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Abstract

Motivation: Accurate identification of peptides binding to specific Major Histocompatibility Complex Class II (MHC-II)
molecules is of great importance for elucidating the underlying mechanism of immune recognition, as well as for
developing effective epitope-based vaccines and promising immunotherapies for many severe diseases. Due to extreme
polymorphism of MHC-II alleles and the high cost of biochemical experiments, the development of computational methods
for accurate prediction of binding peptides of MHC-II molecules, particularly for the ones with few or no experimental data,
has become a topic of increasing interest. TEPITOPE is a well-used computational approach because of its good
interpretability and relatively high performance. However, TEPITOPE can be applied to only 51 out of over 700 known HLA
DR molecules.

Method: We have developed a new method, called TEPITOPEpan, by extrapolating from the binding specificities of HLA DR
molecules characterized by TEPITOPE to those uncharacterized. First, each HLA-DR binding pocket is represented by amino
acid residues that have close contact with the corresponding peptide binding core residues. Then the pocket similarity
between two HLA-DR molecules is calculated as the sequence similarity of the residues. Finally, for an uncharacterized HLA-
DR molecule, the binding specificity of each pocket is computed as a weighted average in pocket binding specificities over
HLA-DR molecules characterized by TEPITOPE.

Result: The performance of TEPITOPEpan has been extensively evaluated using various data sets from different viewpoints:
predicting MHC binding peptides, identifying HLA ligands and T-cell epitopes and recognizing binding cores. Among the
four state-of-the-art competing pan-specific methods, for predicting binding specificities of unknown HLA-DR molecules,
TEPITOPEpan was roughly the second best method next to NETMHCIIpan-2.0. Additionally, TEPITOPEpan achieved the best
performance in recognizing binding cores. We further analyzed the motifs detected by TEPITOPEpan, examining the
corresponding literature of immunology. Its online server and PSSMs therein are available at http://www.biokdd.fudan.edu.
cn/Service/TEPITOPEpan/.
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Introduction

Major histocompatibility complex (MHC) molecules play a

crucial role in the adaptive immune system mediated by T cells

[1], in which peptide fragments derived from pathogens first bind

to MHC molecules and are then presented on the surface of a cell

for recognition by T cell receptor (TCR). This process enables the

immune system to detect the presence of foreign pathogens, and

thus induce the immune response to eliminate invading pathogens.

Accurate identification of peptides that bind to specific MHC

molecules is therefore of great importance for the following points:

1) understanding the underlying mechanism of immune recogni-

tion; 2) developing effective peptide-based vaccines against

infectious diseases; and 3) promising immunotherapies for allergy,

autoimmunity, and cancers [2]. In contrast to biochemical

experiments that takes lots of expenses and time, computational

approaches for predicting MHC binding peptides have received

extensive attentions [3,4]. They have been utilized to select a small

number of promising candidate epitopes for further experimental

verification [5].

According to their different roles in the immune system, MHC

molecules can be divided into two major classes: MHC class I

(MHC-I) and MHC class II (MHC-II). MHC-I molecules sample

and bind intracellular antigenic peptides (normally nine amino

acids), and present them to cytotoxic T lymphocytes (CTL) to

stimulate cellular immunity, while MHC-II molecules sample and
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bind extracellular antigenic peptides (typically 11-20 amino acids),

which are presented to helper T lymphocytes [1]. An MHC

molecule has the binding groove of nine pockets (or polymorphic

cavities), while a binding peptide has a binding core, usually a

nonamer, fitted to the binding groove, where one residue of the

binding core corresponds to one pocket. The binding groove of

MHC-I is closed at both ends, whereas that of MHC-II is open at

both ends, which leads to the flexibility in the length and binding

core location of MHC-II binding peptide. This difference makes

the problem of predicting peptides binding to MHC-II more

challenging than that to MHC-I [6–9]. In fact, the current state-

of-the-art performance of this problem for MHC-I reaches an

AUC (Area Under the ROC Curve) of between 0.85 and 0.95,

whereas the AUC of the same problem for MHC-II stays roughly

between 0.70 and 0.85 [10]. In this work, we focus on predicting

MHC-II binding peptides, a more challenging problem.

MHC molecules are highly polymorphic, and there are

thousands of MHC allelic variants. For human beings, MHC is

known as Human Leukocyte Antigens (HLA), which involves three

types of HLA class II molecules: DP, DQ and DR [1]. By June

2011, up to 1457 HLA class II alleles are collected in IMGT/HLA

[11]. Each HLA-II molecule consists of two types of domains, a (A)

and b (B). For example, the most widely studied HLA-DR

molecules have DRA and DRB, corresponding to a and b domains,

respectively. While DRB is diverse, DRA is almost identical, by

which the binding specificities of DR molecules are mainly

determined by DRB. Thus, hereafter, the binding specificity of a

DRB allele indicates that of the corresponding HLA-DR.

Each MHC molecule has its own binding specificity, meaning

that a set of peptides binding to an MHC molecule can be

different from those to another MHC molecule. Thus, conven-

tional prediction models are allele-specific, where for a target

MHC-II molecule, a model is trained by peptide sequences

binding to this molecule to predict the specificity of an arbitrary

given peptide [12–17]. In general they need 100–200 quantitative

peptide-binding measurements for each target molecule [14].

However, the number of MHC-II molecules which can have a

large number of binding peptides is very small. For example,

IEDB (Jun. 2011), the largest database of MHC binding peptides

[18], contains only around 30 HLA-II molecules for which a few

hundred peptides have experimentally measured binding affinity.

This means that overwhelmingly most MHC-II molecules have

very few or even no binding data, which cannot be handled by

allele-specific methods. To address this problem, so-called pan-

specific methods which can predict the specificity of peptides

binding to MHC molecules with almost no binders have been

developed first for MHC-I [19] and then for MHC-II [20]. These

pan-specific methods take into account both peptide sequences

and MHC-peptide contact, which is represented by MHC residues

being in contact with each binding peptide. The pioneering pan-

specific method for HLA-I is MULTIPRED [21], which shares

binding data within HLA-I supertype (a group of MHC molecules

sharing similar binding specificities [22]) and trained supertype-

specific models to cover many HLA-I molecules.

The first pan-specific method for MHC-II molecules is

TEPITOPE, which uses position specific scoring matrix (PSSM)

[23]. TEPITOPE generates 51 PSSMs, which cover 51 different

HLA-DR alleles. These PSSMs are derived from 11 HLA DRB

alleles: DRB1*01:01, DRB1*03:01, DRB1*04:01, DRB1*04:02,

DRB1*04:04, DRB*07:01, DRB1*08:01, DRB1*11:01, DRB1*

13:02, DRB1*15:01 and DRB5*01:01 (the alleles in this paper are

represented in current HLA allele nomenclature [24]). There are

other five pan-specific methods: MHCIIMulti [25], NetMHCII-

pan-1.0 [26], NetMHCIIpan-2.0 [27], MultiRTA [28] and SIADT

(Shift Invariant Adaptive Double Threading) [29]. MHCIIMulti is a

kernel based method, in which the binding specificity of a target

MHC with no binding data can be predicted by using binding data

of related MHC alleles. Both NetMHCIIpan-1.0 and NetMHCII-

pan-2.0 use ANN (Artificial Neural Network) with co-encoding of

both binding peptides and pocket sequences of MHC-II molecules

as input. The difference between NetMHCIIpan-1.0 and NetMH-

CIIpan-2.0 lies in the identification of the peptide binding core. In

NetMHCIIpan-1.0, the core is pre-identified using SMM-align

[14], whereas in NetMHCIIpan-2.0, the identification of binding

core and training weights of ANN are both done in the ANN

learning process. MultiRTA considers all possible peptide binding

core configurations, and the MHC-peptide binding affinity is

computed as a weighted average over the binding affinities of all

possible configurations. SIADT is based on threading, which has

been used for predicting protein 3D structure. Note that all these

methods except SIADT have publicly available implementations.

Although TEPITOPE is not necessarily the best in performance

among them, TEPITOPE can provide prediction rules which could

be easily understood, and thus TEPITOPE has earned wide

popularity among biologists [10]. However, a drawback of

TEPITOPE is that only 51 DR molecules are covered out of over

700 known DR molecules, which greatly limits its usability.

To overcome this problem, keeping the advantage of TEPI-

TOPE in rule comprehensibility, we propose a new method,

TEPITOPEpan, which can extrapolate from the HLA-DR

molecules with known binding specificities (PSSMs) in TEPI-

TOPE to the HLA-DR molecules with unknown binding

specificities based on pocket similarity. The procedure of

TEPITOPEpan for a target HLA is as follows: using the MHC-

II HLA-peptide complex structure in Protein Data Bank (PDB),

pockets are first represented by the polymorphic residues that have

close contact with one or more residues of binding core. Then the

pocket similarity between two HLA molecules is computed by the

sequence similarity of the corresponding HLA residues. For an

uncharacterized HLA-DR molecule, the binding specificity of

each pocket was computed as a weighted average of pocket

binding specificities over HLA-DR molecules characterized by

TEPITOPE. The idea of TEPITOPEpan comes from PickPocket

[30], a pan-specific method for MHC-I, which also derived the

binding specificities (PSSM) of a novel MHC molecule from a

library of specificity matrices (PSSMs). A clear difference between

TEPITOPEpan and PickPocket is that TEPITOPEpan uses the

library of specificity matrices obtained in TEPITOPE, while

PickPocket generates that from binding data directly.

We evaluated the performance of TEPITOPEpan extensively

using a variety of datasets, assuming different types of settings, and

comparing with the state-of-the-art pan-specific methods. We are

especially interested in the performance on uncharaterized MHC

molecules, which is the main target of pan-specific methods.

Experimental results showed that, for predicting the binding

specificities of novel HLA DR molecules, TEPITOPEpan achieved

roughly the second best performance next to NetMHCIIpan-2.0,

which however cannot show any comprehensible rules. In

particular, TEPITOPEpan outperformed competing methods on

predicting the location of the binding core. We further checked the

obtained rules of TEPITOPEpan by using sequence logos, which

showed that primary anchors are well consistent with the literature.

Materials and Methods

Data
We generated eight datasets: Nielsen-Set1, Nielsen-Set2, Lin-

Set3, Epan-Set4, Bordner-Set5, SYF-Set6, EIEDB-Set7 and
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EpanCore-Set8. They include various types of peptides, such as

MHC binding peptides, endogenously presented MHC ligands, T-

cell epitopes, and those obtained from HLA-peptide complexes.

We used Nielsen-Set1 to select suitable parameters in TEPITO-

PEpan, while the remaining seven were used for extensive

evaluation, such as comparison with the state-of-the-art pan-

specific methods, including NetMHCIIpan-2.0, NetMHCIIpan-

1.0 and MultiRTA.

Nielsen-Set1 which was obtained from [14] has 4,603

peptides with quantitative binding measures covering 14 HLA-

DR alleles.

Nielsen-Set2 was from [27] and comprises 33,931 binding

peptides of 24 HLA-DRB alleles.

Lin-Set3 has 103 overlapping peptides for each of 7 common

HLA-DR alleles that were derived from four distinct antigens [9].

Lin-Set3 was downloaded from Dana-Farber Repository for

Machine Learning in Immunology (DFRMLI) [31].

Epan-Set4 has 2,412 peptides associated with 14 novel HLA-

DRB alleles (including 2 alleles in Nielsen-Set2 though). Epan-Set4

was generated by us for assessing the predictive performance of

competing methods for new alleles, as follows: We first focused on

HLA-DRB alleles which were not in the 14 alleles of Nielsen-Set1

and the 11 alleles for TEPITOPE. We then retrieved peptides

binding to these HLA-DRB alleles from IEDB (Mar. 2011) [18].

We, for the two alleles (DRB1*03:02 and DRB1*12:01) in Nielsen-

Set2, discarded peptides sharing at least nine consecutive residues

with a peptide binding to either of the two alleles in Nielsen-Set2.

Finally, we kept HLA-DRB alleles with more than 40 peptides, to

remove datasets with a small size. Epan-Set4 can be downloaded

from TEPITOPEpan website.

Bordner-Set5 was taken from [28] and has 127 peptides

restricted to HLA-DRB1*13:01. Note that Bordner-Set5 is a

subset of peptides binding to HLA-DRB1*13:01 in Epan-Set4.

SYF-Set6 has 1,164 ligands restricted to 28 HLA-DR alleles,

from SYFPEITHI (Nov. 2009) [32].

EIEDB-Set7 comprises 1,325 T-cell epitopes restricted to 42

HLA-DR alleles, being retrieved from IEDB (Jun. 2010) [18].

SYF-Set6 as well as EIEDB-Set7 were prepared to evaluate the

competing methods by using HLA-II ligands and T-cell epitopes.

SYF-Set6 and EIEDB-Set7 are two datasets in [27]. In these two

datasets, all ligands and epitopes in Nielsen-Set2 were eliminated.

EpanCore-Set8 has 20 distinct 3D complex structures of

peptide binding to 7 HLA-DR molecules that have known binding

cores and are obtained from PDB, 15 of which are taken from

[16]. EpanCore-Set8 was used to evaluate TEPITOPEpan in

terms of identifying the peptide binding core.

Method
TEPITOPE has a library of 11 PSSMs. One PSSM is a 2069

matrix where nine binding specificity vectors correspond to nine

pockets. Each of the 11 PSSMs corresponds to one of 11 known

DRB alleles. TEPITOPEpan uses this library to generate a PSSM

for an arbitrary HLA-DRB allele. In a generated PSSM, each

vector is a weighted average of binding specificity vectors of the

corresponding pocket over 11 DRB alleles. The weight can be

computed by pocket sequence similarity. Thus the assumption

behind TEPITOPEpan is that different alleles have similar

binding preferences for one pocket (e.g. P1) if their MHC amino

acids for the pocket are similar. The procedure of TEPITOPEpan

has the following three steps:

Step 1: Generating pseudosequences of MHC binding

pockets. We first represent MHC binding pockets by using the

3D structure of MHC-II HLA-peptide complexes. Table 1 shows

32 HLA-peptide complexes which are retrieved from PDB. Note

that Table 1 is the largest set of HLA-peptide complexes ever used

in the literature. Each binding peptide of the 32 complexes has

nine core residues (being in bold in Table 1), which are

accommodated in 9 pockets labeled by P1, . . ., P9. We can then

represent each pocket by several MHC residues, which we call

‘‘contact residues’’, which are in contact with the corresponding

(binding core) residue. Here for each binding core residue we

define a MHC residue as a contact residue if the distance between

these two residues is within 4A [30]. MHC sequences are retrieved

from IMGT/HLA and then aligned. For each of the 32

complexes, we extract contact residues for each pocket (shown in

Table S1), and then, for each pocket, use a union of contact

residues over 32 complexes. Table 2 shows positions of contact

residues for each pocket. We can generate a pseudosequence of

each pocket for any HLA-DR allele by using a sequence of amino

acids at the positions of the corresponding pocket in Table 2.

Table 1. Available X-ray structures of MHC class II HLA-
peptide complexe.

PDB ID HLA Allele Peptide Sequence

1AQD DRB1*01:01 VGSDWRFLRGYHQYA

1PYW DRB1*01:01 XFVKQNAAALX

1KLG DRB1*01:01 GELIGILNAAKVPAD

2FSE DRB1*01:01 AGFKGEQGPKGEPG

1KLU DRB1*01:01 GELIGTLNAAKVPAD

1SJH DRB1*01:01 PEVIPMFSALSEG

1SJE DRB1*01:01 PEVIPMFSALSEG

1T5W DRB1*01:01 AAYSDQATPLLLSPR

1T5X DRB1*01:01 AAYSDQATPLLLSPR

2IAN DRB1*01:01 GELIGTLNAAKVPAD

2IAM DRB1*01:01 GELIGILNAAKVPAD

2IPK DRB1*01:01 XPKWVKQNTLKLAT

1FYT DRB1*01:01 PKYVKQNTLKLAT

1R5I DRB1*01:01 PKYVKQNTLKLAT

1HXY DRB1*01:01 PKYVKQNTLKLAT

1JWM DRB1*01:01 PKYVKQNTLKLAT

1JWS DRB1*01:01 PKYVKQNTLKLAT

1JWU DRB1*01:01 PKYVKQNTLKLAT

1LO5 DRB1*01:01 PKYVKQNTLKLAT

2ICW DRB1*01:01 PKYVKQNTLKLAT

2OJE DRB1*01:01 PKYVKQNTLKLAT

2G9H DRB1*01:01 PKYVKQNTLKLAT

1A6A DRB1*03:01 PVSKMRMATPLLMQA

1J8H DRB1*04:01 PKYVKQNTLKLAT

2SEB DRB1*04:01 AYMRADAAAGGA

1BX2 DRB1*15:01 ENPVVHFFKNIVTPR

1YMM DRB1*15:01 ENPVVHFFKNIVTPRGGSGGGGG

2Q6W DRB3*01:01 AWRSDEALPLGS

3C5J DRB3*02:01 QVIILNHPGQISA

1FV1 DRB5*01:01 NPVVHFFKNIVTPRTPPPSQ

1H15 DRB5*01:01 GGVYHFVKKHVHES

1ZGL DRB5*01:01 VHFFKNIVTPRTPGG

The table shows complex structures retrieved from PDB. The columns in the
table give PDB ID, HLA-DR restriction and bound peptide (binding core
highlighted in bold).
doi:10.1371/journal.pone.0030483.t001
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Step 2: Computing the pocket similarity and weight

between alleles. We compute the similarity between two

pseudosequences (of query allele q and allele l in the library of

TEPITOPE) using the approach proposed in PickPocket [30].

Assuming that pocket p has n positions, for pocket p, from two

pseudosequence sq,p(~sq,p(1) . . . sq,p(n)) of query allele q and

pseudosequence sl,p(~sl,p(1) . . . sl,p(n)) of allele l, we can first

compute similarity value Blosump(q,l) at pocket p by just summing

up over the similarities of all positions.

Blosump(q,l)~
Xn

i~1

Blosum62(sq,p(i),sl,p(i)), ð1Þ

where Blosum62(sq,p(i),sl,p(i)) is the Blosum62 similarity score

between two amino acids, sq,p(i) and sl,p(i). We then have the

normalized similarity Sp(q,l) at pocket p as follows:

Sp(q,l)~maxf0,
Blosump(q,l)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Blosump(q,q) � Blosump(l,l)
p g ð2Þ

where Sp(q,l) is 1 for two identical pseudosequences and 0 for

totally distinctive pseudosequences. We can then compute the

weight wp(ljq) between q and l at pocket p, by using Sp(q,l) as

follows:

wp(ljq)~
Sp(q,l)a

P
k

Sp(q,k)a ð3Þ

where k takes over 11 DRB alleles in the library of TEPITOPE, a
is the parameter taking a positive value only, which adjusts the

contribution of alleles. A larger a will assign lower weights to

dissimilar alleles, by which similar alleles will be pronounced more.

Step 3: Computing PSSM. For each pocket p, allele l in the

library has binding specificity vector vp(l) (i.e. p-th column of

PSSM). We then compute binding specificity vector vp(q) of query

allele q by using vp(l) and wp(ljq) as a weighted average over all

alleles in the library as follows:

vp(q)~
X

l

wp(ljq)vp(l) ð4Þ

Finally we can have PSSM M(q) for query MHC allele q

naturally as follows:

M(q)~(v1(q) . . . v9(q)) ð5Þ

In this manner, we can generate a PSSM matrix for each of over

700 HLA-DR alleles with known sequences by considering each

allele as a query allele. Note that actually we used only 35 pockets

(vectors) in total of 11 HLA-DR alleles, instead of all 99 ( = 9

pockets|11 alleles) pockets. This is because that pockets 5 and 8

are not used in the PSSMs of TEPITOPE, and some alleles share

identical binding specificities on some pockets.

Results

We first used Nielsen-Set1 to determine the value of a and then

used the other seven datasets to compare the performance of

TEPITOPEpan with those of NetMHCIIpan-2.0, NetMHCII-

pan-1.0, MultiRTA and TEPITOPE. We obtained results of

NetMHCIIpan-2.0 and NetMHCIIpan-1.0 by running their freely

available packages and those of MultiRTA from the outputs of the

web server of MultiRTA (http://bordnerlab.org/MultiRTA). We

used AUC (Area under the ROC (Receiver Operator Character-

istic) Curve) to measure the performance. We further used the

one-tailed per-allele binomial test (excluding ties) to examine

statistical significance of the performance difference between two

methods, regarding those with p-values of less than 0.05 as

significant cases.

Determining a
Table 3 shows the AUC of TEPITOPEpan on Nielsen-Set1

with different a, which was set from 1 to 50. Note that for each

value of a, we adopted the same value for all HLA-DRB alleles. In

this table, 1-KNN means the result of using only the most similar

pocket specificity vector in the library of TEPITOPE. We

observed that TEPITOPEpan performs better under a of 5 to

30, reaching the best average AUC of 0.739 in cases of a~5 or 10.

Table 3 shows that TEPITOPEpan performs better with a~10
than with a~5 in 8 of the total 14 alleles. In addition

TEPITOPEpan with a~10 performed better than 1-KNN, being

statistically significant (binomial test, p-valuev0.05) and outper-

formed TEPITOPE in 8 out of 11 alleles covered by TEPITOPE.

We thus keep a~10 throughout all other experiments in this work.

Evaluation by Nielsen-Set2
Table 4 shows the comparison result on 10 alleles in Nielsen-

Set2 (which has 24 HLA-DRB alleles, but peptide data of the

other 14 alleles are significantly overlapped with training data of

NetMHCIIpan-1.0 and MultiRTA). This table shows that

TEPITOPEpan was the second best method with an average

AUC of 0.763. In fact TEPITOPEpan outperformed MultiRTA

in all 10 alleles and NetMHCIIpan-1.0 in 9 out of 10 alleles, both

being statistically significant (binomial test, p-valueƒ0.01). We

note that the results of the best method, i.e. NetMHCIIpan-2.0,

are not necessarily comparable, since exceptionally they are

directly taken from [27], in which results were obtained by using

LOO (Leave-one-allele-out, where the binding data of the other

23 alleles were used for training and the remaining one for testing).

This means that the AUC of NetMHCIIpan-2.0 will be much

lower if trained by 14 common alleles only, like NetMHCIIpan-

1.0 and MutliRTA. Further note that TEPITOPEpan is robust,

being unaffected by training data.

Table 2. The HLA-DR amino acid residue positions of each
pockets in TEPITOPEpan profile.

Pocket Residue positions

P1 82 85 86 89

P2 77 78 81 82

P3 78

P4 11 13 26 28 70 71 74 78

P5 11 13 28 70 71 74

P6 11 13 28 30 61 71

P7 11 28 30 47 61 67 70 71

P8 60 61

P9 9 30 37 57 60 61

The first column gives nine pockets (P1 to P9). The second column shows
corresponding residue positions in contact with each pocket.
doi:10.1371/journal.pone.0030483.t002

TEPITOPEpan: Pan-Specific Extension of TEPITOPE

PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e30483



Evaluation by Lin-Set3
Table 5 shows the comparison result on 7 HLA-DRB alleles in

Lin-Set3. TEPITOPEpan achieved the comparable accuracy with

TEPITOPE as well as NetMHCIIpan-1.0 and MultiRTA.

Specifically, TEPITOPEpan outperformed TEPITOPE in 5 out

of 7 alleles (with one tie), and outperformed both NetMHCIIpan-

1.0 and MulitRTA in 4 out of 7 alleles.

Evaluation by Epan-Set4
Table 6 shows the comparison result on Epan-Set4, which is our

original, well-qualified dataset. Again TEPITOPEpan performed

the second best, next to NetMHCIIpan-2.0, on average, and

outperformed TEPITOPE, MultiRTA and NetMHCIIpan-1.0.

Concretely, out of 14 alleles, TEPITOPEpan outperformed

MultiRTA in 9, NetMHCIIpan-1.0 in 7, and NetMHCIIpan-

2.0 in 6 alleles, which are all in 12 alleles not covered by Nielsen-

Set2.

Evaluation by Bordner-Set5
The comparison result on Bordner-Set5 (HLA-DRB1*13:01)

shows that TEPITOPEpan achieved the highest AUC value of

0.833, being followed by MutliRTA (AUC of 0.761), NetMHCII-

pan-1.0 (AUC of 0.719) and NetMHCIIpan-2.0 (AUC of 0.690).

Evaluation by Peptide Binding Motifs
We explored the difference of four competing methods:

TEPITOPEpan, MultiRTA, NetMHCIIpan-1.0 and NetMHCII-

pan-2.0, by visualizing binding motifs of alleles as sequence logos

[33], using the following procedure: We first generated 100,000

peptides from SWISS-PROT randomly. Then, for each of the

Table 3. Performance of TEPITOPEpan with different alphas in terms of AUC.

Allele Count a~1 a~2 a~3 a~5 a~10 a~20 a~30 a~50 1-KNN TEPITOPE

DRB1*01:01 1203 0.622 0.635 0.642 0.648 0.651 0.650 0.650 0.650 0.650 0.650

DRB1*03:01 474 0.591 0.639 0.689 0.724 0.733 0.729 0.728 0.728 0.729 0.727

DRB1*04:01 457 0.745 0.757 0.764 0.771 0.773 0.767 0.764 0.759 0.756 0.756

DRB1*04:04 168 0.819 0.832 0.836 0.842 0.844 0.843 0.841 0.839 0.838 0.837

DRB1*04:05 171 0.748 0.762 0.770 0.783 0.792 0.794 0.799 0.798 0.795 0.795

DRB1*07:01 310 0.753 0.772 0.773 0.770 0.767 0.767 0.767 0.767 0.766 0.766

DRB1*08:02 174 0.771 0.781 0.793 0.797 0.794 0.792 0.791 0.790 0.790 0.788

DRB1*09:01 117 0.731 0.724 0.715 0.702 0.696 0.689 0.688 0.689 0.686 0.644

DRB1*11:01 359 0.691 0.699 0.704 0.707 0.714 0.721 0.723 0.723 0.723 0.723

DRB1*13:02 179 0.725 0.735 0.744 0.745 0.743 0.736 0.735 0.735 0.736 0.737

DRB1*15:01 365 0.717 0.727 0.734 0.735 0.731 0.731 0.730 0.730 0.730 0.730

DRB3*01:01 102 0.640 0.700 0.734 0.754 0.731 0.707 0.700 0.663 0.606 0.673

DRB4*01:01 181 0.698 0.705 0.714 0.725 0.731 0.741 0.742 0.743 0.744 0.718

DRB5*01:01 343 0.626 0.638 0.644 0.645 0.651 0.652 0.651 0.651 0.651 0.652

Average 4603 0.706 0.722 0.732 0.739 0.739 0.737 0.737 0.733 0.729 0.728

The highest value in each row of columns for a is highlighted in bold. 1-KNN means the result of using only specificity vector(s) in the library with highest similarity to
derive PSSM.
doi:10.1371/journal.pone.0030483.t003

Table 4. AUC on Nielsen-Set2.

Allele Count Binder NetMHCIIpan2.0 NetMHCIIpan-1.0 MultiRTA TEPITOPE TEPITOPEpan

DRB1*03:02 148 44 0.759 0.688 0.549 0.602

DRB1*08:06 118 91 0.902 0.703 0.652 0.870 0.886

DRB1*08:13 1370 455 0.666 0.763 0.712 0.746 0.768

DRB1*08:19 116 54 0.813 0.677 0.630 0.714

DRB1*12:01 117 81 0.798 0.587 0.620 0.832

DRB1*12:02 117 79 0.879 0.660 0.663 0.842

DRB1*14:02 118 78 0.846 0.713 0.672 0.725

DRB1*14:04 30 16 0.679 0.571 0.563 0.683

DRB1*14:12 116 63 0.897 0.797 0.688 0.804

DRB3*03:01 160 70 0.765 0.739 0.729 0.771

Average 0.800 0.690 0.683 0.763

The highest values for each allele are highlighted in bold. Results of NetMHCIIpan-2.0 are obtained by leave-one-(allele)-out (LOO) experiment over original 24 alleles in
[27].
doi:10.1371/journal.pone.0030483.t004
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four methods, we computed binding scores of the 100,000 peptides

and selected the top 1% peptides in scores to draw sequence logos,

as described in [14]. Figure 1 shows the sequence logos (binding

motifs) of the four methods on four alleles DRB1*04:02,

DRB1*11:01, DRB1*12:01 and DRB1*13:01 obtained in this

manner (see Figure S1 and S2 for more sequence logos of other 12

HLA-DR alleles). In Figure 1, the height in a column indicates the

relative information content of the corresponding pocket in the

motif, and the height of each letter stands for the amino acid

frequency in the corresponding pocket. TEPITOPEpan has

already achieved a good performance on these four alleles. In

addition, the sequence logos by TEPITOPEpan were consistent

with known binding motifs in SYFPEITHI [32] and the HLA

FactsBook [34]. We first note that all methods agreed that the

information content of the first pocket is high and amino acids

preferred in this pocket are relatively fixed, indicating that the first

pocket, i.e. P1, must be a primary anchor. In addition, most methods

suggested that P4, P6, P7 and P9 are primary anchors. Meanwhile,

we could observe obvious differences in primary anchors among

sequence logos by these four methods. For example, P5 was

identified as a primary anchor by MultiRTA, while P5 and P8

were not thought as primary anchors in TEPITOPEpan at all.

More specifically, in SYFPEITHI, the motif of DRB1*04:02 is

[VILM]xx[YFWILMRN]x[NQSTK][RKHNQP]x[DEHLNQ

RSTYCILMVHA]. The sequence logos of most methods were

consistent with this motif at major primary anchors, such as P1

and P6, while amino acids by competing methods were very

different from each other at P4. At P4, TEPITOPEpan

suggested arginine (R) and phenylalanine (F), which were the

most consistent with the motif in SYFPEITHI. Similarly, the

binding motif of DRB1*1301 in SYFPEITHI is [ILV]xx[LV-

MAWY]x[RK]xx[YFAST], and [IVF]xx[YWLVAM]x[RK]x-

Table 5. AUC on Lin-Set3.

Allele Count Binder NetMHCIIpan-2.0 NetMHCIIpan-1.0 MultiRTA TEPITOPE TEPITOPEpan

DRB1*01:01 103 15 0.883 0.846 0.817 0.892 0.892

DRB1*03:01 103 18 0.716 0.668 0.757 0.695 0.680

DRB1*04:01 103 8 0.845 0.814 0.696 0.754 0.782

DRB1*07:01 103 10 0.878 0.852 0.781 0.740 0.741

DRB1*11:01 103 39 0.883 0.820 0.819 0.824 0.826

DRB1*13:01 103 11 0.728 0.715 0.686 0.715 0.716

DRB1*15:01 103 11 0.838 0.790 0.689 0.659 0.661

Average 0.824 0.786 0.749 0.754 0.757

The highest value for each allele is highlighted in bold. According to Nielsen et al. [27], for DRB1*01:01, 04:01, 07:01 and 15:01, binding threshold is set to 100 nM, and
threshold is set to 1000 nM for the rest when calculating the AUC.
doi:10.1371/journal.pone.0030483.t005

Table 6. AUC on Epan-Set4.

Allele Count Binder NetMHCIIpan-2.0 NetMHCIIpan-1.0 MulitRTA TEPITOPE TEPITOPEpan

DRB1*01:02 92 62 0.746 0.785 0.749 0.762 0.758

DRB1*01:03 52 41 0.772 0.756 0.772 0.867

DRB1*03:02 88 44 0.840 0.775 0.733 0.823

DRB1*04:03 63 14 0.678 0.659 0.611 0.762

DRB1*04:06 92 37 0.486 0.557 0.519 0.501

DRB1*11:02 65 30 0.774 0.738 0.591 0.723 0.738

DRB1*11:03 64 27 0.791 0.623 0.585 0.726

DRB1*11:04 73 34 0.737 0.639 0.618 0.664 0.654

DRB1*12:01 719 446 0.740 0.721 0.673 0.659

DRB1*13:01 302 132 0.494 0.516 0.567 0.637 0.623

DRB1*14:01 43 33 0.676 0.761 0.809 0.785

DRB1*15:02 47 21 0.888 0.762 0.777 0.740 0.742

DRB1*16:01 56 17 0.814 0.793 0.789 0.644

DRB3*02:02 656 318 0.806 0.732 0.680 0.686

Average 0.732 0.701 0.677 0.712

Average (Tepitope
alleles)

0.728 0.688 0.661 0.705 0.703

Average (Others) 0.734 0.708 0.686 0.717

Highest values for each allele are highlighted in bold.
doi:10.1371/journal.pone.0030483.t006
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x[YFAST] is reported in [34]. Both of them indicate that lysine (K)

and arginine (R) are at P6, which, as indicated by Figure 1, were

captured by TEPITOPEpan only. For DRB1*11:01, sequence

logos by TEPITOPEpan were relatively similar to those of

NetMHCIIpan-1.0 and NetMHCIIpan-2.0, particularly leucine

(L) at P4, arginine (R) and lysine (K) at P6 and serine (S) and alanine

(A) at P9, which were all consistent with the binding motif in

SYFPEITHI. Finally for DRB1*1201, a worth mentioning result is

that only TEPITOPEpan suggested valine (V) at P6, which is clearly

consistent with the binding motif reported in SYFPEITHI database.

Overall the sequence logos showed unique characteristics of each

competing method, helping to understand the binding specificities

of various MHC alleles. For the four alleles, the sequence logos by

TEPITOPEpan demonstrated that they are consistent with known

binding motifs the most.

Evaluation by SYF-Set6 and EIEDB-Set7: Identifying HLA-
DR ligands and T-cell epitopes

Table 7 summarizes the results of comparison experiment on

SYF-Set6 for identifying HLA-DR ligands and EIEDB-Set7 for

detecting T-cell epitopes. For SYF-Set6, AUC was in the order of

NetMHCIIpan-2.0, TEPITOPEpan, NetMHCIIpan-1.0, and

MultiRTA for Avg per ligand, while for Avg per allele, the order

of AUC was NetMHCIIpan-2.0, NetMHCIIpan-1.0, TEPITO-

PEpan and MultiRTA. Interestingly, for EIEDB-Set7, the order of

Avg per epitope was the same as that of Avg per allele in SYF-

Set6, and that of Avg per allele was the same as that of Avg per

ligand in SYF-Set6. This indicates that the AUC of TEPITOPE-

pan was comparable against NetMHCIIpan-1.0, while these two

methods outperformed MultiRTA in EIEDB-Set7 (both per allele

and per epitope) and SYS-Set6 (per ligand), being statistically

significant (binomial test, p-value v0.05). Similarly note that

NetMHCIIpan-2.0 outperformed these three methods on both

datasets, being statistically significant (binomial test, p-value

v0.05), except NetMHCIIpan-1.0 on SYF-Set6. Thus we can

say that TEPITOPEpan is the second best method in identifying

HLA-DR ligands and T-cell epitopes.

For 20 alleles used by TEPITOPE, on both datasets, there were

no significant differences among TEPITOPEpan, NetMHCIIpan-

1.0, NetMHCIIpan-2.0 and TEPITOPE, all having outperformed

Figure 1. Comparing of different pan-specific methods by the sequence logos of peptides restricted to HLA-DRB1*04:02,
DRB1*11:01, DRB1*12:01, DRB1*13:01.
doi:10.1371/journal.pone.0030483.g001
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MultiRTA on at least 14 alleles. On the other hand, for other

alleles, the AUC of TEPITOPEpan was lowered, and even

MultiRTA outperformed TEPITOPEpan for 9 out of 11 alleles in

SYF-Set6, being statistically significant (binomial test, p-

valuev0.05). Detailed results are shown in Table S2 and S3.

Evaluation by EpanCore-Set8: Identifying the binding
core

Table 8 shows the number of errors in predicting the binding

core of 20 known 3D complex structures in EpanCore-Set8. On

predicting the position of the binding core in a given sequence, if

the position was incorrect (not exact), we counted that prediction

as an error. This table shows that the number of errors by

TEPITOPEpan was the smallest among 4 competing methods

that can cover all HLA-DR alleles. We emphasize that

TEPITOPEpan achieved the smallest number, being better than

even NETMHCIIpan-2.0, implying that the predictive power of

TEPITOEpan would be comparable or might be better against

NETMHCIIpan-2.0 under the setting of not only giving a score to

a query peptide but also predicting the binding core exactly.

Detailed results are shown in Table S4.

Discussion

We have presented TEPITOPEpan that extends TEPITOPE to

predicting over 700 HLA-DR alleles with known sequences. Note

that TEPITOPEpan is simple, because of its PSSM-based nature.

Extensive experiments were conducted on a variety of datasets to

validate its performance. The summary of results showed that,

among the four methods in the benchmark, TEPITOPEpan

achieved roughly the second best performance in predicting

binding peptides of novel HLA-DR molecules and identifying

HLA-DR ligand and T-cell epitopes. In addition, TEPITOPEpan

achieved the best performance on identifying the bind core of a

given peptide. The most notable point is that TEPITOPEpan does

not need a large amount of training data which are usually

required for the other machine learning-based methods, but only

the sequence of a target allele.

The state-of-the-art pan-specific methods are generally based on

machine learning, requiring plenty of quantitative binding data.

Our experimental results demonstrate that their performances on

novel alleles do not necessarily reach a satisfactory level. It suggests

that trained models cannot be easily generalized to other alleles.

This may be due to several reasons. First, the design principles of

some pan-specific methods are oversimplified by which the

binding mechanism between MHC molecules and peptides cannot

be fully captured. Second, some pan-specific methods may be

overfitted to training alleles, and thus cannot achieve good

performance on novel alleles. Third, high-quality experimental

data are not enough for building an accurate pan-specific method.

Fourth, binding specificities of some novel alleles might be

different from those used for training the model. All these points

imply that improving existing pan-specific methods or developing

a more accurate method is vital for boosting the accuracy of pan-

specific MHC-II binding peptide prediction.

TEPITOPEpan was based on 35 unique binding specificity

vectors in TEPITOPE, which were obtained by biological

experiments on 11 HLA-DR alleles. Although the performance

of TEPITOPEpan has validated the reasonability of these vectors

in this paper, we still have to say that only 35 vectors are

insufficient. In fact, thousands of MHC class II molecules were

sequenced and many MHC-peptide complex structures have been

experimentally determined. A natural idea is to use the binding

specificities of new pockets of these MHC molecules by measuring

them using the state-of-the-art biochemical experiments. This

would make TEPITOPEpan achieve a higher performance.

Table 8. The number of errors on predicting binding cores of 20 complexes in EpanCore-Set8.

PDB #complexes #alleles NetMHCIIpan-2.0 NetMHCIIpan-1.0 MultiRTA TEPITOPEpan TEPITOPE

Count 20 7 5 errors 3 errors 3 errors 2 error 0 errors (2 missing)

The binding cores of 2 complexes cannot be predicted by TEPITOPE, since it doesn’t cover DRB3*01:01 and DRB3*02:01.
doi:10.1371/journal.pone.0030483.t008

Table 7. Evaluation on SYF-Set6 and EIEDB-SET7.

SYF-Set6 Ligand NetMHCIIpan-2.0 NetMHCIIpan-1.0 MultiRTA TEPITOPE TEPITOPEpan

Avg per ligand 1164 0.829 0.799 0.760 0.800

Avg per allele 28 0.797 0.787 0.756 0.769

Avg per allele (TEPITOPE alleles) 17 0.785 0.767 0.733 0.811 0.807

Avg per allele (Other alleles) 11 0.814 0.818 0.791 0.711

EIEDB-Set7 Epitope NetMHCIIpan-2.0 NetMHCIIpan-1.0 MultiRTA TEPITOPE TEPITOPEpan

Avg per epitope 1325 0.751 0.729 0.696 0.725

Avg per allele 42 0.781 0.759 0.717 0.762

Avg per allele (TEPITOPE alleles) 20 0.747 0.744 0.696 0.757 0.755

Avg per allele (Other alleles) 22 0.811 0.772 0.736 0.769

Identifying HLA-DR ligands and T-cell epitopes, respectively. Ligand and Epitopes show the number of HLA-DR ligands and HLA-DR epitopes, respectively. Avg per
ligand shows the average AUC over all ligands, and Avg per allele gives the average of Avg per ligand over all alleles.
doi:10.1371/journal.pone.0030483.t007
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Another possible direction would be to extend peptide specificity

prediction to other MHC-II alleles like HLA-DP, -DQ alleles and

even MHC-II alleles of non-human species.

Supporting Information

Figure S1 Comparing of different pan-specific methods
by the sequence logos of peptides restricted to HLA-
DRB1*01:02, DRB1*01:03, DRB1*03:02, DRB1*04:03,
DRB1*04:04, DRB1*04:05.

(PDF)

Figure S2 Comparing of different pan-specific methods
by the sequence logos based on sampled binding
peptides restricted to HLA-DRB1*08:13, HLA-
DRB1*11:02, DRB1*11:03, DRB1*11:04, DRB1*14:01,
DRB1*14:04.

(PDF)

Table S1 Composing residues of each pocket extracted
from 32 complex structures. The first column gives PDB IDs

of 32 MHC-II HLA-peptide complex structures from PDB. The

next 9 columns give extracted composing residues of nine pockets

of the HLA-DR molecule in the corresponding complex,

respectively. Each element,e.g. 82 N, consists of an index number

and the residue on that site. The last row gives a union set of

composing residue indexes.

(PDF)

Table S2 Evaluation of different methods on identifying
endogenous HLA-DR ligands from SYFPEITHI data-
base. Elements in the table are values of AUC and largest value

of each row is highlighted in bold. Predictions of NetMHCIIpan-

1.0 and 2.0 were obtained from their stand-alone packages.

Predictions of MultiRTA were from its web server. Count gives

the number of HLA-DR ligands retrieved from SYFPEITHI. Ave

per ligand gives the average AUC over all 1164 ligands. Ave per

allele gives the average of per-ligand-average AUCs of all alleles.

(PDF)

Table S3 Evaluation of different methods on identifying
HLA-DR T cell epitopes retrieved from IEDB. Elements in

the table are values of AUC and largest value of each row is

highlighted in bold. Predictions of NetMHCIIpan-1.0 and 2.0

were obtained from their standalone packages. Predictions of

MultiRTA were from its web server. Count gives the number of

HLA-DR epitopes retrieved from IEDB. Ave per epitope gives the

average AUC over all 1325 epitopes. Ave per allele gives an

average of per-epitope-average AUCs of all alleles.

(PDF)

Table S4 Evaluation on identifying binding core. The

table shows complexes with known binding cores retrieved from

PDB. The first two columns in the table give PDB ID, HLA-DR

restriction, bound peptide and experimentally determined binding

core, respectively. Twenty distinct structures in terms of allele and

peptide sequence are labeled with an asterisk. The last columns

give predicted cores of different methods. Predictions of different

methods were obtained from their stand-alone packages or web

servers. Prediction results based on 20 distinct structures are

shown in brackets with an asterisk. Additionally, TEPITOPE can

not make prediction for DRB3*01:01 and DRB3*02:01.

(PDF)
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