which is typical for most MIMS data sets.

Random Sampling
We used a random sub-sampling validation scheme to evaluate

the performance on different data subsets. The expert-selected

data were randomly split into two fractions of defined sizes; one

group was used to train the classifier and the other to test it. The

size of the fractions was varied to investigate the effect of training

data size on the recall and precision. The relative amounts of

training data between classes were kept constant. Sampling was

done in one of two ways: ROI sampling was based on complete

expert-drawn ROIs, where all pixels within the ROI were either in

a training or test set; and pixel sampling, in which pixels from all

expert drawn ROIs of the same class were combined and

individual pixels were randomly sampled from the whole set.

Algorithm Evaluation
Predictive Performance: Recall and Precision. The

expert-annotated data points were randomly assigned to training

and test sets 500 times. To perform the large number of training

iterations efficiently, SVM parameter optimization was performed

by means of the Nelder-Mead heuristic [20] (Text S1). Here heuristic

denotes an algorithm that is not guaranteed to find the global

optima. Although this algorithm is prone to getting stuck in local

optima resulting in suboptimal classification, the performance of the

approach is well approximated by the average values of recall and

precision after many iterations. Recall and precision were calculated

for each iteration, and the probability density function was

visualized using violin plots (Text S1, Figure S3). Violin plots

were used in place of box and whisker plots due to the highly non-

normal distributions of recall and precision.

We achieve high recall and precision values on the cochlea

image (Figure 2A) using pixel sampling (20% of annotated pixels in

training set, randomly sampled from all expert selected pixels as

described above). As illustrated in Figure 3A, all classes show

average recall and precision greater than 90%, demonstrating

excellent classification performance across all user defined classes.

In case of the brain image (Figure 2E), the number of expert-

drawn ROIs was much larger than in the case of the cochlea

image; an ROI sampling scheme was applied (20% of annotated

ROIs in the training set, randomly sampled from all expert

selected ROIs as described above), resulting in stable recall and

precision values for most classes as shown in Figure 3B. On

average, four out of six classes have recall and precision above

80%. Only classes 4 and 5 show impaired performance, with

average recall and precision of about 70% and a considerably

higher variance. Closer inspection of the expert-annotated data

revealed a significantly higher feature similarity between those

classes than between others (data not shown). Additionally, the

MIMS Segmentation
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total number of pixels defining these two classes was lower than for

other classes. Both factors might well account for the reduced

classification accuracy. In summary, the SVM performs well on

the MIMS data, but the results demonstrate the need for careful

classification for a successful segmentation of all classes. It is also

apparent that the probability density functions of both precision

Figure 3. Cross-validation results of performance analysis. Violin plots showing the probability density functions of classification performance
on MIMS images of the cochlea (A) and brain (B), Figures 2A and 2E, respectively. For each class, recall (blue) and precision (red) were calculated by
cross-validation on 20% of the expert-annotated ROIs. N = 500 in both cases.
doi:10.1371/journal.pone.0030576.g003

MIMS Segmentation

PLoS ONE | www.plosone.org 5 February 2012 | Volume 7 | Issue 2 | e30576



and recall are highly non-normal. The long lower tails are due to

the fact that there is a small probability of the Nelder-Mead

algorithm (being a directed random search) finding parameters far

from the global maximum in terms of accuracy.

Robustness Analysis. The algorithm is considered robust if

the results are fairly constant, even when the amount and/or

selection of training data points are varied. To investigate this

property, we first created a full segmentation by classifying all

Figure 4. Cross-validation results of robustness analysis. Violin plots describing the robustness evaluated on the MIMS images of the cochlea
(A) and brain (B), Figures 2A and 2E, respectively. For each class, recall was calculated by comparing the reference prediction (using all training data)
with predictions using 50 (red), 25 (blue), 10 (yellow) or 5 (green) percent of randomly sampled training data. N = 500 in all cases.
doi:10.1371/journal.pone.0030576.g004

MIMS Segmentation
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pixels of an image using a model that had been trained on a large

training data set (100% of available expert-annotated data points).

The result is considered the ‘‘reference prediction’’. Then, we

sampled training data subsets of varying sizes (50, 25, 10 and 5%

of the training data, respectively) to train a model and predict the

same image. We determined robustness by directly comparing this

prediction with the reference prediction and calculating recall for

each class. Results are visualized using violin plots as described

above and the number of trials is again 500.

Figure 4A shows that even with a small amount of training data,

good classification results can be obtained for the cochlea image

(Figure 2A) using the pixel-sampling scheme. An average recall

greater than 75% can be achieved for all classes using just 5% of the

training data. Furthermore, all classes reach an average recall of

80% or more using just 10% of the training data. Since the result

does not heavily depend on training data size, this indicates the

robustness of our SVM approach on the cochlea image. Figure 4B

illustrates that satisfactory accuracy is obtained for all classes on the

brain image (Figure 2E) with just 25% of the training data using the

same pixel-sampling scheme. However, classes 4 and 5 clearly show

a significant decrease in recall with a reduced fraction of training

data. This result confirms the inferior class definitions already

observed in the recall and precision analysis, again due to a

significantly higher feature similarity between those classes and the

total number of pixels defining these two classes being lower.

Homogeneity Analysis. The general aim of MIMS analysis

is to compare a particular feature of interest—typically a ratio of

masses (such as the 12C15N/12C14N ratio) in a tracer experiment—

among the defined classes. If the algorithm has detected well-

defined ROIs, all pixels belonging to one class are expected to be

‘‘homogeneous’’ with respect to the feature of interest.

Homogeneity in this case refers to the ratios coming from a

single population, irrespective of what that population looks like.

In order to assess the homogeneity of class C with respect to the

ratio of isotopic masses m1 and m2, we employ the statistic:

hC = |Mean2Sum|. Mean is calculated as the mean of all ratio

image pixels i in class C, i.e.: Mean = (1/N)S(m1,i/m2,i). Sum is the

Figure 5. Null distributions of the homogeneity statistic. For each class, the approximated null distribution of the homogeneity statistic was
calculated by random placement of predicted ROIs. Each distribution is displayed as histogram, smoothed with kernel density estimation. The true
test statistic of each class was calculated based on the predicted ROIs and is indicated by a vertical bar within each plot. N = 10000.
doi:10.1371/journal.pone.0030576.g005

Table 1. P-values of the homogeneity statistic hc for each
class of the mouse brain image (Figure 2E).

p-value

class 1 0

class 2 0

class 3 0.0005

class 4 0.105

class 5 0.043

class 6 0.026

P-values were derived from a null-distribution by repeated random-
assignments of ROIs. Nominal p-values of 0 occur if not a single random-sample
achieved a better statistic than the observed one. Statistics for all classes,
except for class 4, are significant at the 5% level. N = 10000.
doi:10.1371/journal.pone.0030576.t001

MIMS Segmentation
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result of the division of the sums of the individual mass image

pixels m1,i and m2,i or Sum = (Sm1,i)/(Sm2,i). Sum can be thought of

as ‘‘collapsing’’ the set of measurements of the ratio in C down to a

single measurement of the isotopic ratio. For a given class, it can

be shown that any gross discrepancy between Mean and Sum

indicates that the ratios are distributed among at least 2

populations and thus are not homogeneous. P-values can be

derived to estimate the significance of the results. We calculated

the statistic hC for each class on the brain image (Figure 2E) and

tested it against the null-hypothesis that the ROIs had been

randomly defined, that is, without any reference to the feature of

interest. The null-distribution for each class was created by

randomly translating each ROI of the respective class and

calculating hC after the full set of ROIs had been shifted. This

procedure was repeated 10000 times for each class, and the

resulting distributions are shown in Figure 5. By translating the

ROIs, number and shapes of the original ROIs are maintained.

This ensures that the random statistic is only affected by the

positions of the ROIs and not, for instance, by total pixel number.

P-values are associated with the probability that a value at least as

extreme as the one observed occurred only by chance and is not

related to any homogeneous structure captured by the ROIs. Low

p-values thus indicate that the corresponding ratio distribution is

highly non-random and ROIs indeed cover a homogeneous set of

pixels. In Figure 2E, the region of low counts on the right of the

image, visible by the shadow on the HSI image, was excluded from

the analysis to avoid any bias due to high noise in this region. Table 1

shows p-values for the 6 classes of the mouse brain image. P-values

for classes 1, 2 and 3 are nominally zero. Thus, these results are

highly significant and the ROIs can be assumed to be homogeneous

with respect to the 12C15N/12C14N ratios. Figure 5 shows the null

distribution for each class together with the homogeneity statistics

calculated from the predicted ROIs of the respective classes. Classes

5 and 6 show slightly lower significance, and class 4 fails to pass the

5% significance level (indicating some inhomogeneity). This is in

accordance with the previous results, which indicated that the SVM

performance for these classes was inferior compared to the other

classes. Users can also perform this test to validate their class

definitions and final results. An output such as that shown in Figure 5

might lead the user to modify model training by either reconsidering

training data selection or adjusting the number of defined classes. In

summary, this analysis indicates a high degree of homogeneity

within the majority of predicted classes and thus demonstrates the

usefulness of our segmentation approach for biological interpreta-

tion of MIMS images.

Cross-Segmentation. In the validation steps described in the

preceding sections, a dedicated SVM model had been trained for

each image to be segmented. In many MIMS experiments,

however, multiple images are generated under very similar

experimental conditions (e.g., the acquisition of consecutive

images on the same tissue section). Training models on each of

them would hamper streamlined data analysis. To overcome this

limitation, we evaluated the performance of an SVM model

trained on a single image from a set of related samples and applied

it to the complete set of images. Let FX denote the model trained

on image X and FX(Y) the segmentation result of applying model

FX to image Y. In case X = Y, this is referred to as ‘‘direct

segmentation’’. Otherwise, this is referred to as ‘‘cross-

segmentation’’ of image Y by X. The performance of cross

Figure 6. Cross-segmentation of consecutive brain sections.
Example of segmentation of a series of images with the 12C15N/12C14N
HSI shown in the left column and the full segmentation result shown in
the right column; six fields total, 8 expert defined classes. The image

from Figure 2E is at the top left (arrow). SVM trained on bottom left
image (double arrow). These images were part of an acquisition of 37
images, 50650 mm, 2566256 pixels, acquisition time 11 minutes.
doi:10.1371/journal.pone.0030576.g006
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segmentation is assessed by pixel-wise comparison of the predicted

and the expert annotated classes. In terms of robustness, the

predicted image of cross segmentation was compared to the result

of a direct segmentation (i.e., reference segmentation). Figure 6

illustrates the algorithm’s ability to cross-segment a number of

images from a data set based on training from a single image. The
12C15N/12C14N HSI images of six adjacent MIMS images are

shown on the left and their full segmentation if shown on the right.

The image at the top left of the figure (arrow) is the same as shown

in Figure 2E, however the training data was taken from the bottom

left image (double arrow).

First, we investigated the ability of a cross-segmentation to

reproduce the expert’s annotations on the original brain image

(Figure 2E) using a model trained on the new image. Training

ROIs were defined for 8 classes, 6 of which were equivalent to the

6 classes of the reference image. The two additional classes were

defined to cover data points with extremely low and high
12C15N/12C14N ratios. This is a typical scenario where the SVM

should be given training data that is as general as possible and

spans the minimum ratio value (equivalent to the natural ratio) to

the maximum value contained in the image series. Also, in contrast

to the previous evaluations, the complete set of annotated ROIs

was predicted and evaluated. Figure 7A shows the classification

results. Cross-segmentation resulted in a recall over 80% in 5 of 6

classes and precision of over 70% in five of six classes. Lower recall

and precision values in classes 5 and 6 might be due to the

similarity of those classes, the difference between which could not

be sufficiently learned on the other image.

To further examine the algorithm’s usefulness, we compared the

result from a cross-segmentation to that of a direct segmentation.

ROIs were chosen by the expert on both brain images (Figure 2E

and Figure 6 double arrow), and two SVMs were trained using

those ROIs. We then compared the full segmentation of the image

2E using the SVM trained on image 2E (direct segmentation) with

the full segmentation of image 2E using the SVM trained on the

new image (cross-segmentation). Unlike the previous tests of recall

and precision, all expert ROIs were used for training. Getting

sufficiently equivalent results from both approaches would justify

the use of cross-segmentation over having to train a dedicated

Figure 8. Segmentation of higher channel data. A MIMS image of
a mouse intestinal crypt [23] showing 15N-thymidine labeled nuclei
(solid arrows), unlabeled nuclei (double arrows) and sulfur-containing
granules (outlined arrow). The images are 12C14N (A), 31P (B), 32S (C),
12C15N/12C14N (D), 12C15N/12C14N HSI (E). Scale bars in (D) and (E) range
from the natural ratio to a value that clearly delineates the borders of
labeled nuclei (times 10000). The resulting segmentation is shown in (F).
Field 30630 mm, 5126512 pixels, acquisition time 849 minutes.
doi:10.1371/journal.pone.0030576.g008

Figure 7. Cross-segmentation performance. Recall and precision
values for each class of the cross-segmentation of the brain image in
Figure 2E using a model trained an image from Figure 6 (bottom left
image, double arrow). (A) The predictive performance of the cross-
segmentation was evaluated on the expert-annotated data. (B)
Comparison of direct- versus cross-segmentation based on the
complete image segmentation.
doi:10.1371/journal.pone.0030576.g007
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model for each image. We show in Figure 7B the two results again

in terms of recall and precision. Precision values are well above

70% in most cases, which demonstrates a satisfying confidence in

the predicted classes. The recall of the algorithm is above 80% in

most cases, however it is clearly impaired within two classes. This

might be due to the greater richness of the cross-segmentation

model, which contains a background class and a class representing

the highest ratio values. Thus the model contains two classes more

than actually exist on the target image, and thus simply increases

the chance of false positive hits. This emphasizes that, for cross-

segmentation to work well, it is crucial to define classes that are

sufficiently distinct and consistent across images. It is the case that

for most of the classes, this is feasible and thus makes cross-

segmentation possible under carefully controlled analytical

conditions. It should also be noted that the inclusion of a mass

image in addition to the ratio image in the feature space can cause

poor results when performing a cross-segmentation. This is due to

overfitting, most likely caused by changes in the mass images that

are canceled out in the ratio image (data not shown). This is the

reason only the 12C15N/12C14N ratio image was given to the SVM

for the brain images as previously stated.

Design and Implementation

Implementation
We used the libSVM package [21] to integrate the SVM

algorithm into OpenMIMS, an ImageJ plugin for the compre-

hensive analysis of MIMS images (available at http://www.nrims.

hms.harvard.edu/NRIMS_ImageJ.php). ImageJ is written in the

platform-independent Java language and thus can be run on any

operating system that provides the Java runtime environment

(http://www.java.com). In addition to the default grid search

(provided by libSVM), we implemented a Nelder-Mead simplex

search [20] for tuning parameters of the SVM during training.

Compared to the exhaustive grid search, this directed search

method provides a significant improvement in terms of speed

while showing equivalent performance in general [22]. The time

required to train the SVM was reduced by a factor of 10–20

because the number of times the SVM must be retrained to

perform cross validation is reduced by the same factor. All tests

presented were performed using a radial basis function kernel and

libSVM’s standard one-to-one method of multi-class classification

(Text S1).

Design
The graphical user interface allows the user to define classes of

interest and select training data, and provides access to the setup of

the SVM. This includes choosing the feature space and the kernel

type. Furthermore, functions are provided to automatically derive

ROIs from the segmented image, which are subsequently available

for comprehensive analysis by the OpenMIMS tool. For every step

of the segmentation procedure, the user can save the current state,

Figure 9. Segmentation of Volumes. MIMS image of mouse
stereocilia [24] from an 86862-mm volume in 2566256690 voxels
(acquisition time 1966 minutes). Renderings of 12C14N (A), 12C15N/12C14N
HSI (B) both rendered in ImageVis3D [25]. The scale bar in (B) ranges from
the natural ratio to the value in the 15N-enriched chow, which
corresponds to the maximum ratio that could be reached in newly
synthesized protein (multiplied by 10000). Regions of high turnover (solid
arrow), medium turnover (double arrow), and low turnover (outlined
arrow) are clearly visible in (B). The resulting segmentation (C) is rendered
in Seg3D [26] and these same classes of high, medium, and low turnover
are shown colored as red, green, and blue respectively.
doi:10.1371/journal.pone.0030576.g009
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including defined classes and training data, the trained model and

its configuration, and any prediction made by that model, along

with the derived ROIs. The option of restoring a particular state at

a later time is useful in the continuation of analysis and especially

in the case where a previously trained model can be used to

segment new data (cross segmentation).

Availability and Future Directions

Availability
This algorithm can be accessed on line at http://www.nrims.

hms.harvard.edu/NRIMS_ImageJ.php. The source code, user

and developer documentation, and several example data files are

also available.

Future Directions
An SVM approach was chosen for its general applicability, so

that it has the ability to work with data of varying dimensions. The

algorithm can be applied to images with a higher number of

channels (i.e. mass or ratio images) than the ones used in this study.

Figure 8 shows initial results of using the algorithm to segment a

crypt of the small intestine [23] with regions of high 15N label, as

well as areas with endogenous phosphorous and sulfur. In contrast

to the previously shown MIMS images of mouse cochlea and brain

(Figures 1,2,6), which quantitate the level of protein turnover, this

data comes from an experiment where newly synthesized DNA was

labeled via the introduction of 15N-thymidine. The algorithm

clearly reveals labeled nuclei (solid arrows), unlabeled nuclei (double

arrows and visible in the P and S channels) and sulfur-containing

granules (outlined arrow). Because the signal of different masses can

vary by orders of magnitude, some asymmetry may need to be

introduced into the algorithm to increase accuracy (e.g., a per-image

radius for the computation of neighborhood statistics).

The lack of positional information in the feature space allows the

same model to apply to sequences of images. This ‘‘cross-

segmentation’’ approach has been used to segment multiple images

of consecutive tissue slices (Figure 6). This can also be applied to

images that extend in the Z direction. The application of this

method to an 86862 mm volume of MIMS images from a mouse

inner ear stereocilia [24] is shown in Figure 9. The SVM was

trained on the 12C15N/12C14N volume (the inclusion of only the

ratio data is for the same reasons outlined in the previous section

Cross-Segmentation and Figure 6) and given 3 classes of high, medium,

and low 12C15N/12C14N ratio (or protein turnover) that were

defined by the expert on a single slice of the volume. The algorithm

successfully found the regions of high turnover (solid arrow),

medium turnover (double arrow), and low turnover (outlined arrow)

visible in the 12C15N/12C14N HSI in Figure 9B. The complete

segmentation of these 3 classes is shown in Figure 9C. Renderings of

the data were made using ImageVis3D [25] and Seg3D [26]. In the

future, methods able to split regions that represent distinct structures

but may be covered by a single segmented, connected volume would

further improve the application.

Supporting Information

Text S1 A short discussion of SVMs, the Nelder-Mead
algorithm, and violin plots.
(DOC)

Figure S1 SVM Classification. A schematic showing 2 classes

of data points (gray and black circles) and 3 separating hyperplanes

(H1–H3) in 2 dimensions. H1 (red line) does not separate the data.

Both H2 (green line) and H3 (blue line) separate the data; however

the margin (black lines) of H3 being the largest possible margin, H3

is the separating hyperplane found by the SVM. The points closest

to H3 are the eponymous ‘‘support vectors’’.

(TIF)

Figure S2 Linearly Separable Data. A representation of the

mapping of data from a space where the classes are not linearly

separable to one where they are. This mapping W is related to a

given kernel function k by k(xi, xj) = W(xi)?W(xj) where xi and xj

are data points.

(TIF)

Figure S3 Violin Plots. A reproduction of a single violin from

Figure 3A of the manuscript to illustrate a violin plot. Gray bars

have been added to show the range of measured values of a sample

(vertical grey bar) and the estimated relative probability of

obtaining a given value from one sample (horizontal grey bar,

value = 90%).

(TIF)

Figure S4 Brain Image Acquisition. A light microscopy

image of a sagittal section of embedded mouse hippocampus

showing the approximate position of the 2 brain images used in

the manuscript. Also shown is the path of acquisition of the dataset

these 2 images were taken from.

(TIF)
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