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Abstract

Maturation of [NiFe]-hydrogenase requires the insertion of iron, cyanide and carbon monoxide, followed by nickel, to the
catalytic core of the enzyme. Hydrogenase maturation factor HypB is a metal-binding GTPase that is essential for the nickel
delivery to the hydrogenase. Here we report the crystal structure of Archeoglobus fulgidus HypB (AfHypB) in apo-form. We
showed that AfHypB recognizes guanine nucleotide using Asp-194 on the G5 loop despite having a non-canonical NKxA G4-
motif. Structural comparison with the GTPcS-bound Methanocaldococcus jannaschii HypB identifies conformational changes
in the switch I region, which bring an invariant Asp-72 to form an intermolecular salt-bridge with another invariant residue
Lys-148 upon GTP binding. Substitution of K148A abolished GTP-dependent dimerization of AfHypB, but had no significant
effect on the guanine nucleotide binding and on the intrinsic GTPase activity. In vivo complementation study in Escherichia
coli showed that the invariant lysine residue is required for in vivo maturation of hydrogenase. Taken together, our results
suggest that GTP-dependent dimerization of HypB is essential for hydrogenase maturation. It is likely that a nickel ion is
loaded to an extra metal binding site at the dimeric interface of GTP-bound HypB and transferred to the hydrogenase upon
GTP hydrolysis.
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Introduction

Hydrogenases catalyze the inter-conversion of molecular

hydrogen into protons and electrons. Hydrogenases can be

categorized by coordination of their metallo-catalytic Fe core,

namely, [FeFe]-hydrogenase, [NiFe]-hydrogenase and [Fe]-hy-

drogenase [1]. [NiFe]-hydrogenase, the most widely distributed

hydrogenase, which contains a nickel and an iron ions coordinated

by a network of thiol ligands from cysteine residues in the catalytic

core of the large subunit. In addition, the Fe ion is chelated by two

CN molecules and one CN molecule [1]. Formation of this

complex catalytic core in the large subunit of [NiFe]-hydrogenase

requires accessory proteins encoded by genes designated hypA to

hypF in the hyp operon. The iron center is assembled before the

insertion of nickel [2,3,4]. HypE and HypF are responsible for the

synthesis of the CN ligands [5,6,7]. Synthesized CN ligands are

transferred to HypC and HypD to form a Fe(CN)2 complex, which

is then delivered to the hydrogenase large subunit precursor [8].

The source of the CO ligand is unknown but the insertion of

Fe(CN)2CO should happen before the insertion of nickel

[9,10,11]. After delivery of the Fe(CN)2CO complex to the large

subunit precursor, nickel is transferred to the precursor with aid of

protein HypA and HypB. The last step of catalytic core assembly

involves protease cleavage, where an isozyme-specific protease

cleaves the C-terminal tail of the large subunit [12].

The detailed process of nickel insertion facilitated by protein

HypA and HypB is still unclear. Disruption of either genes hypA or

hypB in various microorganisms resulted in hydrogenase deficiency

that can be partially overcome by supplementation of nickel in the

growing media [13,14,15,16,17,18]. HypB is a metal-binding

GTPase. It possesses an invariant CHxnC motif, which is capable

to bind both zinc and nickel [19]. Mutagenesis study showed that

this metal binding motif is essential for hydrogenase maturation

[19,20]. HypB belongs to the SIMIBI class GTPase with slow

intrinsic GTP hydrolysis activity [21,22,23,24]. Mutagenesis

studies showed that GTP hydrolysis activity is required for

hydrogenase maturation in vivo [15,25,26]. Size exclusion chro-

matography and cross-linking studies demonstrated that binding of

GTP may trigger dimerization of HypB [21,24,27], which is

further supported by the crystal structure of Methanocaldococcus

jannaschii HypB (MjHypB) homo-dimer in complex with GTPcS

[27]. Many GTPases, including HypB, undergo GTP-induced

dimerization and in a recent review, Gasper et al. categorized them

as ‘‘G proteins activated by nucleotide-dependent dimerization’’

[28]. Interestingly, a recent study showed that binding of nickel

also triggers dimerization of HypB [29] suggesting that binding of

metal and the oligomeric state are also related.

Here, we solved the crystal structure of Archeoglobus fulgidus HypB

(AfHypB) (PDB: 2WSM) in its nucleotide-free apo-form. Struc-

tural comparison of the apo-form of AfHypB and the GTPcS-
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bound MjHypB (PDB: 2HF8) reveals a plausible GTP-dependent

dimerization mechanism of HypB. Confirmed by mutagenesis

study, an invariant lysine residue, which forms an intermolecular

salt bridge across each copy of monomer in HypB dimer, was

found to be required for GTP-dependent dimerization and in vivo

hydrogenase maturation. How GTP-dependent dimerization of

HypB plays a role in hydrogenase maturation is discussed.

Results

AfHypB undergoes GTP-dependent dimerization
Previous study showed that GTPc-S-bound HypB from M.

jannaschii (MjHypB) exists as a dimer in the crystal structure [27].

Moreover, GTP-bound E. coli HypB (EcHypB) has a smaller

elution volume than its GDP-bound state in size exclusion

chromatography, suggesting that HypB has a tendency to dimerize

in the presence of GTP. To test if AfHypB undergoes GTP-

dependent dimerization, oligomeric state of AfHypB in the

presence of GDP and GTP was studied by size exclusion

chromatography coupled with static light scattering (SEC/LS)

(Figure 1). The elution volume of both apo-form and GDP-bound

AfHypB were 11.5 ml. The molecular mass, detected by SEC/LS,

of apo-form and GDP-bound AfHypB was 24.8 and 23.6 kDa,

respectively, which is consistent with the theoretical mass of

monomeric AfHypB (24.7 kDa). These results suggest that the

apo-form and the GDP-bound form of AfHypB exist as monomer

in solution. On the other hand, the elution volume of GTP-bound

AfHypB was significantly smaller (10.2 ml). The apparent

molecular mass detected was 41.0 kDa, suggesting that AfHypB

has a tendency to form dimer in the presence of GTP. Similar to

EcHypB, our results suggest AfHypB undergoes GTP-dependent

dimerization.

Overall structure of AfHypB
The only structure of HypB available was the MjHypB in

complex with GTPc-S [27]. To better understand the structural

mechanism of GTP-dependent dimerization, we have determined

the crystal structure of HypB from A. fulgidus (AfHypB) in apo form

to 2.3 Å. Each asymmetric unit contains 2 monomers of AfHypB

(Figure 2A). The two monomers of AfHypB can be superimpos-

able with each other with Ca rmsd of 0.40 Å. AfHypB belongs to

the SIMIBI class of GTPase and adopts an a/b fold with a seven-

stranded beta-sheet sandwiched by 11 a-helices (Figure 2B).

Electron density of residues 67–82, corresponding to the switch I

region, of chain B are missing (Table 1), indicating that these

residues are not ordered. In contrast, we found that symmetry-

related AfHypB molecules may restrict the mobility of switch I of

chain A, and hence, these residues are well defined in chain A.

Besides, the side-chain sulphur atoms of two cysteine residues,

Cys-92 and Cys-122, which are part of the CHxnC motif, of apo-

AfHypB structure are in 2 Å distance, suggesting the formation of

a disulphide bridge between these two residues.

AfHypB can recognize guanine nucleotide despite having
a non-canonical G4 motif

Sequence of AfHypB was compared with HypB from M.

jannaschii and five other species (Figure 2C). All G-motifs for

guanine nucleotide recognition are identified with the exception of

the G4 NKxD motif. In many GTPase including MjHypB, the

conserved aspartate residue in the NKxD motif recognizes the

guanine nucleotide by forming two hydrogen bonds with the N1

and N2 atoms on the guanine base. In AfHypB, the conserved Asp

residue in the NKxD motif is replaced by an Ala residue. We have

superimposed the structures of AfHypB and MjHypB, and found

that there is a nearby Asp-194 on the G5 loop, away from the G4

motif, that can form a hydrogen bond to the N1 atom of the

guanine nucleotide (Figure 3A). This observation suggests that the

role of the conserved Asp in NKxD can be replaced by this Asp-

194. We tested the ability of AfHypB to distinguish GDP and ADP

by titration experiment using a fluorescent 29-(or-39)-O-(N-

methylanthraniloyl)-GDP (MANT-GDP) analog. When 1 mM

MANT-GDP was added to 1 mM apo-AfHypB, the fluorescence

emission at wavelength 440–450 nm was increased (Figure 3B).

Addition of 200 mM GDP or GTP resulted in a drop in the

emitted fluorescence, suggesting that the bound MANT-GDP can

be displaced by the addition of excess guanine nucleotides

(Figure 3B & 3C). In contrast, no significant change in

fluorescence was observed when 200 mM ADP was added

(Figure 3D), suggesting that ADP cannot displace the bound

MANT-GDP. Taken together, our results suggested that AfHypB

binds guanine nucleotide specifically over adenosine nucleotide

despite having a non-canonical G4-motif.

Structural difference between the apo-form and GTPcS-
bound form suggests a mechanism of GTP-dependent
dimerization for HypB

We have tried, but unfortunately failed to obtain crystals of

AfHypB in complex with GDP or GTP analogs. To reveal

conformational changes upon binding of GTP to apo-HypB, the

structure of apo-AfHypB is compared with that of the GTPcS-

bound MjHypB. AfHypB and MjHypB share 52% sequence

identity, and the two crystal structures of apo-AfHypB and

GTPcS-bound MjHypB are superimposable with Ca rmsd of

1.56 Å (chain A of apo-AfHypB against chain A of GTPcS-bound

MjHypB) (Figure S1A). Modeling suggests that the binding pocket

in apo-HypB can accommodate a GDP but is too small to

accommodate a GTP as the c-phosphate will clash with an

invariant aspartate residue (Asp-66 in AfHypB) on the G2 loop

(Figure 4A). As indicated by the large values of Ca displacement

(Figure S1B), conformational changes are most evident in the

switch I region (residues 65–81) consisting of helix-3 (residues 70–

Figure 1. AfHypB undergoes GTP-dependent dimerization.
Molecular weight of AfHypB in the presence of guanine nucleotides are
determined by analytical size exclusion chromatography coupled with
static light scattering. Both apo AfHypB (24.8 kDa) and GDP-bound
AfHypB (23.6 kDa) remain as monomer (24.7 kDa). In contrast, AfHypB
has an increased apparent molecular weight (41.0 kDa) in the presence
of GMPPNP.
doi:10.1371/journal.pone.0030547.g001

GTP-Dependent Dimerization of HypB
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77) and the G2 loop (residues 65–69). Three conserved residues,

Asp-66, Asp-72 and Arg-75 (Figure S1C), are involved in the

observed conformational changes upon GTP binding. First, in the

apo-form, Asp-66 on the G2 loop is anchored to Gly-118 and Lys-

43 by two hydrogen bonds, which are broken in the GTPcS-

bound MjHypB (Figure 4B). These contacts are observed in both

chain A and chain B in the crystal structure of apo-AfHypB. These

two hydrogen bonds hold the G2 loop closer to nucleotide binding

site in the apo-form, resulted in a smaller guanine nucleotide-

binding pocket that clashes with the c-phosphate group of GTP

(Figure 4A). We anticipate that binding of GTP breaks the

hydrogen bonds among Lys-43, Gly-118 and Asp-66, allowing the

switch I to swing away from the nucleotide binding site. Such

motion results in a more open conformation for the accommo-

Figure 2. AfHypB is a SIMIBI class GTPase. (A) The two monomers found in the asymmetric unit of AfHypB are superimposable with Ca rmsd of
0.40 Å. G-motifs are annotated and high-lighted in colors. (B) HypB is a SIMIBI class GTPase and the secondary structure of AfHypB is illustrated in a
schematic diagram. (C) Sequences of HypB from A. fulgidus (AfHypB), M. jannaschii (MjHypB) and five other species are aligned. The secondary
structures of AfHypB and MjHypB are shown above and below the alignment, respectively. The invariant CHxnC-motif responsible for metal binding is
indicated as green triangles. Asp-72 and Lys-148 (yellow triangles) are found to be absolutely conserved among all HypB.
doi:10.1371/journal.pone.0030547.g002

GTP-Dependent Dimerization of HypB
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dation of the c-phosphate group of GTP, and the insertion of Lys-

148 from the opposite chain for dimerization of HypB (Figure 4C).

Second, Arg-75 of helix-3 forms salt bridge with Glu-52 of helix-2

in the apo-form. In the GTPcS-bound form, helix-3 turns ,30u,
bringing Arg-75 to form salt bridge with a-phosphate of GTPcS

and Glu-48. Such conformational changes also bring Asp-72 in a

position to interact with the bound magnesium, and to form an

intermolecular salt bridge with Lys-148 in GTP-bound form.

Lys-148 is essential for GTP-dependent dimerization
Structural comparison between apo-AfHypB and GTPcS-

bound MjHypB suggests that conformational changes induced

by GTP binding bring Asp-72 to form an intermolecular salt-

bridge with Lys-148. As both Asp-72 and Lys-148 are invariant

residues in HypB, we hypothesized that this salt bridge is essential

for the GTP-dependent dimerization of HypB. To test our

hypothesis, Lys-148 of AfHypB was substituted by alanine to

create AfHypB-K148A and its oligomeric state was analyzed by

SEC/LS (figure 5A). In contrast to the wild-type AfHypB, addition

of the GTP analog, GMPPNP, did not result in changes in the

elution volume in SEC/LS analysis. The detected molecular mass

of K148A was ,25 kDa, suggesting that K148A exists as a

monomer in the absence or in the presence of GDP and

GMPPNP. The K148A variant failed to undergo GTP-dependent

dimerization. Our results are consistent with the conclusion that

the intermolecular salt bridge between Lys-148 and Asp-72 is

important for GTP-dependent dimerization.

K148A substitution did not affect nucleotide binding and
GTP hydrolysis activity

Next, we questioned if GTP-dependent dimerization is essential

for the binding of guanine nucleotide. The binding of MANT-

guanine nucleotide to wild-type and variants of AfHypB was

followed by fluorescence changes at wavelength 450 nm (Figure

S2). The dissociation constants of wild-type and K148A for

MANT-GDP were 0.0660.01 mM and 0.0560.01 mM respec-

tively and that for MANT-GMPPNP were 0.5060.08 mM and

1.260.2 mM respectively (Figure 5B). That K148A AfHypB

variant can bind guanine nucleotide suggests that nucleotide

binding does not require dimerization.

To test if GTP-dependent dimerization affects the enzymatic

activity of HypB, we measured the GTP hydrolysis activity for

wild-type and K148A AfHypB by incubating 200 mM of HypB

with 2 mM of GTP. (Figure S3). The hydrolysis activity was not

affected by pre-incubation of HypB with 200 mM of GDP

(Figure 5C), suggesting that the assay measured multiple turnover

rates of GTP hydrolysis rather than the dissociation rates of the

product GDP. The activity for wild type and K148A variant were

0.04160.006 hr21 and 0.05160.008 hr21 respectively, showing

that K148A substitution did not affect the activity significantly.

The conserved lysine residue is required for hydrogenase
maturation in E. coli

We have shown that removal of the positive charge at the

conserved residue Lys-148 abolishes GTP-dependent dimerization

without affecting the guanine-nucleotide binding and the intrinsic

activity of HypB. Next, we asked if this conserved lysine residue is

essential for the in vivo hydrogenase maturation. To address this

question, the ability of the HypB variant to complement

hydrogenase maturation in DhypB E. coli was tested. Sequence

alignment suggests that Lys-224 in E. coli HypB (EcHypB)

corresponds to Lys-148 in AfHypB (Figure 2C). We have cloned

wild-type EcHypB and EcHypB-K224A constructs in pBAD

plasmid vector. The hydrogenase activity measured for the wild-

type parental E. coli strain was 30269 nmol mg21 min21

(Figure 6). Transforming the DhypB strain with the wild-type

pBAD-EcHypB plasmid recovered 8367% of the activity

observed in the wild type strain E. coli, suggesting that the

expression of wild-type HypB complemented the loss of hypB gene

in the DhypB strain genome. In contrast, transforming the DhypB

strain with the pBAD-EcHypB-K224A plasmid only recovered

2063% hydrogenase activity, which is similar to the activity

recovered with the empty vector control (1563%). Our results

suggested that K224A could not complement the loss of hypB gene,

indicating that this conserved lysine residue is essential for

hydrogenase maturation.

Discussion

Here we reported the crystal structure of apo-AfHypB. This

apo-form conformation is reminiscent of that observed in Ras-like

G-proteins in complex with guanine nucleotide exchange factors

[30,31,32]. In the case of Ras-like G-proteins, nucleotide exchange

is enhanced by deforming the nucleotide-binding pocket caused

the conformational change upon binding of guanine nucleotide

exchange factors. In this study, we showed that AfHypB pre-

loaded with GDP can readily exchange with GTP without the help

of exchange factors in the nucleotide displacement experiment

(Figure 3C). The crystal structure of apo-AfHypB reported here

Table 1. Crystallographic Data and Refinement Statistics.

Diffraction data statistics

Space group P21212

a, b, and c (Å) 72.49, 82.32, 68.66

Wavelength (Å) 1.5418

Resolution (Å) 42.76–2.3 (2.42–2.3)

Rmerge (%) 10.7 (25.0)

Mean I/sI 20.0 (5.4)

Completeness (%) 100 (100)

Multiplicity 12.5 (7.9)

No. of reflections observed 235073 (21277)

No. of reflections unique 18861 (2705)

Refinement

Rwork/Rfree (%) 22.3/27.5

No. of atoms

Protein 3018

Water 138

Chloride 1

r.m.s.d. from ideal values

Bond lengths (Å) 0.005

Bond angles (u) 0.829

Ramachandran plot analysis

Most favored region 94.2%

Additionally allowed region 5.8%

Other 0%

Unmodeled residues

Chain A 1–10, 214–221

Chain B 1–8, 67–82, 212–221

Values in parenthesis are for the highest resolution shell.
doi:10.1371/journal.pone.0030547.t001

GTP-Dependent Dimerization of HypB
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may represent the intermediate state between the GDP- and GTP-

bound form. The salt-bridge between Asp-66 in the switch I region

and Lys-43 in the P-loop is likely stabilizing this intermediate

‘‘nucleotide-free’’ conformation of HypB that allows nucleotide

exchange without the aid of other exchanges factors. However, it is

not known if this intermediate conformation of HypB can be

further stabilized by binding to other protein factors.

Consistent with previous observations [21,23,24], we showed

that AfHypB undergoes GTP-dependent dimerization. Structural

comparison of the apo-form and GTPcS-bound form of HypB

reveals major conformational changes in the G2 loop and in helix-

3, which turns ,30u bringing Asp-72 to form an intermolecular

salt-bridge with Lys-148 on the opposite chain. These two residues

are absolutely conserved in all HypB, suggesting an indispensable

role of these residues. Substituting the Lys-148 with alanine

abolished GTP-dependent dimerization of HypB, suggesting the

salt-bridge between Asp-72 and Lys-148 is essential for dimer

formation. We further showed that dimerization did not affect

nucleotide binding affinity and the GTP hydrolysis rate of HypB.

Our results suggest that HypB can bind GTP in the monomeric

state, and the induced conformational changes promote dimer-

ization of HypB via the formation of the intermolecular salt-bridge

between Asp-72 and Lys-148. The invariant Lys-148 serves as a

probe for the binding of GTP that triggers the dimerization of

HypB. Interestingly, substitution of this invariant lysine residue

with alanine in EcHypB abolishes the ability of HypB to

complement hydrogenase maturation in DhypB E. coli strain.

Consistent with our observation, Cai et al. demonstrated that

substitution of two hydrophobic residues (Leu-242, Leu-246)

located at the dimeric interface by alanine disrupted dimerization

of EcHypB, and greatly reduced the recovered hydrogenase

activity in an in vivo hydrogenase maturation assay [33]. Taken

together, our results suggest that maturation of hydrogenase

involves GTP-dependent dimerization of HypB.

In this study, the GTP hydrolysis rate of AfHypB is very low,

which is consistent with previous studies of HypB from other

species [21,22,23,24]. This observation suggests that other factors

must involve in activating the catalysis of HypB. Gasper et al.

suggested that hydrolysis reaction of these G-proteins, which

undergo GTP-dependent dimerization, is coupled to interacting

with the effectors and/or other GTPase co-regulators [28]. There

is no experimental evidence demonstrating the role of effectors or

co-regulators in activating GTP hydrolysis of HypB. It is likely that

activation of HypB requires binding to its effector, hydrogenase.

Moreover, it has been showed that nickel insertion involved both

HypA and HypB [13,14,15,16,17,18,34]. From this point of view,

it is possible that HypA may serve as a co-regulator in activating

the GTP hydrolysis by HypB.

Figure 3. AfHypB can recognizes guanine nucleotide despite having a non-canonical NKxA G4-motif. (A) In MjHypB, the aspartate
residue of the NKxD motif serves as a hydrogen acceptor that form specific hydrogen bonds with the guanine N1 and N2 atoms. In AfHypB (green),
the aspartate residue in the canonical NKxD G4-motif is replaced by an alanine residue (Ala-165). The role of a hydrogen acceptor is fulfilled by a
nearby Asp-194 on the G5 loop that can form hydrogen bond to the N1 atom of the guanine base. (B–C) AfHypB specifically binds GDP and GTP but
not ADP. Binding of MANT-GDP (grey dashed line) to AfHypB resulted in an increase in fluorescence at wavelength 400–500 nm with excitation at
290 nm (black solid lines). Addition of excess GDP or GTP (grey solid lines) resulted in significant decreases of fluorescence, indicating both GDP and
GTP could competitively displace MANT-GDP from AfHypB. (D) On the other hand, addition of excess ADP (grey solid line) resulted in no significant
changes in fluorescence, indicating that AfHypB binds specifically to guanine nucleotide but not to adenine nucleotide.
doi:10.1371/journal.pone.0030547.g003

GTP-Dependent Dimerization of HypB
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How GTP-dependent dimerization plays a role in hydrogenase

maturation? One possibility is that dimerization of HypB creates

an extra metal binding site for nickel. It was observed that in the

crystal structure of MjHypB-GTPcS complex, two zinc atoms are

bound by three invariant residues Cys-95, His-96 and Cys-127 (we

call these residues the CHxnC-motif) situated at the dimeric

interface of HypB (Figure 7A) [27]. The CHxnC-motif has been

shown by mutagenesis studies to be essential for metal binding and

hydrogenase maturation [1,19,20]. Gasper et al. pointed out that

zinc atoms bound in site M2 (or its mirror site M3) in MjHypB

dimer via the CHxnC motif could be an artifact in protein crystal

preparation and these sites may bind nickel in native HypB dimer

[27]. Upon GTP-dependent dimerization, Cys-95 and Cys-127 on

each monomer come in close proximity and hence forming a new

site M1. We argue that this extra metal binding site at the HypB

dimeric interface is likely to bind nickel instead of zinc in the

native nickel delivery complex. This suggestion is supported by a

recent work of Sydor et al., which demonstrated that H. pylori

HypB dimerizes in the presence of nickel and the nickel-dependent

dimerization requires the CHxnC motif [29]. It is likely that nickel

binds to the M1 site at the interface and the extra interactions

formed promote the formation of HypB dimer.

Putting these together, a nickel delivery mechanism via GTP-

dependent dimerization of HypB is proposed (Figure 7B). GTP-

dependent dimerization facilitates nickel delivery to hydrogenase

by loading nickel to the metal-binding site at the dimeric interface.

Upon binding of GTP, the invariant lysine and aspartate residues

(K148 and D72 in AfHypB) at the dimeric interface form two

intermolecular salt bridges that bring the two copies of HypB

monomer together. HypB dimerizes and the extra metal binding

site M1 formed is loaded with nickel. The mechanism of nickel

loading is currently not known, but another nickel chaperone

HypA may play a role here. Although nickel contributes to the

stabilization of HypB dimer as observed by Sydor et al. [29], it is

expected at physiological conditions where both nickel and HypB

concentrations are much lower, dimerization of HypB would be

Figure 4. Binding of GTP to HypB causes conformational changes leading to HypB dimerization. (A) Surface representation of (i) apo-
AfHypB (ii) GTPcS-bound MjHypB. A GTP molecule is modeled into the apo-AfHypB for comparison. In apo-AfHypB, the invariant Asp-66 occupies the
c-phosphate binding pocket. Therefore, it is not possible for HypB to accommodate a GTP molecule in such conformation. The surface of the
invariant Asp is colored in orange. (B) Binding of GTPcS causes conformational changes in the switch I loop and helix-3. The movements of the
conserved residues Asp-66, Asp-72, and Arg-75 are indicated by arrows. Apo-AfHypB and GTPcS-MjHypB are colored cyan and white respectively. (C)
Binding of GTP causes swinging movement of helix-3 from the apo-conformation (cyan) to the GTP-bound state conformation (white). It causes Asp-
72 to move by 4.9 Å to the dimeric interface. This allows Asp-72 to form a salt bridge with Lys-148 on the opposite chain (yellow). In apo-form
conformation of HypB, the switch I loop blocks the site for Lys 148 insertion. All residues are numbered with reference to the sequence of AfHypB.
doi:10.1371/journal.pone.0030547.g004

GTP-Dependent Dimerization of HypB
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still GTP-dependent. GTP hydrolysis triggers HypB dimer

dissociation and the bound nickel is released and transferred to

the hydrogenase large subunit precursor.

The role of zinc in HypB dimerization and nickel delivery is

unclear. Interestingly, the M2 site in the monomeric HypB has a

higher affinity for zinc than nickel, suggesting that the site could be

occupied by zinc in the monomeric state [19]. Zinc binding as a

structural role has been observed in other related proteins. For

example, a similar metal-binding CxH motif is present in UreG, a

homolog of HypB that plays a role in urease maturation, where

zinc binding stabilizes the unstructured region near this site [35].

Besides, HypA also binds zinc with a zinc-finger like Cys4 motif

that stabilizes the structure of the zinc binding domain [36,37].

Zinc binding in HypB may serve a similar structural role to

maintain the conformation of the binding site. However, whether

zinc is present on HypB in its nickel loaded GTP-bound dimer

form is not known as HypB dimer in complex with both zinc and

nickel is not observed yet.

Materials and Methods

Recombinant Plasmid Construction
The hypB genes were amplified by PCR using A. fulgidus and E.

coli genomic DNA as templates, and were cloned into the

expression vector pRSETA-His-SUMO (an in-house expression

plasmid based on pRSETA (Invitrogen) with poly-His and

SUMO-protein fusion tags at the N-terminus) and pBAD-A

(Invitrogen) to create pRSET-His-SUMO-AfHypB and pBAD-

EcHypB. Both constructs were verified by DNA sequencing.

Primers used for PCR are listed in Table S1.

Figure 5. Substitutions of K148A disrupted GTP-dependent
dimerization of AfHypB, but has no significant effect on
guanine nucleotide binding and GTPase activity. (A) Molecular
weight of AfHypB K148A variant in the presence of 5 mM GDP (blue),
GMPPNP (green) or without nucleotides (red) were determined by SEC/
LS. (B) The dissociation constants of AfHypB and the K148A variants for
binding MANT-GDP and MANT-GMPPNP. (C) GTP hydrolysis rate in the
presence of AfHypB or K148A mutant were determined as free
phosphate release per hour (left). 0.2 mM of purified protein was
mixed with 2 mM GTP. The GTP hydrolysis rates of wild-type and K148A
AfHypB were found to be 0.04160.006 hr21 and 0.05160.008 hr21.
Error bars indicate the standard deviation of hydrolysis rate over three
independent experiments. The same experiment was repeated with
protein pre-incubated with equimolar of GDP (right). The GTP hydrolysis
rates of wild-type and K148A AfHypB pre-incubated with equimolar of
GDP were found to be 0.03960.008 hr21 and 0.04960.008 hr21. Pre-

incubation of GDP did not show significant effect to GTP hydrolysis
activity of AfHypB or the K148A variant.
doi:10.1371/journal.pone.0030547.g005

Figure 6. Mutation of the invariant lysine residue of E. coli HypB
blocked in vivo hydrogenase maturation. The DhypB strain was
transformed with the plasmids encoding wild-type EcHypB(WT), the
K224A mutant, or the empty vector control pBAD. The hydrogenase
activity of the lysates of these DhypB strains was compared relative to
that of the wild type E. coli strain.
doi:10.1371/journal.pone.0030547.g006
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HypB mutant construction by site-directed Mutagenesis
Variants of AfHypB and EcHypB were constructed by

QuikChange mutagenesis kit from Stratagene on wild type HypB

constructs pRSET-His-SUMO-AfHypB and pBAD-EcHypB to

generate pRSET-His-SUMO-AfHypB-K148A and pBAD-

EcHypB-K224A respectively. Mutagenesis was performed accord-

ing to the manufacturer’s instruction with the following modifi-

cations - Phusion (Finnzymes) was used to replace Pfu DNA

polymerase and the concentration of template plasmid was

increased from 10 ng to 100 ng. Mutants created and the primers

used are listed in Table S1. All constructs were verified by DNA

sequencing.

Protein Expression and purification
To express AfHypB, the pRSET-His-SUMO-AfHypB was

transformed to E. coli BL21 (DE3) pLysS host. The bacterial cells

were grown in LB medium supplemented with 100 mg/mL

ampicillin. Protein expression was induced by addition of

0.4 mM isopropyl-D-1-thiogalactopyranoside when OD600

reached 0.8. After 4 hours, the cells were harvested by

centrifugation at 5,0006 g, 15 min, 4uC. Cell pellets were stored

in 220uC freezer before use.

Cell pellet expressing His-SUMO-AfHypB from 1 L culture was

resuspended in 20 mL of lysis buffer (20 mM Tris-HCl pH 7.5

containing 500 mM NaCl, 50 mM imidazole and 1 mM TCEP),

and lysed by sonication. Cell debris was removed by centrifugation

at 120006 g for 30 min, and the supernatant was loaded onto a

5 mL HiTrapTM IMAC Column (GE Healthcare) charged with

Ni (II) ion. Column was pre-equilibrated with the lysis buffer. After

extensive washing with the lysis buffer, His-tagged protein was

eluted with 300 mM imidazole in lysis buffer. The His-SUMO tag

was cleaved by addition of 0.5 mg of His-tagged SUMO protease

per 1 L of culture. After dialysis in 20 mM Tris-HCl pH 7.5

containing 200 mM NaCl and 1 mM TCEP at 4uC overnight, the

fusion tag was removed by a second round of nickel affinity

chromatography. The IMAC column was washed with 20 mM

Tris-HCl pH 7.5, 0.2 M NaCl, 50 mM imidazole and 1 mM

TCEP, and the AfHypB protein was in the flow-through and

washing fractions. Protein sample was concentrated to 10 mg/mL,

and loaded onto a HiLoad 26/60 Superdex 75 column

equilibrated with 50 mM Tris-HCl buffer pH 7.5, 0.2 M NaCl

and 1 mM TCEP. Eluted fractions were analyzed by SDS-PAGE.

Purified AfHypB was eluted at elution volume of ,165 ml. Apo-

AfHypB was prepared by extensive dialysis in 50 mM Tris-HCl

Figure 7. Dimerization of HypB allows the formation of an extra metal binding site in the dimeric interface. (A) Schematic diagram of
metal binding sites in the crystal structure of dimeric MjHypB. Two zinc metal atoms were found in sites M1 and M2. M3 is the mirror site of M2 which
presumably exists in monomeric HypB. Note that the M1 is only formed after GTP-dependent dimerization of HypB. (B) A model on how GTP-
dependent dimerization may play a role in hydrogenase maturation. Upon binding of GTP, conformational changes of HypB lead to the formation of
HypB dimer stabilized by the intermolecular salt bridge via the invariant lysine and aspartate residues (Lys-148 and Asp-72 in AfHypB). Formation of
HypB dimer provides an extra metal binding site situated at the dimeric interface. Upon GTP hydrolysis, HypB dimer dissociates and the bound nickel
is delivered to the hydrogenase.
doi:10.1371/journal.pone.0030547.g007
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buffer pH 7.5, 0.2 M NaCl, 1 mM TCEP and 5 mM EDTA to

remove the bound magnesium and nucleotide. We showed that

EDTA can remove bound MANT-GDP from AfHypB (Figure

S4). After removal of EDTA by dialysis, the protein sample was

frozen in liquid nitrogen, and stored in 280uC freezer before use.

Crystallization and Data Collection
Protein sample of AfHypB was prepared in 20 mM Tris-HCl

buffer, pH 7.8, containing 200 mM NaCl, 5 mM MgCl2, and

5 mM TCEP and concentrated to 10–15 mg/mL. Crystals for

diffraction data collection were grown in 8% PEG 4000, 0.1 M

sodium acetate buffer at pH 4.6 using hanging-drop-vapor-

diffusion method. Cryo-protection was achieved by soaking the

crystals in mother liquor with 20% (v/v) (6)-2-Methyl-2,4-

pentanediol. Diffraction data were collected to 2.3 Å resolution

using an R-AXIS IV++ IP detector and Cu Ka X-rays generated

by a Rigaku MicroMax-007 rotating anode generator, and were

integrated, merged, and scaled using the programs MOSFLM

[38], SCALA [39] and TRUNCATE [40] in the CCP4 suite [41].

The phase was solved by molecular replacement using the

structure of GTPcS-bound HypB from M. jannaschii (PDB code:

2HF8) as template with the program MOLREP [42]. The model

was built interactively using the program COOT [43], and refined

by the program REFMAC [44]. There are two molecules of

AfHypB in the asymmetric unit. No restraints on the non-

crystallographic symmetry were imposed during refinement. Data

collection and processing statistics are given in Table 1. Simulated

annealing omit map was generated to show the electron density of

the refined structure (figure S5). All figures of protein structures in

this work were generated using the program PyMol (http://www.

pymol.org).

GTP-dependent dimerization study
The molecular weight of AfHypB was determined using size-

exclusion chromatography (SEC) coupled with multiple-angle light

scattering (SEC/LS). Protein samples (100 mL at 3 mg/mL) in the

absence or in the presence of 1 mM GDP or GMPPNP were

loaded onto a Superdex-75 HR10/30 column (GE Healthcare)

pre-equilibrated with 50 mM Tris pH 7.5, 0.1 M NaCl, 5 mM

MgCl2 and 1 mM TCEP, and eluted at room temperature at a

flow rate of 0.5 mL/min. The column was connected downstream

to a multiple-angle laser light scattering Mini-DAWN light

scattering detector (Wyatt Technology). Data were analyzed using

Astra version 5.3.4.18.

Nucleotide binding affinity assay
The affinity of AfHypB towards guanine nucleotide was

determined using fluorescence resonance energy transfer (FRET)

between the tryptophan residues and the bound 29-(or-39)-O-(N-

methylanthraniloyl) (MANT) nucleotide analogue. 0.05 mM

MANT-GDP or 1.33 mM MANT-GMPPNP was incubated with

10 nM - 13 mM of AfHypB or AfHypB-K148A variant in 50 mM

Tris pH 7.5, 0.2 M NaCl and 5 mM MgCl2 buffer. After

30 minutes incubation at 4uC. Emission spectra were collected

using a Tecan Inifinite 200 Pro plate reader with excitation

wavelength at 290 nm. Dissociation constant (Kd) of HypB

towards nucleotide was determined as described by Ahmadian

et al. [45]. Data fitting was performed using the program Prism

(GraphPad Software, Inc.).

GTPase activity determination
0.2 mM of AfHypB and AfHypB-K148A was incubated with

2 mM of GTP at 37uC and the release of free phosphate of the

mixture was monitored hourly by determining the free phosphate

concentration in the sample using the ammonium molybdate

method as described by Gawronski and Benson, 2004 [46].

Hydrogenase activity assay
Hydrogenase reactivation from crude cell extract was measured

by a modified method based on the procedures of Ballantine and

Boxer [47] and Zhang et al. [48]. E. coli HypB deletion strain (F2,

D(araD-araB)567, DlacZ4787 (::rrnB-3), &lambda2, DhypB731::-

kan, rph-1, D(rhaD-rhaB)568, hsdR514) was obtained from the

Keio collection, E. coli Genetic Stock Center [49], and was

transformed with the wild-type pBAD-EcHypB or its mutants,

pBAD-EcHypB-K224A. The DhypB genotype and the pBAD-

EcHypB plasmid were selected by 50 mg/ml kanamycin and

100 mg/ml ampicillin. Starter culture was grown from single

colonies in LB medium at 37uC. After 2% (v/v) inoculation, the E.

coli cells were grown anaerobically using 50 mL sealed plastic

tubes in buffered TGYEP medium (10 g/L tryptone, 5 g/L yeast

extract, 0.8% glycerol, 69 mM K2HPO4, and 22 mM KH2PO4)

supplemented with 15 mM sodium fumarate, 1 mM sodium

molybdate, and 1 mM sodium selenite for 16 hours. The

expression was induced by adding 1 mM arabinose. Cells were

harvested by centrifugation and washed with 50 mM potassium

phosphate buffer, pH 7.0, and resuspended in the same buffer

containing 1 mM dithiothreitol and 0.2 mM phenylmethylsulfonyl

fluoride. Crude cell extracts were prepared by sonication and

subsequent centrifugation at 13,0006 g for 30 min at 4uC. The

protein concentrations of crude cell extracts were determined by

the Bradford protein assay (BioRad) using bovine serum albumin

as standard.

Total hydrogenase activity of the crude cell extracts was

measured by hydrogen-dependent reduction of benzyl viologen

[47]. Reactions were prepared in a septum-sealed cuvette. Sealed

cuvette containing 2.5 mL of 50 mM potassium phosphate,

pH 7.0 was degassed thoroughly by vacuum pump followed by

bubbling with 95% N2 and 5% H2 for 15 minutes. 200 mL

solution of 0.05% (w/v) sodium dithiolate was injected into the

cuvette to remove the remaining oxidative species. To start a

reaction, 300 mL of degassed diluted crude cell extract (at 0.2 mg/

mL of total protein) was injected into the cuvette. The initial

OD600 should be in the range of 0.2–0.5 to ensure there was no

remaining oxidative species in the reaction. OD600 was

monitored at 25uC for 15 minutes. The amount of benzyl

viologen reduced was quantified by changes in OD600 using the

extinction coefficient of 7400 M21. Hydrogenase activity was

measured as nanomol of benzyl viologen reduced per min per mg

of total protein. Activity measurement of each condition was

repeated for three times in individual experiment. Hydrogenase

activity of the wild type hypB parental strain E. coli (F-, D(araD-

araB)567, DlacZ4787(::rrnB-3), &lambda2, rph-1, D(rhaD-

rhaB)568, hsdR514) transformed with pBAD-A was measured

along with each batch of reaction as positive control and relative

standard.

Supporting Information

Figure S1 Switch I region accounts for the major
structural change between apo-form HypB and GTPcS-
bound HypB. (A) A. fulgidus HypB in apo-form (cyan)

(PDB:2WSM) and M. jannaschii HypB in GTPcS-bound form

(white) (PDB: 2HF8) are superimposable. (B) Ca atom displace-

ment of apo-AfHypB and MjHypB-GTPcS. Major structural

difference between the two forms is found in helix 3 and the

flanking loops (residue 65–81), where switch I is located. On the
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contrary, switch II (residue 115–131) shows small structural

change. (C) Sequence Logo representation of residues in the

switch I region. After removal of 90% redundancy, HypB

sequences from 68 species retrieved from NCBI non-redundant

database were aligned. The alignment was sent to the WE-

BLOGO server to create the sequence logo representation. Note

that residues Asp-66, Asp-72 and Arg-75 are highly conserved.

(TIF)

Figure S2 Dissociation constants of AfHypB and the
K148A variant for binding guanine nucleotides were
determined by titration experiment. MANT-labeled nucle-

otide analogues were titrated into AfHypB and the K148A variant.

The dissociation constants were determined by fitting the

fluorescence emission against the ligand titrated as described in

the Methods and Materials.

(TIF)

Figure S3 GTPase activity of AfhypB was not signifi-
cantly altered by K148A mutation. GTPase activity of

AfHypB and AfHypB K148A with enzyme-free negative control

measured as free phosphate release from GTP in 50 mL reaction

mix. (A) Reactions were performed in triplicate with 200 mM

HypB or mutant and 2 mM GTP at 37uC. Free phosphate

concentration was determined hourly from zero to eight hours. (B)

The hydrolysis activity assay was repeated with HypB pre-

incubated with equimolar of GDP.

(TIF)

Figure S4 Binding of guanine nucleotide to HypB
requires magnesium. 1 mM of AfHypB was mixed with

1 mM of MANT-GDP and the fluorescence emission spectrum

with excitation 290 nm of AfHypB in complex with MANT-GDP

in 50 mM Tris pH 7.5, 0.2 M NaCl, 10 mM MgCl2 was measured

(black solid line). Fluorescence emission in the range 400–500 nm

dropped significantly when 5 mM EDTA was included in the

buffer mixture (grey), showing that reducing the availability of

magnesium with EDTA inhibit binding of guanine nucleotide to

AfHypB. Base fluorescence of MANT-GDP with EDTA and

buffer alone was also measured (dashed line).

(TIF)

Figure S5 Simulated annealing omit map of the crystal
structure of AfHypB. A simulated omit map of the crystal

structure of AfHypB was generated. The core region between

helix-2, helix-11 and central beta sheet at map contour 1.5 sigma

was shown.

(TIF)

Table S1 DNA primers used to create clones. The

pRSET-His-SUMO vector is a home-made vector by inserting a

SUMO tag into pRSET-A (Invitrogen). For restriction enzymes

and ligation cloning, the restriction sites in the primer are

underlined and the sequences that prime to the hypB sequences

encoding the desired HypB proteins are in upper case letters. For

Quikchange mutagenesis, the mismatching bases are in lower case

letters.

(DOC)
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