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Abstract

Background: Cognitive abilities, such as working memory, differ among people; however, individuals also vary in their own
day-to-day cognitive performance. One potential source of cognitive variability may be fluctuations in the functional
organization of neural systems. The degree to which the organization of these functional networks is optimized may relate
to the effective cognitive functioning of the individual. Here we specifically examine how changes in the organization of
large-scale networks measured via resting state functional connectivity MRI and graph theory track changes in working
memory capacity.

Methodology/Principal Findings: Twenty-two participants performed a test of working memory capacity and then
underwent resting-state fMRI. Seventeen subjects repeated the protocol three weeks later. We applied graph theoretic
techniques to measure network organization on 34 brain regions of interest (ROI). Network modularity, which measures the
level of integration and segregation across sub-networks, and small-worldness, which measures global network connection
efficiency, both predicted individual differences in memory capacity; however, only modularity predicted intra-individual
variation across the two sessions. Partial correlations controlling for the component of working memory that was stable
across sessions revealed that modularity was almost entirely associated with the variability of working memory at each
session. Analyses of specific sub-networks and individual circuits were unable to consistently account for working memory
capacity variability.

Conclusions/Significance: The results suggest that the intrinsic functional organization of an a priori defined cognitive
control network measured at rest provides substantial information about actual cognitive performance. The association of
network modularity to the variability in an individual’s working memory capacity suggests that the organization of this
network into high connectivity within modules and sparse connections between modules may reflect effective signaling
across brain regions, perhaps through the modulation of signal or the suppression of the propagation of noise.
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Introduction

Common experience reminds us that on some days we do not

feel as mentally astute as on others. A poor night’s sleep, illness, or

stressful life events all may influence our cognitive faculties and

lead to variability in performance on different days. This intra-

individual variability stands in contrast to the well-documented

individual differences in intellectual performance.

Working memory, as measured by visual short-term memory

(VSTM) capacity, is typically considered a stable characteristic of an

individual’s cognitive functions and is closely linked to individual

differences in human intellectual abilities [1–3]. However, endog-

enous and exogenous factors such as sleep disruption [4],

psychosocial stress [5], and pharmacological manipulations [6]

create intra-individual variability in cognitive performance, such

that an individual’s working memory capacity may vary at different

times. Such systemic, psychological, and environmental factors

influence daily cognitive variability via multiple brain network

interactions. These factors are also likely reflected in the

organization of brain systems necessary to carry out complex

cognitive functions [7–9]. Working memory capacity, as measured

using visual short term memory (VSTM) tasks is dependent on

specific neural systems to maintain representations, with posterior

parietal areas being particularly important [10,11]. The observed

working memory capacity of an individual also depends on the

organization and interaction of multiple brain regions that are

commonly observed to be engaged in numerous cognitive functions

[12–14]. Thus, true working memory capacity may be stable across

time, but expressed capacity may vary as a result of the changes in

cognitive control systems. This would explain why cognitive
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performance across different domains tends to vary together.

Measures of functional organization of control systems may capture

important sources of variability both between and within individuals

across time.

We hypothesized that the functional organization of a system of

brain regions implicated in a broad range of cognitive functions

may predict working memory capacity in terms of individual

differences. Furthermore, when measured on different days, the

organization of these networks may also predict intra-individual

variability in working memory capacity. The coherent organiza-

tion of these networks during the absence of externally directed

tasks (i.e., ‘‘resting state’’) may reflect the latent cognitive abilities

of the brain at that time. Indeed, previous studies have

demonstrated that low frequency variation in functional connec-

tivity between brain regions, measured in the absence of

experimenter imposed tasks, is associated with the functional roles

attributed to those brain regions [15,16]. Graph-theoretic tools

provide quantitative measurements of complex patterns of

organization across a network, and have been effective in

informing brain-behavior relationships based on functional and

structural connectivity [17–20]. Recently, graph-theoretic analysis

has been applied to human functional brain connectivity and

specifically to detection and characterization of community

structure in networks [21–24]. For example, small-world measures

calculated on resting-state functional connectivity have revealed

that network efficiency predicted individual differences in

intellectual ability [25]. These findings suggest that the quantita-

tive measures of network organization at a global network level

capture important information about brain and behavior rela-

tionships, even when measured in the absence of experimenter-

imposed tasks [26]. Here, we tested the hypothesis that graph-

theoretic measures of a functional brain network vary across days,

and that this variation is linked to variation in visual short-term

memory capacity both between and within individuals across time.

We examined 34 brain regions (Table 1) that have been

empirically identified in previous neuroimaging studies across a

range of cognitive tasks [8,23,27,28]. We were particularly

interested in the organizational properties of the network as a

whole rather than specific connections or sub-networks. Therefore,

we focused on network modularity, a statistic reflecting how well

an entire network is organized into modules of densely

interconnected nodes, but with the modules only sparsely

interconnected [29–31]. Modularity captures an important

organizational principle critical to biological systems; integration

within sub-systems allows efficient local processing, while sparse

connections between sub-systems reduce the propagation of noise

[32]. We specifically hypothesized that since greater modularity

characterizes optimal system organization, then the modularity of

a network of brain regions associated with broad cognitive

mechanisms should relate to cognitive performance, measured

here as working memory capacity. Similarly, we expected another

measure of network efficiency, small-worldness, to be associated

with VSTM capacity. Small-worldness provides a somewhat

different measure of organization of networks, reflecting high

local inter-connectivity coupled with a shorter than expected

distances between any two nodes due to sufficient inter-module

connectivity or the presence of ‘‘hubs,’’ nodes that are densely

connected to other nodes [33].

Results

Twenty- two participants completed an initial session and 17

returned three weeks later for a second identical session. At each

session, they performed a VSTM task to provide memory capacity

estimates (Fig. 1B) followed by resting-state fMRI scans to

measure the functional connectivity among 34 regions (Fig. 1A,
Table 1). Network statistics presented here were calculated on

each participant’s binarized graphs with a correlation threshold of

r = 0.25. This threshold was based on several criteria (Text S1);

however, the results hold over multiple thresholds (Fig. S1).

Individual modularity values ranged over 0.21–0.49, while the

within-subject changes in modularity ranged from 0.01–0.14.

Thus, modularity within individuals tended to be relatively stable

compared to the differences between individuals. Visual short-

term memory capacity was comparable across Session 1

(mean = 3.09) and Session 2 (mean = 2.89): paired t(16) = 0.834,

p = 0.34. Individual’s network modularity and VSTM capacity

were positively correlated at both Session 1 (r(20) = 0.56,

p = 0.009) (Fig. 2a), and Session 2 (r(15) = 0.57, p = 0.008),

indicating that working memory capacity indeed varies reliably

with network modularity. (When only the 17 participants who

completed both Sessions 1 and 2 were included in the analysis, the

correlation between network modularity and VSTM at Session

1was comparable: r(15) = 0.54, p = 0.013). Strikingly, within-

individual changes in VSTM capacity between Session 1 and

Session 2 also correlated with the change in their network

modularity between the two sessions (r(15) = 0.54, p = 0.013).

Thus, network modularity not only captured significant variability

in individual differences in working memory capacity, but also

tracked the within-individual changes in memory between

sessions. Importantly, another measure of global network organi-

zation, small-worldness (Fig. 3), yielded similar correlations with

VSTM capacity at both Session 1 (r (20) = 0.50, p = 0.042) and

Session 2 (r(15) = 0.59, p = 0.013). However, unlike modularity,

between-session changes in small-worldness were only weakly

associated with changes in VSTM capacity (r(15) = 0.35, p = 0.17)

(Fig. 3). Thus, like modularity, small-worldness is sensitive to

individual differences in VSTM capacity; however, unlike

modularity, it is relatively insensitive to intra-individual variability

in capacity.

Modularity is associated with working memory variability
Based on the finding that changes in VSTM capacity between

sessions correlate with changes in network modularity, we further

reasoned that modularity might be most closely linked to the

variable component of VSTM, rather than the stable component.

The covariation in working memory capacity estimates at Sessions

1 and 2 (Fig. 2a) provides the best estimate of an individual’s

stable working memory capacity, by reducing the influence of

measurement error and other sources of fluctuation that

contribute to variability in test scores. This stable component is

reflected in the correlation between capacity measured in Session

1 with that measured in Session 2. We reasoned that the residual

variance in capacity estimates across the two sessions, rather than

reflecting simply measurement error, may contain additional

information regarding day-to-day variation in VSTM capacity due

to the effectiveness of the organization of the underlying neural

systems involved in cognitive performance. We demonstrated that

this was indeed the case using partial correlations. Specifically, we

removed the variance in VSTM capacity in one session

attributable to VSTM capacity measured in the other session

(stable VSTM capacity) and determined if network modularity

accounted for the remaining variance in VSTM capacity. Partial

correlation between Session 1 VSTM capacity and modularity,

controlling for Session 2 capacity, remained reliable (partial

r(14) = 0.50, p = 0.046, two-tailed). A similar relationship also held

for modularity and capacity at Session 2 with Session 1 capacity

removed (partial r(14) = 0.51, p = 0.045, two-tailed). In both cases

Network Modularity and Working Memory Variability
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the partial correlations were comparable to their respective zero-

order correlations between same-session modularity and capacity

(Fig. 2). Modularity accounted for 25% of the variability in

VSTM capacity measured on the same day over and above the

variance accounted for by the same individual’s capacity measured

at the other testing session. This indicates that network modularity

was indeed linked more closely to variability in VSTM capacity

rather than to the working memory capacity component that was

stable across sessions. Together the stable component of working

memory capacity (the correlation between working memory

capacity sessions 1 and 2) and the variable component in working

memory capacity that was accounted for by modularity in sessions

1 and 2, accounted for over 50% of participants’ working memory

capacity at each session.

Working memory is not associated with sub-network
components

In order to ensure that the observed association between

network level measures and inter- and intra-individual differences

in working memory capacity were not due to simple connections

between pairs of nodes or other sub-network information, we

examined the relationship between all possible node pairs and

VSTM capacity at both sessions. Only one pair of nodes (right

parahippocampus – right thalamus) was correlated with capacity

at both sessions (uncorrected for multiple correlations) (Fig. 4).

Based on an uncorrected probability of p#0.05 at Session 1 and

Session 2, we would expect 1.4 node pairs to be significantly

correlated with VSTM capacity at both sessions by chance. The

specific organization of the nodes within the modules of the

Table 1. Regions of interest used as nodes in the network network analysis, drawn from [22,23].

Coordinates

Whole-brain region of interest (ROIs) Abbreviation X Y Z Module

dorsoloateral prefrontal cortex L.dlPFC 243 22 34 Fonto-parietal

dorsoloateral prefrontal cortex R.dlPFC 43 22 34 Fonto-parietal

Frontal L.frontal 241 3 36 Fonto-parietal

Frontal R.frontal 41 3 36 Fonto-parietal

mid cingulate cortex mCC 0 229 30 Fonto-parietal

inferior parietal lobule L.IPL 251 251 36 Fonto-parietal

inferior parietal lobule R.IPL 51 247 42 Fonto-parietal

intraparietal sulcus L.IPS 231 259 42 Fonto-parietal

intraparietal sulcus R.IPS 30 261 39 Fonto-parietal

Precuneus L.precuneus 29 272 37 Fonto-parietal

Precuneus R.precuneus 10 269 39 Fonto-parietal

anterior Prefrontal cortex L.aPFC 228 51 15 Cingulo-Opercular

anterior Prefrontal cortex R.aPFC 27 50 23 Cingulo-Opercular

anterior insula/frontal operculum L.aI/fO 235 14 5 Cingulo-Opercular

anterior insula/frontal operculum R.aI/fO 36 16 4 Cingulo-Opercular

dorsal anterior cingulate/medial superior frontal cortex dACC/msFC 21 10 46 Cingulo-Opercular

superior frontal cortex L.ant.thalamus 212 215 7 Cingulo-Opercular

anterior thalamus R.ant.thalamus 10 215 8 Cingulo-Opercular

anterior thalamus amPFC 1 54 21 Cingulo-Opercular

ventromedial prefrontal cortex vmPFC 23 39 22 Default

superior frontal cortex L.sup.frontal 214 38 52 Default

superior frontal cortex R.sup.frontal 17 37 52 Default

inferior temporal L.inf.temporal 261 233 215 Default

inferior temporal R.inf.temporal 65 217 215 Default

parahippocampal L.parahippocampal 222 226 216 Default

parahippocampal R.parahippocampal 25 226 214 Default

posterior cingulate cortex pCC 22 236 37 Default

lateral parietal L.lat.parietal 247 267 36 Default

lateral parietal R.lat.parietal 53 267 36 Default

retrosplenial retrosplenial 3 251 8 Cerebellar

lateral cerebellum L.lat.cerebellum 232 266 229 Cerebellar

lateral cerebellum R.lat.cerebellum 31 261 229 Cerebellar

inferior cerebellum L.inf.cerebellum 219 278 233 Cerebellar

inferior cerebellum R.inf.cerebellum 18 280 233 Cerebellar

doi:10.1371/journal.pone.0030468.t001
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network did not appear to be critical to working memory capacity.

For instance, connection density within the modules of the

network, which were defined in previous reports [22,23], may

have accounted for the observed relationship between modularity

and working memory. Therefore, we determined the connection

density based on the binarized and thresholded networks, and

summed the weights of connections within the sub-networks.

However, for none of the individual modules did the degree of

Figure 1. Study design for a single session. The visual short-term memory task was administered prior to the resting state scans in Session 1 and
three weeks later at Session 2. a) Functional MRI was conducted while subject maintained relaxed fixation on a crosshair. Low-frequency time course
data was extracted from 34 brain regions (nodes) for each subject and a correlation matrix of all 34 nodes was constructed and binarized at a
threshold of r = 0.25 for each participant. The community structure (modularity) of each participant’s network was determined using a modularity
maximization technique [30], and is here visualized using a spring-embedded graph, with node colors indicating module membership (see
Supplement for details). b) Example of the six-object VSTM task used to estimate working memory capacity. The individual participant’s capacity
estimate and network modularity measures were used to compute c) the correlation at each session and changes between sessions.
doi:10.1371/journal.pone.0030468.g001

Network Modularity and Working Memory Variability
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Figure 2. Association of Modularity and Visual short-term memory (VSTM) capacity. VSTM capacity measures were reliably correlated
across a) Sessions 1 and 2 (p = 0.014). b) Modularity and VSTM capacity measured in Session 1 (n = 22) were correlated (p = 0.009) as well as c) when
measured three weeks later at Session 2 (p = 0.017, n = 17). d) Individual participant’s changes in modularity and VSTM capacity between Session 1
and Session 2 were also strongly correlated (p = 0.014), indicating that changes in subject’s VSTM capacity were reflected in the change in their
network modularity. All tests two-tailed.
doi:10.1371/journal.pone.0030468.g002

Figure 3. Small-worldness correlated with VSTM capacity. At: a) Session 1 (p = 0.042), and b) Session 2 (p = 0.013). c) Changes in small-
worldness between Session 1 and Session 2 were not significantly correlated with change scores of VSTM capacity (p = 0.17). All tests two-tailed.
doi:10.1371/journal.pone.0030468.g003

Network Modularity and Working Memory Variability

PLoS ONE | www.plosone.org 5 January 2012 | Volume 7 | Issue 1 | e30468



global intra-modular connectivity reliably account for working

memory capacity. Similarly, the connectivity strength between

modules of these previously defined nodes failed to produce

significant correlation with working memory capacity (Table 2).

These results suggest that the organization of the nodes into

specific modules is not critical, and that there may be many ways

in which these neural systems can create effective functional

organizations.

One logical alternative network that could account for working

memory capacity is the set of regions reported to be active during

a VSTM task [34,35]. Therefore we used as nodes, the six regions

of interest specifically related to VSTM capacity identified in the

study reported by Xu and Chun [34], which subsumed the regions

reported by Todd and Marois [35]. Because the set of six regions

was too small to submit to meaningful graph analysis, we

calculated the correlation matrix among all six nodes and

determined if any functional connections consistently predicted

VSTM capacity (Fig. 5). No consistent correlation between

VSTM capacity and connectivity between node-pairs was evident,

indicating that resting state connectivity is likely tapping into brain

interactions that are different from those detected during task-

related activity. This result may reflect the possibility that separate

mechanisms important for information processing may be

detected by these different functional imaging approaches. For

instance, resting-state may be capturing general functional

organization of the brain (the cognitive ‘‘tone’’ of the brain),

while event-related fMRI captures the actual responsiveness of

these brain regions during task-based activity.

Discussion

The current study used network theoretic measures applied to

resting state fMRI data to determine if the organization of a

specific network of generalized control regions was associated with

variability in working memory capacity. Modularity, and to a

similar degree, small-worldness of this network, reliably accounted

for individual differences in working memory capacity at both

session 1 and session 2. The replication of this relationship at two

separate sessions provided a robust test of the reliability of the

relationship between network organization and working memory.

More strikingly, the change in an individual’s network modularity

between the two sessions predicted the change in working memory

capacity. These observations together suggest that organizational

characteristics of a broad functional network across a variety of

cognitive tasks contain information about latent cognitive

functions [8].

We specifically focused on these global network variables due to

mounting evidence that organizational properties of an entire

functional network are linked to intellectual functions and learning

[25,26], and therefore may capture properties of effective cognitive

functioning. Working memory, which contributes to many aspects

of daily cognition, is likely to be a particularly good bell-weather

for variation in cognitive performance. It is important to stress that

we do not interpret the relationship between modularity and

Figure 4. The correlation matrix for connection weights between nodes and VSTM. Capacity a) in Session 1 (lower triangle) and Session 2
(upper triangle). b) For clarity, the same correlation matrix with non-significant connections eliminated (threshold r = 0.47, p#0.05, uncorrected for
multiple correlations).
doi:10.1371/journal.pone.0030468.g004

Table 2. Correlations between VSTM capacity and intra-
module connection density, and between module
connectivity.

Network modules Session 1 Session 2 Change

Fronto-Parietal 0.28 0.09 20.12

Cingulate-Operculum 20.06 20.58* 20.35

Default Mode Network 20.31 20.41 0.13

Within-module connectivity across
network

20.17 20.78** 20.33

Between Module Connectivity 20.35 20.11 20.25

*P,0.05, uncorrected;
**P,0.01, uncorrected.
doi:10.1371/journal.pone.0030468.t002
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working memory capacity to indicate that the defined network is

responsible for working memory per se. Rather, we interpret these

results to reflect brain-behavioral relationships that are likely to

extend across a variety of cognitive demands. This interpretation is

consistent with the set of ROIs used here, which were selected

based on their consistent activity across a wide range of cognitive

tasks and studies [22,23,37,38]. It is possible that systemic factors,

life stressors, and sleep quality, which all have demonstrable effects

on cognitive functions, including working memory [4–6], may

leave their imprint on the functional organization of neural

systems associated with a broad array of generalized control

related functions.

One issue that remains only partially resolved in this study is

whether specific circuits among the nodes accounts for working

memory capacity equally well or better than their global

organization as measured via modularity. While we did not

exhaust the full extent of possibilities, we did attempt to rule out

some alternative explanations of this sort. For example, we did not

find a reliable association with working memory capacity at the

level of single nodal connections (Figure 5), nor at the level of

sub-networks (Table 2). This included an examination of fronto-

parietal systems that are clearly involved in visuo-spatial working

memory functions [12,13,36]. In the same vein, we tested a set of

posterior parietal regions identified in previous event-related fMRI

studies of working memory capacity that employed very similar

VSTM tasks to the task used in the current study to measure

working memory capacity [11,34,35]. These studies converged on

a small set of posterior parietal regions that were very closely

linked to working memory capacity. However, the analysis of

resting-state connectivity among this small set of nodes [11,35] also

failed to detect an association with working memory capacity.

These results do not rule out the possibility that there is an optimal

set of nodes whose organization predicts working memory from

resting state data, nor can we be sure that other brain regions not

included in the network may provide important predictive

information about latent cognitive functions. However, brain

regions included as nodes in this study have been repeatedly

implicated in a wide range of control related functions identified

during fMRI studies where active tasks were compared to resting

baseline conditions [8,37–39]. Therefore, the information con-

tained in resting state networks appears to complement evidence

from event-related fMRI studies [11,35] and electrophysiological

evoked potential data [10].

The current work does not attempt to identify whether there is a

single optimal brain organization that determines cognitive

performance. However, there is some evidence that while

performance appears to be determined by the efficient neural

interactions among brain systems, multiple ‘‘optimal’’ configura-

tions may exist. For example, a recent fMRI study by Bassett and

colleagues, reported changes in functional connectivity while

individuals acquired a complex motor task [26]. They found that

while modularity of the group was relatively stable across time, a

measure of ‘‘flexibility’’, described as the degree to which

individual nodes would shift between modules, was predictive of

subsequent changes in motor learning [26]. Bassett and colleagues

did not report modularity as a predictor of individual perfor-

mance, but their results suggest that a specific organization may

not be a critical starting point as long as modularity is reasonably

high.

A limitation to this study, common to most ‘‘resting-state’’

investigations, is that the experimenter gives up control over the

structure of the stimulation of the brain. Consequently, it is

possible that the correlation we observed may reflect differences in

the internal thought-processes of the individuals, or other

unconstrained variable, which may be directly or indirectly related

to working memory capacity. However, such a variable must also

be linked to the modularity and small-world characteristics of the

functional network.

Performance of complex biological systems has been theorized

to depend on a modular organization in which there are highly

integrated subsystems that are largely segregated from each other

[17,18,32]. While the integration within a module seems clearly

necessary for information to be shared between relevant

processing elements, the segregation between modules may be

equally necessary to avoid proliferating internal or external noise

that could potentially interfere with task-relevant functions.

Multiple sources of noise can interfere with cognitive processes

and modularity of a network attenuates the propagation of noise

between modules [31]. This may explain why working memory

was specifically tied to the global community structure of the

network, but not to individual nodes or connections between

nodes. Future work combining task-based fMRI and resting state

fMRI analyses conducted in the same studies, may further clarify

how the unique brain signals measured with these different

imaging techniques account for different sources of variation in

cognitive performance. It may be that efficient processing within

Figure 5. Connectivity matrix for the six regions of interest from Xu & Chun (2006). The matrices indicate a) the intercorrelations among
node-pairs for Session 1 (lower triangle) and Session 2 (upper triangle), b) the correlation between VSTM capacity and the strength of correlation for
each node pair at Session 1 and Session 2, and c) the same matrix as in b but set to a threshold of r = 0.47, p = 0.05, uncorrected for multiple
comparisons. Abbreviations of anatomical locations: sIPS.R - Right superior intra-parietal sulcus, sIPS.L - Left superior intra-parietal sulcus, iIPS.R - Right
inferior intra-parietal sulcus, iIPS.L - Left inferior intra-parietal sulcus, LOC.R - Right lateral occipital cortex, LOC.L - Left lateral occipital cortex.
doi:10.1371/journal.pone.0030468.g005
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these regions combined with the interactions between them (even

when unchallenged by an externally imposed task), reflect the state

of organization of neural systems necessary for complex cognitive

tasks [43].

Materials and Methods

Ethics Statement: This research protocol was reviewed
and approved by the OHSU Research Integrity Office’s
Internal Review Board

Participants. In the initial experimental session, 22 indivi-

duals (15 females, 7 males; mean age = 27.5 yrs; SD = 4.8 yrs)

participated in the first session after providing written informed

consent. Seventeen of the original participants returned for an

identical session three weeks after their first visit. All participants

were right-handed, had normal or corrected-to-normal vision, and

had no history of brain damage, learning disability, psychiatric

diagnosis, or neurological problems. Informed written consent was

obtained from all participants.

Visual Short-Term Memory task. The visual working

memory procedure was based on the task described by Vogel

and colleagues [40]. It required participants to remember two or

six colored squares presented briefly (100 ms) on a computer

monitor. Following a 2500 ms delay, a probe stimulus was

displayed and participants indicated whether it was the same color

and location as one of the squares from the original stimulus set. In

a third of the trials, the two colored squares were presented with

four distracters in the form of colored rectangles. Participants were

told to ignore the distracters and only remember the squares [40].

Working memory capacity estimates were computed for the six-

stimulus condition, as capacity K = s*(H - F), where s is the

number of stimuli in the memory array, H is the number of hits

and F is the number of false alarms [41]. At each session,

participants completed 192 trials, 64 of each condition inter-mixed

in four blocks of 48 trials.

MRI data acquisition. All MRI scans were performed on a

Siemens 3 Tesla TIM-TRIO system. Structural images were

obtained using a sagittal magnetization-prepared rapid gradient

echo (MP-RAGE) three-dimensional T1-weighted sequence

(TR = 9.7 ms, TE = 4 ms, flip angle = 12u, TI = 300 ms, voxel

size = 1.256161 mm, slices = 128). Functional images were

obtained using a gradient-echo, echo-planar sequence sensitive to

blood oxygen level-dependent (BOLD) contrast (TR = 2000 ms;

TE = 30 ms; FOV = 240 mm3; flip angle = 90u). Participants

completed two scans consisting of 150 acquisitions of 33

contiguous interleaved 3.8 mm axial slices, which were acquired

parallel to the plane transecting the anterior and posterior

commissure. This covered the entire cerebrum and all but the

most inferior portion of the cerebellum. Steady state magnetization

was assumed after four frames (,8 seconds).

Functional MRI Data preprocessing. The resting state

fMRI preprocessing included (i) removal of a central spike caused

by MR signal offset, (ii) correction of odd vs. even slice intensity

differences attributable to interleaved acquisition without gaps, (iii)

correction for head movement within and across runs, and (iv)

within-run intensity normalization to a whole brain mode value

gradient of 1000. Atlas transformation3 of the functional data was

computed for each individual via the MP-RAGE. Each rs-fMRI

run was then resampled in atlas space on an isotropic 3.0 mm3

grid combining the six parameters for movement correction and

atlas transformation in one interpolation. All subsequent

operations were performed on the atlas-transformed volumetric

time series. As previously described [4], several additional

preprocessing steps were used to reduce spurious variance

unlikely to reflect neuronal activity. These steps included: (a) a

temporal band-pass filter (0.009 Hz,f,0.08 Hz) and spatial

smoothing (6 mm full width at half maximum), (b) regression of

six parameters obtained by rigid body head motion correction, (c)

regression of the whole brain signal averaged over the whole brain,

(d) regression of ventricular signal averaged from ventricular ROI,

and (e) regression of white matter signal averaged from white

matter ROI. Regression of first order derivative terms for the

whole brain, ventricular, and white matter signals were also

included in the correlation preprocessing.

Motion-related signal was also removed from all analyses

between graph theoretic measures and VSTM capacity. For each

subject, the root mean square of the sum of the estimates of the six

orthogonal motion parameters was calculated for each fMRI scan

and averaged within-session. This was then regressed against the

statistic of interest (e.g., Modularity) and the residual of the

regression used as the corrected estimate of the statistic. The

residuals were re-expressed in original units around the mean

value of the statistic (e.g., corrected Modularity).

Regions of interest. The ROIs (Table 1) were selected

based on earlier studies of cortical regions that were detected

across multiple studies using a variety of cognitive tasks. The ROIs

included nodes identified as part of the default-mode network

[27,28]. Each ROI (node) consisted of a 10 mm3 sphere centered

on the peak loci of activation reported in those studies. Mean time

courses were extracted from the 34 ROIs in previous work. Each

participant’s ROI timecourses were inter-correlated to form a

34634 connectivity matrix representing the strength of connection

between every pair of ROIs. Subsequent network analyses were

performed on these matrices.

Graph Construction
All network measures were calculated using functions written in

the Brain Connectivity Toolbox created by Sporns and colleagues

(https://sites.google.com/a/brain-connectivity-toolbox.net/bct/

Home) The formulae for the network measures are provided in

their recent paper [8]. For each individual dataset, the

connectivity graph was constructed by creating a 34634

correlation matrix M. We then created a binarized matrix (B)

formed by thresholding each M by a threshold T. All values of

cells of the correlation matrix,T were then set to equal 0. All

other cells were set equal to 1. Binarizing a graph requires

choosing a threshold value of r above which a connection

between two nodes is considered to exist. Setting a threshold too

low carries a risk of over-estimating the influence of noisy,

physiologically insignificant weak correlations, thereby losing

sensitivity to the underlying network organization. Conversely,

very high thresholds can cause excessive fragmentation and may

misrepresent the graph structure by disregarding correlations of

potential functional importance. As no definitive method of

selecting an optimal threshold is currently available, we

performed our analyses at a range of plausible thresholds, but

reported results using a threshold for visualizations (r = 0.25)

based on the characteristics described below. This threshold was

determined by satisfying the following criteria (also see Figure
S1). First, the network must differ from a random graph on

measures of modularity and small-world properties. Random

graphs were constructed using randomly placed connections

constrained to have the same degree distribution as the real

graphs [9]. This comparison across different binarization

thresholds indicates at what threshold values, the apparent

structure of the graph is unlikely to have resulted by chance.

Additionally, the average reachability of the network, the

probability that a direct or indirect path exists between any
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two nodes in the graph, must not differ significantly from 1.0.

Setting T to correlations of 0.25 to 0.30 satisfied these conditions

for all individual subject connectivity maps. We note that this

approach allows the number of connections included in the

network to vary across participants.

We also performed the network thresholding using the

connection density thresholds to binarize the individual partici-

pants correlation matrices (Text S1). Unlike correlation based

thresholds which allow the number of connections in the network

to vary between subjects, connection density holds the number of

connections in the network constant by retaining the specified

proportion of connections determined by correlation strength.

While this approach produced similar results at session 1, in terms

of the relationship between small-worldness and VSTM capacity,

it failed to reveal the same relationship at Session 2 (see Figure
S2).

Reachability. A measure of the proportion of nodes that are

connected by any path, regardless of the path length (i.e. the

number of intervening nodes that must be traversed in order to

reach one node from the other). A low reachability score implies a

fragmented graph where some nodes are completely disconnected

from all others in the network, which is biologically implausible as

a model of the brain [8].

Small-worldness. A measure of global network

organization, reflects high local inter-connectivity coupled with a

shorter than expected distances between any two nodes due to the

presence of ‘‘hubs’’ - nodes that are densely connected to other

nodes. It is defined in terms of clustering coefficient and

characteristic path length [10,11]. Characteristic path length (l)

is a measure of the mean number of links that must be traversed in

order to travel between any two nodes in the network. Clustering

coefficient (C) is a measure of the average proportion of a node’s

nearest neighbors that are also connected to each other. Small-

world networks possess a clustering coefficient that is much larger

than a random graph, and a characteristic path length that is equal

or only slightly larger than in a random graph. The ‘small-

worldness’ of a network (S) can thus be quantified as (Creal/

Crandom)/(lreal/lrandom) [11,12].

Modularity estimation. Modularity, or community

structure, is a technique for subdividing the network into

separate modules (communities), which maximize the

connections within each module and minimize the connections

between modules [8,9,13]. Modularity is estimated using

optimization algorithms. Network modularity values in the

current study were estimated using the method of Newman [9]

and then confirmed using the algorithm developed by Blondel

[13]. As the Blondel modularity algorithm is non-deterministic and

can yield slightly different values of modularity for a given network

across multiple runs, we calculated modularity using both these

techniques for each subject by averaging across 100 iterations of

the algorithm. The two different modularity estimates converged

to near unity at both sessions (Session 1: r(15) = 0.98, p,0.001;

Session 2: r(15) = 0.98, p,0.001). We further tested the reliability

of the modularity values using the Variation of Information, a

measure of the stability of the network’s organization [42] (Text
S1, Figure S3).

Supporting Information

Figure S1 Graphs demonstrating the divergence of the
real graphs from random graphs as a function of matrix
thresholds for different measures of network organiza-
tion. The individual networks obtained in Session 1 and Session 2

were compared to random networks constructed with the same

number of nodes, connections and connection density. a) Reach-

ability did not differ significantly from 100% when thresholds

correlations were set below r = 0.30 (maximum t(16) = 21.5,

p = .16), indicating that these thresholds preserve full connected-

ness of the network in most individual networks. b) Characteristic

path length, and c) clustering coefficient were significantly different

from the random graphs across all threshold correlations (r), where

0.05#r#0.50. c) Small-worldness (S), calculated as a ratio

(Clusteringreal/Clusteringrandom)/(Path Lengthreal/Path Lengthran-

dom), such that values different from 1.0 reflect a departure from

randomness. d) Small-worldness for Sessions 1 and 2 had values

greater than 1.0 at all threshold values $0.05. None of the

network properties varied significantly between the two sessions at

any threshold. Error bars in all graphs are 61 standard errors of

the mean. e) The correlation between modularity and visual short-

term memory capacity varied as a function of threshold but

showed comparable trends across sessions and thresholds.

(TIFF)

Figure S2 The effect of connection density (i.e., cost) threshold

level on the correlation between network modularity and VSTM

capacity. Connection density reflects the proportion of connec-

tions included in the network from all possible connections among

the 34 nodes.

(TIFF)

Figure S3 Variation of Information (VOI) for the real and

random graphs for Session 1 and Session 2, calculated individually

for each subject and then averaged. Alpha is the proportion of

connections between nodes that are randomly reassigned.

Increased VOI reflects the loss of information between in

perturbed network compared to the unperturbed network, with

larger changes reflecting greater instability. Dashed line indicates

the value VOI would have if 20% of the nodes were randomly

assigned to new modules relative to their assignment in the original

network. This reassignment was 0.15 for real networks but only

0.02 for the random networks. Note that the random networks

show an immediate increase in VOI, reflecting the instability of

their modularity estimates.

(TIFF)

Text S1 Description of supplementary network thresh-
olding analyses.
(DOC)
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