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The per capita ecological footprint (EF) is one of the most widely recognized measures of environmental sustainability. It
aims to quantify the Earth’s biological resources required to support human activity. In this paper, we summarize relevant
previous literature, and present five factors that influence per capita EF. These factors are: National gross domestic product
(GDP), urbanization (independent of economic development), distribution of income (measured by the Gini coefficient),
export dependence (measured by the percentage of exports to total GDP), and service intensity (measured by the
percentage of service to total GDP). A new ecological footprint model based on a support vector machine (SVM), which is a
machine-learning method based on the structural risk minimization principle from statistical learning theory was conducted
to calculate the per capita EF of 24 nations using data from 123 nations. The calculation accuracy was measured by average
absolute error and average relative error. They were 0.004883 and 0.351078% respectively. Our results demonstrate that the
EF model based on SVM has good calculation performance.
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Introduction

The ecological footprint (EF) approach was developed by
Wackernagel and Rees [1]. It is calculated as the total area of bio-
productive land and water required to continuously produce all
resources consumed, and to assimilate all wastes generated by a
defined population in a specific location [2]. The EF approach
provides a comprehensive unit of measurement that allows for
comparisons of various types of consumption-based impacts [3].
Therefore, since its development the EF approach has become the
most widely-used measure of environmental sustainability [4].The
EF approach aggregates typically complex resource use patterns
into a single number [5]. The validity of the per capita EF, which
traces the average amount of resources a person in a given country
consumes, and the amount of waste they generate is confirmed by
its significant correlation with important environmental impacts,
for example, national emissions of ozone depleting substances, and
nuclear power generation [6].

There are six resources considered by the EF: crop and pasture
lands for production of goods and food, built land for construction,
forest for the production of wood products, fossil energy for carbon

dioxide emissions from fuels, and fish for food production. All of

these are measured in global hectares (ha). A global hectare
represents a hectare of land with global average bio-productivity.
Social scientists and policymakers can compare the per capita EF
of various nations to the per capita ecological capacity that exists
on earth. For example, in 1996 the per capita EF ranged from
0.35 hectares to more than 16 hectares, and the majority of the
estimated per capita EFs were higher than the Earth’s bio-capacity
per capita [7]. According to McDonald and Patterson [8], the
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global EF is at least 30% larger than the Earth’s bio-capacity,
illustrating the severity of resource overuse. EF figures can also be
used as benchmarks for assessing sustainability at a national level,
for example, nations with an EF at or below 1.8 hectares per
capita have a global impact that could be replicated by other
nations without threatening long-term sustainability [2].

Although the EF model has been used at various levels,
including global [9], municipal [10], national [9], city [11] and
individual [12], no previous studies have attempted to apply a
support vector machine (SVM) to predict national EF. In this
paper, we seek to fill this research gap by calculating the EF of 23
nations through the use of SVM techniques. The countries
analyzed in this study are listed in the Appendix S1. More
specially, the purpose of this research is twofold:

First, to determine the major factors influencing national EFs,
and second, to build a SVM model based on these identified
factors to calculate EF.

Materials and Methods

Materials

Drawing on previous research, we found a wealth of evidence
suggesting that a variety of factors influence EF. Cross-sectional
analyses consistently show that national per capita ecological
footprints are largely a function of gross domestic product (GDP)
[13,14,15]. A negative relationship between per capita EF and
export dependence (measured as the proportion of total GDP
generated by exports) has also been identified [15]. According to
Jorgenson and Burns [16], nations with a greater intensity in the
services sector experience higher increases in per capita EF.
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Some evidence suggests that domestic income inequality is
negatively related to the relative size of a nation’s per capita EF
[16]. Jorgenson (2003) found that urbanization has a positive
impact on EF [13]. From the above, it can be seen that the factors
that influence EF can be characterized as affluence (as measured
by GDP), export dependence, service intensity, domestic income
inequality, and urbanization.

Methodology

The SVM is a machine-learning method based on the structural
risk minimization principle from statistical learning theory. It maps
input data x into a higher-dimensional feature space Q by non-
linear mapping to yield and solve a linear regression problem in
this feature space [17]. The regression approximation addresses
the problem of estimating a function based on a given set
{(x,-,y,—)}:-’, where x; denotes the input vector, y; denotes the
output value, and n denotes the total number of data patterns. In
SVM, the regression function is given as the following:

g)=wxp(x)+d ()

Where d is a scalar threshold, o is the weight vector, and ¢(x) is
the high-dimensional feature space that is nonlinearly mapped
from the input space Xx.

Support vector regression (SVR) performs linear regression in
the high-dimensional feature space by e-insensitive loss. At the
same time, to prevent over-fitting and thereby improving the
generalization capability, the following regularized functional
mvolving summation of the empirical risk and a complexity term
l|w||* /2, is minimized. The coefficients @ and d can be estimated
by minimizing the regularized risk function:

Min |jo|* /2

o1 {yff(p(w,xi)fdsﬂv 2)

o(w,x;)+d—y; <A

The regression problem is transformed into the following
constrained formation:

1 < .
Min ol +p3 (0+5)

3)

yi—<oxiy—d<i+d6;  6;=20

doxiy+d—y;<2+0; ;=0
Where the constant p stands for the penalty degree of the sample
with error exceeding 4. Two positive slack variables d and 6"
represent the distance from actual values to the corresponding
boundary values of A— tube.

A dual problem can then be derived by using the optimization
method to maximize the function:

Max Zly,(u, ujf)fi;(ui-q-uj)f

ln n . .

32> (wi—v) (UJ—U/)K(XI"X/) 4)
i=1j=
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Where v; and v} are the Lagrange multiplier.
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The SVM for function fitting obtained by using the above
mentioned maximization function is then given by the following
function:

g0) =Y (i—v)K(xi,x)+d (%)

i=1

In Equation 5, sample points that appear with non-zero
coeflicients are the so-called support vectors. The kernel function
K(x,-,xj) =(p(x,-)(p(xj) satisfies Mercer’s conditions and performs
the non-linear mapping.

Results and Discussion

Preliminary data analysis

In this study, per capita EF was taken from White [18,19], the
latest data on national level per capita EF, and GDP data were
taken from the World Bank [20]. To correct for excessive
skewness, we use the natural logarithm transformation of GDP
data. Export data as a percentage of total GDP were taken from
the World Bank [20] and used as a measure of export intensity and
export dependence. Service data as a percentage of total GDP
were taken from the World Bank [20] and used as an indicator of
service intensity. Domestic income inequality data were taken
from the World Bank [20] and are presented as GINI coefficients,
which measure the distribution of income within countries. A
GINI index score of zero suggests perfect equality, while an index
score of 100 suggests perfect inequality. Urbanization data were
taken from the World Bank [20], and are measured as the
percentage of the total population living in cities, which represents
a country’s relative level of urbanization. Following Jorgenson and
Burns [16], we regress these data on per capita GDP and use the
residuals as measures of urbanization to minimize collinearity.

Table 1 provides descriptive statistics for all variables used in the
analysis. The product moment correlations between variables are
shown in the Table 2. Although correlations do not prove
causation, they can be used to generate hypotheses; therefore
Table 2 is presented to highlight the correlations among the five
variables used for analysis. It indicates that most of the correlations
were significant and in the expected direction.

SVM analysis
We used data of 123 countries (shown in Appendix S1) to
establish and test the SVM-based model. We used data of 99

Table 1. Descriptive statistics of all the variables used in this
study(N=123).

Variable Mean SD Minimum Maximum
EF 2.436 1.9517 0.52 9.59
GDP(In) 7.618 1.6658 4.449 10.805
Service (%) 54.066 13.003 20.542 78.53
Export (%) 36.311 18.280 7.272 83.83

Gini 38.931 10.040 19.5 62.9

urban 0.441 1.053 0.001 7.296

Note: EF = ecological footprint; GDP(In) = gross domestic product(the natural
logarithm transformation); service (%) = service as the percentage of GDP;
export(%) = export as the percentage of GDP. Gini= national income
disequilibrium; urban = urbanization level(residualized).
doi:10.1371/journal.pone.0030396.t001
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Table 2. Product moment correlations matrix.

1 2 3 4 5 6
1.GDP(In) 1

2.urban(residualized) 0423 1

3.Service (%) 07297 02577 1

4.GINI —03947 —02557 -02417 1

5.Export(%) 0284~ 0304 0 —0.202" 1

7.EF 0.860" 03477 06137  —0432" 0218 1

**correlation is significant at the level of 0.01 (2-tailed).
*correlation is significant at the level of 0.05(2-tailed).
doi:10.1371/journal.pone.0030396.t002

countries (80% of the data) to establish the model, and 24
countries (20% of the data) to test the accuracy of the model. For
the 24 countries used to test model accuracy, the calculations were
conducted in alphabetical order; therefore the results are
presented alphabetically. When the correct model was established,
there was no need for further “training” or “test” data. The model
only required five variables to calculate a nation’s EF. In addition,
the model was designed to achieve short calculation times.
Therefore, compared to traditional EF techniques, the SVM
technique was very easy to apply.

According to the method of Liu, Zhuang, and Liu [17], we used
the particle swarm optimization technique to choose the optimal
parameters for the SVM model. The optimal parameters are as
follows: p=1000, 6=513, 2=0.001. The EF model was then
determined by these three parameters and the data of 99
countries. Following this, we used the model to calculate the EF
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of the other 24 countries. Model accuracy was measured by
absolute and relative error. The calculation performance is
displayed in Figure 1. The calculation results are presented in
Table 3. Figure 1 and Table 3 show that the EF model based on
SVM can calculate EF perfectly. The average absolute error is
0.004883, and the average relative error is only 0.351078%.
Therefore, we were successful in establishing an EF model, and we
can use it to calculate the EF of any nation using only five nation-
specific variables.

According to Table 2, we can see that the product moment
correlation between GDP (In) and EF was 0.860. We constructed a
least-squares regression model and obtained the following
equation:

EF =1.008 + GDP(In) — 5.242 (6)

The average absolute error from least-squares regression is 0.7620,
and the average relative error is 44.66%. These are bigger than
the errors derived from the EF model using the SVM technique
with five variables. So, we can assume that the additional four
variables are useful for the calculation of EF.

Implications, limitations, and future research

Our results demonstrate that national level per capita EF is
influenced by the nation’s GDP, urbanization level, distribution of
income (measured with the Gini coefficient), export dependency (as a
percentage of total GDP), and service intensity (as a percentage of
total GDP). Using these five variables, we established an SVM model
to calculate EF. Compared with the traditional technique, the SVM
model required less variables, and had a quicker calculation time.
Therefore, the SVM technique 1s very easy to apply.
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Figure 1. SVM calculation performance of per capita EF.
doi:10.1371/journal.pone.0030396.g001
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SVM model results

Absolute error Relative error(%)

0.0046 0.200873
0.0049 0.09142
0.0046 0.46
0.0036 0.05931
0.0058 0.11262
0.0064 0.369942
0.0042 0.65625
0.0069 0.985714
0.0066 0.478261
0.0042 0.482759
0.0069 0.448052
0.0029 0.140777
0.0034 0.09798
0.0053 0.490741
0.0053 0.16614
0.0058 0.10376
0.0057 0.05944
0.0031 0.161458
0.0046 0.251366
0.0032 0.146789
0.0046 0.522727
0.0042 0.494118
0.0054 0.857143
0.005 0.588235
0.004883 0.351078

Table 3. Calculation results by SVM.

Country name Traditional technique results

South Africa 2.29 2.2946
Spain 5.36 5.3551
Sri lank 1 1.0046
Sweden 6.07 6.0664
Switzerland 5.15 5.1442
Syria 1.73 1.7364
Tajikistan 0.64 0.6442
Tanzania 0.7 0.7069
Thailand 1.38 1.3866
Togo 0.87 0.8742
Tunisa 1.54 1.5469
Turkey 2.06 2.0629
Turkmenistan 3.47 3.4666
Uganda 1.08 1.0853
Ukraine 3.19 3.1847
United kingdom 5.59 5.5842
United states 9.59 9.5843
Uruguay 1.92 1.9231
Uzbekistan 1.83 1.8346
Venezuela 218 2.1832
Vietnam 0.88 0.8846
Yemen 0.85 0.8542
Zambia 0.63 0.6354
zimbabwe 0.85 0.8550
average 2.535417 2.537425
doi:10.1371/journal.pone.0030396.t003

Despite the significant contributions of this study, it is subject to
a number of limitations. First, this study used a cross-sectional
rather than a longitudinal method. Much more emphasis was
placed on observing national-level EFs than on observing changes
in global EF. Much more emphasis should be placed on
longitudinal research to focus on observing changes in EF
behavior over time. Second, we only considered five factors that
influenced per capita EF. In the future, we will explore other
factors influencing per capita EF.

As a new approach to measuring sustainability, EF analysis has
been more successful than others. Inevitably, the approach is not
without its flaws [21,22]. However, its theory and application will
be improved with continued study and with refinements the
methodology used by organizations responsible for environmental
reporting and management.
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