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Abstract

Our goal is to introduce and describe the utility of a new pipeline ‘‘Contigs Assembly Pipeline using Reference Genome’’
(CAPRG), which has been developed to assemble ‘‘long sequence reads’’ for non-model organisms by leveraging a reference
genome of a closely related phylogenetic relative. To facilitate this effort, we utilized two avian transcriptomic datasets
generated using ROCHE/454 technology as test cases for CAPRG assembly. We compared the results of CAPRG assembly
using a reference genome with the results of existing methods that utilize de novo strategies such as VELVET, PAVE, and
MIRA by employing parameter space comparisons (intra-assembling comparison). CAPRG performed as well or better than
the existing assembly methods based on various benchmarks for ‘‘gene-hunting.’’ Further, CAPRG completed the
assemblies in a fraction of the time required by the existing assembly algorithms. Additional advantages of CAPRG included
reduced contig inflation resulting in lower computational resources for annotation, and functional identification for contigs
that may be categorized as ‘‘unknowns’’ by de novo methods. In addition to providing evaluation of CAPRG performance,
we observed that the different assembly (inter-assembly) results could be integrated to enhance the putative gene
coverage for any transcriptomics study.
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Introduction

With the advent of next generation sequencing (NGS) [1],

application of transcriptomics to address biological questions in

non-model organisms has grown phenomenally [2], [3]. Although

the generation of sequence data for non-model organisms

continues to accelerate, the development of assembled transcrip-

tomes and genomes for these organisms remains challenging [2].

Most transcriptomics studies for non-model organisms use

sequence assembly as a first step to generate contiguous sequences

(contigs) which consist of overlapping reads that provide a

consensus-based full length transcript. Multiple algorithms for de

novo alignment have been developed including: overlap-layout-

consensus (OLC) strategy which is used in CAP3 software [4] and

PHRAP [5]. Alternatively, graph methods based on suffix trees [2]

have been employed for alignment in NEWBLER (454 Life

Sciences, Branford, CT) and VELVET [6] algorithms. The

increasing number of sequence reads and longer read length

created by the latest generation of sequencers will require high

computational memory and management to achieve sensitivity,

accuracy and timeliness of assembly. Due to n2 complexity of the

OLC [7], [8], the memory requirement for the NGS reads are

high relative to graph methods. To keep pace with increasing

sequence read length, assembly with OLC can be performed with

different tools/pipelines to manage memory such as TGICL [9]

and PAVE [10], which use clustering with megablast followed by

assembling. Alternate methods like MIRA use hybrid strategy for

high and low confidences regions and take SNPs into account [11].

Graph based methods like VELVET and SOAP Denovo [12],

[13] that rely on K-mer are considered to be less memory intensive

[7]. VELVET and MIRA can perform assembling on both long

reads as well as short reads while SOAP Denovo works on short

reads.

Next generation sequencing technologies including Illumina

(Illumina, Inc., San Diego, CA), SOLiD (Life Technologies

Corporation, Carlsbad, CA) and Helicos (Helicos BioSciences

Corporation, Cambridge, MA) generate millions to ten’s of

millions sequence reads (40–200 bp) per run representing

immense data content [14]. As next generation sequencing

technology continues to develop, the length of reads will likely

increase [15] as has been observed with the 454/Roche platform

which initially yielded 100 bp reads and now consistently yields

.400 bp reads. The alignment of short sequencing reads

generated by NGS to a reference genome has been successfully

applied to reads less than 200 bp [15], [2]. Examples of these short

read assembly algorithms include SOAP [12], [13], MAQ [16],
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Figure 1. The flow chart of CAPRG representing the mapping of reads to generate contiguous sequences (contigs).
doi:10.1371/journal.pone.0030370.g001

Figure 2. Assembly comparison for Colinus virginianus using various assembler programs and parameter spaces. E-value cutoff for all
database searches was ,10E-05. The abbreviation ‘‘nr’’ represents non-redundant protein database from NCBI and ‘‘K’’ represents K-mer size. CAPRG*
are assembly of reads that mapped to reference genome singly or failed to assemble by windowing against chromosome.
doi:10.1371/journal.pone.0030370.g002

Assembling Pipeline for Next Generation Sequencing

PLoS ONE | www.plosone.org 2 February 2012 | Volume 7 | Issue 2 | e30370



BOWTIE [17], BWA [18], Novoalign [19], STAMPY [20] and

ABYSS [21]. Additionally, BLAT [22], SSAHA2 [23] and BWA-

SW [15] have been used to align long reads/contigs against a

reference genome. By comparison, traditional long sequence read

alignment programs are relatively slow when compared to short

read aligners [15]. With the introduction of BWA-SW [15], the

alignment of long reads can be done faster in comparison to other

long read alignment programs such as BLAT and SSAHA2 [15].

Mapping reads to a divergent reference genome represents an

alternative to de novo assembly as the read length increases,

especially for large genomes that have high repetitive sequences

[20]. New approaches where a reference genome can be leveraged

as scaffolding for assembling the novel genome of interest have

been applied [24]. Based on a similar concept, we introduce the

‘Contig Assembly Pipeline against Reference Genome’ (CAPRG)

which first maps ‘‘long reads’’ against the reference genome

followed by assembly, instead of de novo assembly approaches

followed by conventional pipelines and tools (Figure 1). In the first

step of CAPRG alignment, ESTs juxtaposed to ‘‘one another’’

spanning ‘‘across’’ the chromosome are first sorted with an anchor

position on the chromosome. Groups of ESTs are binned to a

common window based on its anchor position to the chromosome.

Within each window, these groups of ESTs are assembled and

contigs are generated under criteria of high percentage of identity.

This new approach was assessed by assembling the non-model

organisms Japanese quail (Coturnix japonica) and Northern bobwhite

(Colinus virginianus) against the closely-related phylogenetic relative,

the chicken reference genome. Chicken (Gallus gallus) and Japanese

quail belong to same family Phasianidae while Northern bobwhite

is more distant to chicken and belongs to family Odontophoridae.

Finally, to assess the effects of increased phylogenetic distance

from the reference genome on sequence assembly using CAPRG,

the zebra finch (Taeniopygia guttata) genome which belongs to

distantly related taxonomic order Passeriformes was used as a

reference to assemble the transcriptome of Northern bobwhite and

Japanese quail.

Results and Discussion

Most transcriptome projects for non-model organisms focus on

maximizing the number of genes found, often termed as ‘gene

hunting’, and minimizing the number of redundant contigs [3]. As

described in the introduction, a number of de novo assembly

methods including OLC and graph methods have been developed

to achieve these ends. We have developed an alternative approach

(CAPRG), which utilizes a reference genome to build sequence

clusters for sequence assembly. The performance of the de novo

assembly methods including OLC (PAVE), graph method

(VELVET) and hybrid assembler (MIRA) were compared with

our reference-based OLC assembly tool, CAPRG.

Figure 3. Assembly comparison for Coturnix japonica with various assembler programs and parameter spaces. E-value cutoff for all
database searches was ,10E-05. The abbreviation ‘‘nr’’ represents non-redundant protein database from NCBI and ‘‘K’’ represents K-mer size. CAPRG*
are assembly of reads that mapped to reference genome singly or failed to assemble by windowing against chromosome.
doi:10.1371/journal.pone.0030370.g003

Assembling Pipeline for Next Generation Sequencing

PLoS ONE | www.plosone.org 3 February 2012 | Volume 7 | Issue 2 | e30370



Assembler parameterization has been shown as an important

step in determining the output of an EST project [3]. The output

of a graph-based method such as Velvet is highly dependent on K-

mer size while OLC assemblers such as CAP3 are affected by

percent identity. We took into consideration the parameter space

for the assembly output with different methods. We then

compared the output of these different assemblers against

CAPRG. The measurement of the assembly output can be done

by the size and accuracy of their contigs [7]. We first established

benchmarks for assembly output based on the number of contigs

and average length instead of using N50 because N50 statistics for

different assemblies are not comparable [7]. Secondly, we used the

annotation based on homology and more stringent reciprocal blast

hit (RBH) to evaluate the redundancy factor of the contigs

generated by each assembly method relative to the total number of

unique homologs. To assure an unbiased comparison of results

among assembly methods, same input files for each species and

equivalent BLAST cutoff values for matches were set among

assembly runs.

Given that graph-based assembly algorithms such as VELVET

use K-mer similarity to determine sequence homology, the

computational cost of algorithm execution is significantly reduced

due to faster detection of shared K-mer compared to all-against-all

pair-wise sequence alignment executed with OLC algorithms [7].

However this approach leads to lower sensitivity and therefore

leads to missing true overlaps [7]. We have found that the OLC

methods (CAPRG, MIRA and PAVE) consistently outperformed

VELVET regarding the total number of functional matches

(BLAST) [25], number of unique matches and total number of

unique matches against reference (Chicken) proteome for each

Northern bobwhite (Figure 2) and Japanese quail (Figure 3)

assemblies. Additionally, the reads that mapped to the reference

genome either as single read or failed to assemble were

reassembled (see Design and Implementation). This yielded an

additional 1,156 and 1,271 putative coding regions for Northern

bobwhite and Japanese quail, ranking CAPRG highest in gene-

hunting for both species, as compared to other assemblers.

In the presence of repeats, relaxed assembling parameters can

result in false positive joins that could result in chimeric contigs

[7]. One of the advantages of CAPRG is that it conducts fewer

EST versus EST comparisons for alignment due to the limited

window size strategy, as compared to the all-against-all, pair wise

and K-mer approaches, thereby leading to a lower chance of

producing chimeric contigs. This also leads to the reduction of

contig inflation. The primary cause for contig inflation can be

attributed to non-coding DNA sequenced from multiple haplo-

types that are heterozygous due to lower selective constraints [3].

An illustration of contig inflation is observed where the highest

Figure 4. Runtime for each program. Assembly times represent execution on a computer with a duo 2.26 GHz Quad core Intel Xeon processor,
16 GB of RAM and 64 bit Snow Leopard v1.6 operating system.
doi:10.1371/journal.pone.0030370.g004
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number of contigs identified via assembly does not necessarily

correspond with the identification of the highest number of unique

protein-coding sequences (Figure 2 and Figure 3). Overall

CAPRG produced a lower number of superfluous contigs and

therefore completed assembling at fraction of runtime that was

much faster than the other methods (Figure 4) with the exception

of VELVET (finished in ,20 mins). The trade off for the

decreased computational time of VELVET is less robust sequence

assembly when compared to the other assembly methods tested

(Figure 2 and Figure 3). Given the restrictive window-based

approach utilized in CAPRG, high quality assembly which rivals

MIRA and PAVE can be achieved within a timeframe similar to

VELVET using relatively modest computational power and

memory overhead.

It has been observed that parameter space (parameterization)

might be an important factor involved in the number of putative

genes detected during sequence assembly [3]. However, given our

datasets, we found that intra-assembling comparisons with

parameter space did not lead to a higher number of diverse genes

(Figure 5A). Most of the coding regions detected by a given

assembler utilizing various parameters overlapped significantly.

We compared the total number of genes identified by different

assembly methods and found high numbers of putative genes that

were identified uniquely within each assembly (Figure 5B). Similar

trends were seen for the Northern bobwhite data (Figure 5C, 5D).

The majority of assemblies were common (intersected) among

these three assembly methods and a small relative percentage of

genes were unique to each assembly method. Execution of all three

assembly methods can therefore contribute to the identification of

the maximum number of unique genes thereby increasing the

‘gene-hunting’ count (Figure 5B, 5D). Keeping these results in

perspective, we suggest that multiple assemblies generated from

intra-assembly parameterization might be useful. However, it

would be more advantageous if two or more assembly methods are

used for a transcriptomics study to generate a higher number of

putative genes as discussed by Papanicolaou et al. (2009) [3] and

Kumar et al (2010) [8].

One of the observations in transcriptome sequencing with NGS

technologies is that full length transcripts are generally not

sequenced though the transcripts are produced from whole

mRNA [3]. This might be due to failure of an assembler to

provide sufficient evidence of alignment due to high numbers of

Figure 5. The extent of common protein sequences in different assemblies and parameters from Japanese quail datasets against
chicken proteome database. Panel A represents the intra-assembling parameterization of PAVE at 80% and 90% identity and Panel B represents
the inter-assembling comparison among PAVE, MIRA and CAPRG. Panel C represents the intra-assembling parameterization of PAVE at 80% and 90%
identity and Panel D represents the inter-assembling comparison among PAVE, MIRA and CAPRG.
doi:10.1371/journal.pone.0030370.g005
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mismatches potentially due to limited conservation of non-coding

regions, alternative splicing or multiple SNPs [3]. As a conse-

quence, the ESTs may not overlap to assemble a contiguous

sequence, giving rise to non-overlapping contigs, singletons or

splits in gene [26], [27]. This issue of fragmentation not only leads

to partial representation of a protein coding sequence but also

redundancy in the assembled sequences where many of the contigs

might actually represent the same protein (locus) leading to a

redundancy factor that is introduced in assembly [3]. The

redundancy index can be used to assess the quality of sequence

assemblies. For example, low redundancy may reflect that the

assembler is not sensitive to provide joins between reads leading to

splits in assembly or that the assembler is able to recognize

putative regions in same locus/identify SNPs that are not

identified by other assemblers. If the average length of contigs

for an assembly method are longer than those produced by an

alternative assembly method, the assembler may be recognizing

putative regions in the same locus rather than providing disjoined

shorter sequence fragments which therefore results in higher

redundancy. We calculated the redundancy index by dividing the

total number of hits from the non-redundant (nr) protein database

from NCBI by the total unique hits therefore providing the

number of contigs that belong to the same locus for each

organism. We found that the redundancy index of MIRA and

CAPRG were highest followed by PAVE (Table S1). The average

length of contigs in Japanese quail and in Northern bobwhite was

highest for MIRA closely followed by CAPRG (Figure S1).

Therefore, the performance of MIRA and CAPRG in detecting

Figure 6. The effect of phylogenetic diversity on the assembling performance. Panel A Total number of reads mapped against chicken and
zebra finch genome for Coturnix japonica and Colinus virginianus. Panel B Total number of unique hits against nr database for Coturnix japonica and
Colinus virginianus mapped against chicken and zebra finch genome. E-value cutoff for all database searches was ,10E-05. The abbreviation ‘‘nr’’
represents non-redundant protein database from NCBI.
doi:10.1371/journal.pone.0030370.g006
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putative regions is likely maximized (Figure 2 and Figure 3)

without sacrificing the sensitivity to provide the longest contig read

lengths (Figure S1).

Although CAPRG assembly presents many advantages to

existing assembly methods, one caveat to this approach is the

requirement of a reference genome that shares .94% identity

with the genome of interest [28]. To evaluate the effect of

phylogenetic diversity on the CAPRG assembling, we mapped the

transcriptome reads against zebra finch (Taeniopygia guttata) genome

[29], which belongs to a different taxonomic order (Passeriformes)

compared to chicken, Japanese quail and Northern bobwhite

(order Galliformes). We found that reads mapping to the zebra

finch genome were reduced to nearly half when compared to the

chicken reference genome for both Japanese quail and Northern

bobwhite (Figure 6A). CAPRG generated a lower number of

contigs from the decreased number of reads that mapped to zebra

finch genome (21,212 for Northern bobwhite and 17,106 for zebra

finch). The total number of unique hits against the nr database was

reduced by 41% for Japanese quail and 25% for Northern

bobwhite (Figure 6B). The selection of the phylogenetic neighbor

effects the number of reads mapped to the reference genome

thereby effecting contig generation and number of unique genes

found. Based on this study, utilizing a close phylogenetic neighbor,

preferably in the same family, generates optimal results.

We examined the percentage of ESTs that are binned in each

window in expectation to form contigs versus how many actually

assembled to generate contigs. We found that a high percentage

95.4% (206157/216073) and 97% (249745/257566) of reads that

were identified/binned for each window were successfully

assembled as contigs (Table S2). Finally we visualized the

distribution of all contigs that were binned across the expanse of

chromosomes (Figure 7). We found that the distribution of both

transcriptomes had a similar distribution against the chicken

genome with chromosome 1, chromosome 2, chromosome 3,

chromosome 4, and chromosome 5 representing the categories

with highest number of contigs. This information can be utilized to

Figure 7. Distribution of contigs per chromosome for Japanese quail and Northern bobwhite against the chicken reference
genome.
doi:10.1371/journal.pone.0030370.g007
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further analyze contigs that are considered ‘unknown’ and are

generally ignored in most studies thereby giving a broader picture

of the entire transcriptome of a non-model organism.

Materials and Methods

Data
The transcriptomic datasets were generated for Northern

bobwhite [30] and Japanese quail (Gust et al, Manuscript in

preparation) by single-end Roche/454 GS-FLX sequencing. The

Northern bobwhite is available at Short Read Archive (SRA)

division [31] of GenBank under accession number SRA009460.5.

Read Preprocessing
The ESTs were preprocessed by masking adaptors, base calling,

and removal of unwanted sequences such as mitochondrial DNA,

rDNA, homopolymers and other contaminants [32]. After

preprocessing, the datasets for Northern bobwhite and Japanese

quail were assembled using CAPRG and the pre-existing assembly

tools PAVE (version 1_0), MIRA (version 2.9) and VELVET

(version 0.7.56).

Computing Infrastructure
The assemblies were performed using a computer with duo

2.26 GHz Quad core Intel Xeon processors (Intel Corporation,

Santa Clara, CA) and 16 GB RAM with the 64 bit Snow Leopard

v1.6 (Apple Computer Inc. Cupertino, CA) operating system. The

CAPRG pipeline was implemented with PERL 5.10.0, and

BioPERL 1.6 script programs interfacing with MySQL 5.4.3

database (www.mysql.com) through PERL-DBI. Other dependen-

cies include Burrows-Wheeler Alignment (BWA 0.5.7) [15],

SAMTools [33] and CAP3 [4]. The Chicken proteome was

downloaded in Aug’2010 from Entrez in fasta format [34]. The

chicken reference genome build May 2006 and Zebra Finch

genome build 2008 was downloaded from Golden Path [35].

The default settings for assembly tools were utilized for MIRA,

PAVE and VELVET (using the ‘‘long-read switch’’ appropriate

for GS-FLX data) except as mentioned in the Results and

Discussion section. The two-step process of alignment and

assembling in CAPRG uses BWA-SW default settings and

assembling with CAP3 at 90% identity and overlap of 20 bp.

Single reads might align to multiple chromosomal positions with

different mapping quality (MAPQ) values. Only the read with

maximum mapping quality representing a unique locus was

imported into the MySQL database.

The assembling process begins with ordering the reads

according to its unique position on each chromosome iteratively.

All reads with overlapping junction based on chromosomal

position with the previous read are binned in a single window

and assembled. A new bin is created each time the chromosomal

position of the next read falls beyond the window (the sum total of

previous read’s chromosomal position and the read length). The

assembling is performed with parameters as discussed above, and

can be considered optimal for the reduced read population size in

each window (as against all-against-all population size). The

identity parameter (90%) is kept stringent as we expect the reads

binned in a window to be highly identical and the overlap length is

kept low, the minimum allowed by CAP3, to allow maximum joins

among reads to form longer contigs. The parameter space is not

applied as 95.4% and 97% of Japanese quail and Northern

bobwhite binned reads were successfully assembled and will not

affect the overall results. Additionally, all reads that mapped to

reference genome either singly or failed to assemble and resulted

in singlets (45,291 and 88,000 for Northern bobwhite and

Japanese quail respectively) were assembled with CAP3 at 90%

identity and 40 bp overlap.

Investigation of final results for the finished assembly generated

for each assembly method included the exclusion of all singlets and

all contigs with read lengths .200 bp were used for comparison of

different methods. Resultant contigs for each assembly method

were annotated against the non-redundant (nr) protein database

from NCBI using Parallel Blast [36] with high performance

computing (HPC) (albacore.st.usm.edu) and BLAST [25] pro-

grams against chicken database.

Availability
The project is available at http://code.google.com/p/caprg/.

We plan to implement the multithreaded version of CAPRG that

will further reduce the computational cost. This will especially help

to assemble Illumina reads (.150) that have high depth and read

number (,10 M).

Supporting Information

Figure S1 Comparison of average length of contigs of different

assemblies.

(DOC)

Table S1 Redundancy index of various sequence assembly

methods.

(XLS)

Table S2 Breakdown of ESTs binned per window and actual

ESTs assembled per window.

(XLS)
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