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Abstract

Fibroblast growth factors (Fgf) are secreted signaling molecules that have mitogenic, patterning, neurotrophic and
angiogenic properties. Their importance during embryonic development in patterning and morphogenesis of the
vertebrate eye is well known, but less is known about the role of Fgfs in the adult vertebrate retina. To address Fgf function
in adult retina, we determined the spatial distribution of components of the Fgf signaling pathway in the adult zebrafish
retina. We detected differential expression of Fgf receptors, ligands and downstream Fgf targets within specific retinal
layers. Furthermore, we blocked Fgf signaling in the retina, by expressing a dominant negative variant of Fgf receptor 1
conditionally in transgenic animals. After blocking Fgf signaling we observe a fast and progressive photoreceptor
degeneration and disorganization of retinal tissue, coupled with cell death in the outer nuclear layer. Following the
degeneration of photoreceptors, a profound regeneration response is triggered that starts with proliferation in the inner
nuclear layer. Ultimately, rod and cone photoreceptors are regenerated completely. Our study reveals the requirement of
Fgf signaling to maintain photoreceptors and for proliferation during regeneration in the adult zebrafish retina.
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Introduction

Teleost fish possess a tremendous ability to regenerate injured

organs [1,2,3,4,5,6,7,8]. The remarkable capacity in terms of

tissue regeneration and the availability of feasible genetic

approaches to manipulate adult zebrafish are key benefits in

studying the complex molecular mechanisms involved in regen-

eration in vivo. We use the zebrafish retina to study processes

during adult retinal degeneration and regeneration. A variety of

lesion paradigms including surgical excision, toxin injection, and

exposure to intense light have been examined in the past to

damage different retinal cell classes [9,10,11,12,13,14,15,16].

Unlike mammals, the adult zebrafish is able to restore the

complex architecture and function of the neural retina following

injury, and two different cell sources are involved in the process of

retinal neurogenesis and regeneration. One source is the ciliary

marginal zone (CMZ), which is located at the periphery of the

retina. The cells in the CMZ continually give rise to all types of

neurons in the adult zebrafish and thereby provide lifelong retinal

growth and neurogenesis. The second neurogenic source comes

from the Mueller glia cells (MGC). The MGC are located in the

inner nuclear layer (INL) of the retina and are able to generate

photoreceptor progenitors, which are restricted to the rod lineage.

After injury, MGC are able to give rise to multipotent progenitor

cells, which proliferate and substitute all types of neurons to

reconstitute the previous tissue architecture [17,18,19]. Investiga-

tions in zebrafish fin, heart and brain revealed a crucial role for Fgf

signaling during homeostasis and regeneration [20,21,22,23,24].

Furthermore, inhibiting Fgf signaling from prenatal stages

onwards causes degeneration of rod cells in the mouse retina.

The loss of rods proceeds very slowly and complete loss is observed

only after long-term suppression of Fgf signaling in mice that are

several months old [25,26,27]. Collectively, these studies suggest

that Fgf signaling plays a crucial role in tissue homeostasis.

Whether Fgf signaling is important for retinal homeostasis and for

recovery after injury is not yet known. The aim of our study is to

understand the role of Fgf signaling in homeostasis and after injury

in the adult zebrafish retina. To this end, we studied the spatial

distribution of Fgf components in the adult retina. Our

experiments revealed differential expression of specific Fgf

receptors, ligands and target genes in the adult retina. Second,

we blocked the Fgf signaling to better understand its importance

for retinal homeostasis. We found that impaired Fgf signaling

causes severe degeneration of the photoreceptor layer. Third, we

show that photoreceptor cell loss induced a fast and profound

regeneration response, during which Fgf may promote precursor

proliferation. Taken together our results suggest that Fgf signaling

is required for maintenance of photoreceptor cells in the adult

retina and plays a role in proliferation during photoreceptor

regeneration.
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Results

Fgf pathway expression in the adult neural retina
The role of Fgf signaling in the adult zebrafish retina is little

studied, hence we initially investigated the expression profile of

several Fgf receptors (Fgfr), ligands and target genes by in situ

hybridization (Fig. 1 A–M). Reverse transcriptase (RT-) PCR

analysis on cDNA prepared from adult zebrafish eyes revealed the

presence of transcripts for fgfr1a, fgfr2, fgfr3, fgfr4, fgf2, fgf5, fgf7,

fgf8a, fgf8b, fgf18, fgf18l, fgf20a and fgf20b but not of fgf1, fgf6a and

fgf14 (data not shown) in the adult eye. In situ hybridization analysis

on cryosections of adult wild-type (WT) zebrafish retina confirmed

the expression, which occurs in a layer specific manner.

Expression profiles of four of five Fgf receptors are detected in

the adult zebrafish retina. fgfr1a and fgfr2 are expressed in the inner

half of the INL, whereas fgfr3 expression is complementary, in the

outer half of the INL (Fig. 1A–C). The expression of fgfr1a, fgfr2

and fgfr3 occurs in central and peripheral parts of the retina,

whereas fgfr4 is mostly expressed in the peripheral ciliary marginal

zone (CMZ) and is absent from the central region (Fig. 1D). Fgfr1b

was not expressed above background levels (not shown). Next, we

tested Fgf ligand expression by in situ hybridizations and found

Figure 1. Fgf receptors, ligands and downstream target expression in specific layers of the adult zebrafish retina. A) fgfr1a expression
in the INL and GCL. B) fgfr2 signal in the INL C) fgfr3 expression in the outer part of the INL D) fgfr4 expression in the INL next to the CMZ (black
arrow). E) fgf8a expression in the INL and weakly in the GCL. F) fgf20a expression in the ONL, INL and GCL. G) fgf24 is detectable in the INL and GCL.
H–M) Fgf pathway target gene expression. H) spry1 expression in the INL and GCL. I) spry2 signal in POS, INL and GCL. J) spry4 expression in the INL
and weakly in the GCL. K) dusp6 expression is strong in the POS, and in the INL and GCL. L) Strong etv5a expression is found in the POS, INL and GCL.
M) etv5b expression is widespread in the ONL, INL and GCL and enriched in the POS. N) Summary of ISH expression data: + expression, 2 no
detectable expression. GCL, ganglion cell layer: white arrowhead; INL, inner nuclear layer: black arrowhead; ONL, outer nuclear layer; POS,
photoreceptor layer: black arrow. Scale bar = 20 mm.
doi:10.1371/journal.pone.0030365.g001
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expression of fgf8a, fgf20a and fgf24 in the INL (Fig. 1E–G), of

fgf20a and fgf24 in the ganglion cell layer (GCL), and broad fgf20a

expression in the ONL and in photoreceptor outer segments. We

did not detect fgf2, fgf3, fgf10a, fgf13b, fgf17 in the adult retina (data

not shown). Several target genes of the Fgf signaling pathway

faithfully reflect sites of Fgf signaling in multiple zebrafish tissues,

including spry1, spry2, spry4, dusp6, etv5a and etv5b [28,29]. In the

retina, spry1 and spry4 are uniformly expressed in the INL and

GCL. spry2, dusp6, etv5a and etv5b expression is detected in the INL

and GCL, and very prominently, in the photoreceptor layer. etv5b

is more widely expressed in the photoreceptor layer than the other

target genes (Fig. 1H–M); a summary of these results is shown in

Fig. 1N.

We also probed for the presence of the Fgf receptors Fgfr1a and

Fgfr3 using immunohistochemistry. In agreement with the in situ

hybridization analysis, an antibody raised against Fgfr1a detected

expression in the INL and GCL, but also in the photoreceptor

layer (Fig. 2A). Fgfr3 expression is found in the outer half of the

INL, similar to the in situ expression pattern (Fig. 2B). Using the

transgenic lines Tg(-5.5opn1sw1:EGFP)kj9 and Tg(-3.7rho:EGFP)kj2

expressing GFP in ultraviolet – (UV) sensitive cone [30] and rod

photoreceptor cells [31], we co-localized Fgfr3 expression to the

synaptic terminals of the UV cones and rods, respectively (Fig. 2C–

D). Taken together, our results suggest that Fgf signaling pathway

components are present and might function in several layers and

cell types of the adult zebrafish retina, including its photoreceptors.

Loss of Fgf signaling leads to rapid death of
photoreceptors

To investigate the functional role of Fgf signaling in the adult

zebrafish retina, we focused on its potential role in photoreceptor

cells. We used a transgenic line expressing a dominant negative

version of receptor 1 (dn-fgfr1) under the control of the zebrafish

temperature-inducible hsp70l promoter (Tg(hsp70l:dnfgfr1-EGFP)).

The dn-fgfr1 lacks the intracellular domain, binds to endogenous

Fgf receptors and efficiently blocks all Fgf signaling [20]. Adult

dn-fgfr1 transgenic fish and wild-type siblings were heatshocked

once daily up to seven days. Subsequent histological analysis

revealed a rapid and severe disorganization of the retinal

structure already within seven days (Fig. 3H). Transgenic fish

display a progressive loss of the photoreceptor outer segments

(POS) and thinning of the outer nuclear layer (ONL) visibly

starting from three days of heat shock treatment (Fig. 3F) and

getting more severe over time. After one week of continuously

blocked Fgf signaling, photoreceptor cells are almost completely

lost (Fig. 3H). This phenotype is more severe in the dorsal and

central region of the retina than in the ventral retina (data not

shown). In addition, the cellular packing density in the INL

decreases, and fusiform-shaped cells appear at the junction to the

ONL (Fig. 3H9, black arrowhead), possibly indicating cell

migration towards the ONL. In contrast, non-transgenic wild-

type control siblings subjected to the same heat shock treatment

did not show any sign of degeneration after one week of

treatment (Fig. 3A–D). To determine whether Fgf inhibition

results in cell death, we used an antibody against activated

Caspase-3. After three days of heat shock, a small number of

Caspase-3-positive (Casp3+) cells were found in the ONL of

Tg(hsp70l:dnfgfr1-EGFP) transgenic but not in the ONL of wild-

type siblings (Fig. 3I, white arrowhead and data not shown). At

seven days, we detected a significant increase in the number of

Casp3+ cells in the ONL and a few cells in the INL (Fig. 3J, white

arrowhead) of transgenic fish. We did not detect any Casp3+ cells

in wild-type siblings. To determine the identity of the Casp3+
cells in the INL of transgenic siblings, we performed antibody

stainings for HuC/D, a marker for retinal neurons such as

amacrine and ganglion cells. We did not detect any Casp3+/

HuC/D+ cells in the INL and GCL (Fig. 4A). Moreover, we

performed antibody stainings for glutamine synthetase (GS), a

Müller glia cell marker and detect Casp3+/GS+ double labeled

MGC in the INL (Fig. 4B), possibly reflecting phagocytosis of

cellular debris by MGCs [32]. Quantification of the Casp3+ cells

(Fig. 3K) revealed that photoreceptor cells progressively die

between three and seven days of disrupted Fgf signaling,

predominately in the ONL. The amount of Casp3+ cells in

transgenic animals is significantly higher after three or more days

of heat shock treatment compared to control fish. Our results

showed that rapid photoreceptor degeneration occurs after loss of

Fgf signaling.

Cells of the retinal pigment epithelium (RPE) are also affected

early after loss of Fgf signaling. Already after one day of heat shock

treatment, RPE cells appear to elongate towards the photorecep-

tors in transgenic but not in control fish (Fig. 5A–B9), apparently to

stay in contact with them. Thus, the RPE layer expanded in size

compared to control siblings (Fig. 5C–D) and vacuoles appeared in

the RPE (Fig. 3H9). Taken together, we detect a very fast response

of the RPE linked to photoreceptor cell death.

Block of Fgf signaling results in loss of photoreceptor
markers and Fgf target gene expression

To characterize the degeneration of photoreceptor cells

further, we used specific markers that label different photore-

ceptor cell types. We used Zpr1 immunohistochemistry to label

red-green double cones, and in situ hybridization analyses for

rhodopsin (rho) to detect rod photoreceptors and opsin 1 (cone

pigments), short-wave-sensitive 1 (opn1sw1) to distinguish UV cones

[12]. In comparison to non-heatshocked transgenic or wild-type

siblings, heatshocked dn-fgfr1 fish show a gradual degeneration

Figure 2. Protein expression pattern of Fgf receptors. A) Fgfr1a
protein is detected in the photoreceptor layer colocalizing with UV
cones (green) (white arrow), INL and GCL (white arrowhead). B)
Expression of Fgfr3 is detected in the outer part of the INL next to the
UV cone synaptic terminals (white arrowhead). C, D) Fgfr3 is colocalized
with the synaptic terminals of UV cones and rods (white arrows). Scale
bars = 20 mm.
doi:10.1371/journal.pone.0030365.g002
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of Zpr1-positive (Zpr1+) double cones (Fig. 6A–E). Zpr1+
photoreceptors are lost over time and are completely absent by

seven days of heat shock treatment (Fig. 6C–E). Notably, the

signal at the synaptic terminals of the photoreceptor cells also

gets diminished over time and is completely lacking after seven

days of treatment. Similarly, in situ hybridization analyses shows

a diminished expression of rho in rod photoreceptors after five

days of heat shock in comparison to the wild-type and non-

heatshocked control siblings (Fig. 6F–F0). In UV cones, opn1sw1

is already lost after two days of heat shock treatment in

transgenic siblings in comparison to wild-type siblings and non-

heatshocked transgenic siblings (Fig. 6G–G0), indicating that UV

cones are more sensitive to withdrawal of Fgf signaling. We also

investigated the expression patterns of etv5b and dusp6, which are

established downstream target genes of Fgf signaling [33,34].

etv5b and dusp6 show a profound expression in the ONL, INL

and GCL in wild-type siblings and non-heatshocked transgenic

siblings. The expression of both genes is strongly diminished

within three days of heat shock (Fig. 6H–I0). In summary, our

study shows a rapid loss of markers for photoreceptor cells and

general loss of Fgf target gene expression after conditionally

blocking Fgf signaling.

Figure 3. Degeneration of the retina of dn-fgfr1 transgenic animals over time. A, E) Control (ctrl) and Tg(hsp70l:dnfgfr1-EGFP) (dn-fgfr1)
siblings without heat shock (HS) treatment: in both cases no morphological changes were detected B–D) In control siblings, the architecture of the
retina and the thickness of the ONL (indicated by the error bar) remains unaffected F–H) In contrast, in transgenic animals a decrease in organization
and in the width of the ONL (indicated by decreasing size of error bars) is observed. D9, H9) Insets show the normal structure of control retina and the
changes in the retinas of dn-fgfr1 animals. In dn-fgfr1 transgenics, vacuoles appear in the RPE (white arrowhead), and the thickness of the RPE
increases. The POS and ONL decrease in thickness. For orientation purposes, the black arrowheads indicate the border of horizontal cells. I) An
activated Caspase-3 positive cell in the ONL (white arrowhead) after heat shock treatment on three consecutive days. J) Activated Caspase-3 positive
cells in the INL and ONL (arrowheads) after five days of Fgf signaling inhibition. G) Quantifications of activated Caspase-3 positive cells per section
over time. In wild-type and transgenic fish without any heat shock, dying cells are not detectable (p = 2,28). After three days of heat shock treatment
dying cells are detected in the transgenic fish only in the ONL (grey column) (p = 2,44E-08). After five (p = 1,04E-41) and seven days, an increased
number of activated Caspase-3 positive cells are in both the ONL (grey column) and INL (black column) (p = 6,42E-26). Shown are the mean numbers
of Casp3+ cells/section. Error bars indicate the standard error of the mean (SEM). p-values: *#0.05, **#0.01, ***#0.001. ctrl, control; HS, heat shock;
dn-fgfr1, Tg(hsp70l:dnfgfr1-EGFP). Scale bars = 20 mm.
doi:10.1371/journal.pone.0030365.g003
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The adult neural retina regenerates after Fgf signaling
withdrawal induced photoreceptor cell loss

The zebrafish retina is generally able to regenerate following a

variety of retinal injuries [19,35,36,37]. We therefore examined

whether photoreceptors are able to regenerate following the

inhibition of Fgf signaling. We compared the regeneration in

transgenic and wild-type siblings by histological analysis. Following

photoreceptor ablation from overexpression of the dn-fgfr1

trangene for five days, we examined presence of newly formed

photoreceptors one month later. The histological analysis revealed

regenerated, layered retinas in the transgenic fish that were

comparable to the uninjured wild-type control retinas. Further-

more, the amount and density of cell nuclei in the ONL and the

shape of photoreceptor cells were similar between regenerated and

control retina (Fig. 7A–B).

To investigate the regeneration process at the level of specific

markers, we analyzed photoreceptor-ablated animals after seven

days of regeneration. Zpr1 expression in red-green double cones

was detected again after seven days of regeneration (Fig. 7C–D).

Similarly, in situ hybridizations of rho and UV opsin (opn1sw1)

showed fast reappearance of rod photoreceptor and UV cone

expression makers in the photoreceptor layer, which resembled the

expression pattern in control fish (Fig. 7E–H). Finally, the Fgf

downstream target etv5b was also prominently re-expressed in its

designated domain in the GCL, INL and ONL (Fig. 7I–J). Taken

together, our results demonstrated (i) that photoreceptors effi-

ciently regenerated following Fgf signaling withdrawal, (ii) that

markers for photoreceptor identity and Fgf downstream targets

were re-expressed rapidly due to the regeneration of photoreceptor

cells.

To analyze the photoreceptor regeneration response in more

detail we used BrdU-labeling experiments to study S phase re-

entry of retinal cell types. A time-course experiment allowed us to

determine the spatial and temporal dynamics of the proliferation

response. In wild-type siblings treated with heat for up to seven

days and in non-heatshocked transgenic dn-fgfr1 fish, only very

few individual BrdU-positive (BrdU+) cells were located in the

ONL or INL (Fig. 8A–B). In contrast, cells started to proliferate

and incorporate BrdU in the inner portion of the INL of dn-fgfr1

fish three days after heat shock induction (Fig. 8C); these cells had

the typical morphology of Müller glia cells (Fig. 9A). At five days of

disrupted Fgf signaling, clusters of fusiform-shaped BrdU+ cells

Figure 4. Double labeling of Caspase-3 positive cells. A) Casp3
(red) and HuC/D (green), marker for mature neurons such as amacrine
and ganglion cells, do not colocalize in the INL (white arrow) and GCL
(white arrowhead). B) Glutamine synthetase (GS, green), a marker for
MGC, colocalizes with Casp3+ (red) cells in the INL (white arrows). Scale
bar = 20 mm.
doi:10.1371/journal.pone.0030365.g004

Figure 5. Retinal pigment epithelium is expanded following Fgf signaling inhibition. A) After one day of heat shock treatment control
siblings do not show any change in the RPE structure. B) In transgenic siblings, RPE cells appear more stretched, reaching out to the outer segments
of the photoreceptor cells (black arrow). A9, B9) At higher magnification, the RPE contacts photoreceptor cells in the POS in the transgenic fish
(arrow), while this was not detected in retinas of control fish. C) The black error bar indicates the width of the RPE in control siblings. D) In contrast,
the width of the RPE is highly increased (white error bar) in retinas of dn-fgfr1 fish after two days of heat shock treatment. Scale bars = 20 mm.
doi:10.1371/journal.pone.0030365.g005

Fgfs Maintain Photoreceptor Survival
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Figure 6. Loss of photoreceptor marker gene expression after Fgf-receptor inhibition. A) Expression of the double cone marker Zpr1 in
the outer segments (arrow) and in the photoreceptor synaptic terminals (arrowhead) of control siblings after 7 days of HS. B) Expression or Zpr1 in
transgenic fish without HS (arrow and arrowhead), C) after 3 days of HS (arrow and arrowhead), D) after 5 days of HS (arrow and arrowhead), and E)
after seven days of HS. Hardly any photoreceptor marker expression remains visible in outer segments (arrow) and the photoreceptor synaptic
terminals are no longer detectable. F) The rod photoreceptor marker rhodopsin (rho) is expressed in the ONL (arrowhead) of control siblings. F9) rho
expression in the ONL in transgenic non-heatshocked control fish (arrowhead). F0) Reduced rho expression (arrowhead) in dn-fgfr1 transgenic fish
after 5 days of HS. G) WT expression of UV opsin (opn1sw1) as a cone photoreceptor marker (arrowhead). G9) Similar expression of UV opsin in the
POS of untreated transgenics (arrowhead). G0) Expression of UV opsin is completely absent in transgenic experimental fish (arrowhead) after 2 days of
HS. H) WT expression of the Fgf signaling downstream target gene etv5b. Prominent expression is seen in the POS (arrowhead). H9) Comparable
expression in untreated dn-fgfr1 fish (arrowhead). H0) Complete lack of etv5b expression after 2 days of heat shock of dn-fgfr1 fish (arrowhead). I) The
downstream target dusp6 is expressed broadly in the retina and prominently in the POS (arrowhead). I9) In untreated transgenic fish, a similar pattern
as in control siblings was detected with distinct expression in the POS (arrowhead). I0) After 2 days of heat shock induction of the dn-fgfr1 transgene,
dusp6 expression is completely lost in the neural retina, including the POS (arrowhead). Scale bars = 20 mm.
doi:10.1371/journal.pone.0030365.g006

Fgfs Maintain Photoreceptor Survival
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appeared to migrate towards the ONL. Furthermore, a large

number of cells were proliferating in the ONL after one week of

impaired Fgf signaling (Fig. 8D–E). Quantification of BrdU+
nuclei corroborated a significant number of proliferating cells in

the INL, which started at three days and expanded over time.

After seven days, a noticeable number of cells were proliferating in

the INL as well as in the ONL (Fig. 8F). Moreover we detected a

low number of BrdU+ cells in the GCL. To determine the identity

of these cells, we used the pan-leukocyte marker L-Plastin. The

vast majority of the BrdU+ cells in the GCL colocalize with L-

Plastin (Fig. 9B, white arrowhead), suggesting that microglia/

macrophages remain in the retina after lesioning. We did not see

BrdU+/L-Plastin+ double-positive cells in the INL or ONL of heat

shock control (Fig. 9C, white arrows) or transgenic fish (Fig. 9D,

white arrows).

To examine whether these newborn cells give rise to

photoreceptor cells, we performed long-term BrdU pulse-chase

experiments. To this end, we soaked heat shocked dn-fgfr1

transgenic and non-transgenic control fish for two hours in BrdU

followed by a chase time of one month. Control retinas displayed

BrdU incorporation only in few rods and rod precursor cells of the

ONL, as determined by co-labeling with neuroD (Fig. S3A–C),

whereas numerous BrdU+ nuclei were found in the photoreceptor

layer of heat shocked dn-fgfr1 fish. The elongated nuclear shape of

these cells suggested they were cone photoreceptors, which we

confirmed by co-staining with the double cone marker Zpr1

(Fig. 8G–J). Our results showed that a significant number of cells

were stimulated to proliferate in the INL and ONL following

temporary Fgf signaling withdrawal and photoreceptor loss. These

newly born cells gave rise to numerous newly differentiated cone

and rod photoreceptor cells (Figs. 7, 8).

Fgf signaling is required for proliferation in regeneration
To examine a possible influence of Fgf signaling on regener-

ation, we employed an intense-light-lesion paradigm that specif-

ically depletes photoreceptor cells [36]. In transgenic dn-fgfr1 fish,

we introduced a light lesion and subsequently blocked Fgf

signaling for three consecutive days via heat shock treatment. As

a control, we induced light lesions in the retinas of transgenic

siblings that were not heat shocked, and thus had intact Fgf

signaling (Fig. 10A). Our results show diminished proliferation in

the INL and ONL of the retina when Fgf signaling is blocked

(Fig. 10B). We quantified the number of proliferating cells in

BrdU-pulse experiments and find a significant decrease of

proliferation after injury in fish with impaired Fgf signaling

(Fig. 10C). Thus, our results show a significant decrease of

proliferating cells in the retina upon impaired Fgf signaling. This

indicates that Fgf signaling is required also for proliferation during

the regeneration response.

Discussion

We investigated the role of Fgf signaling in the adult retina of

the zebrafish, as an organism that can undergo retinal

regeneration. Based on the expression of Fgf ligands, receptors

and downstream targets we observe, active Fgf signaling is likely

to continously occur in the adult zebrafish retina, notably in

photoreceptors and also other layers and cell types. A key

finding of our study is that Fgf signaling is required in a

relatively selective manner for the maintenance of photoreceptor

cells, of both the rod and cone lineage. When Fgf signaling is

withdrawn, photoreceptors quickly undergo cell death within a

few days. Thus, Fgf signaling is necessary to maintain

photoreceptor cells in the adult zebrafish retina, and may be

similarly required also in the adult mammalian, including

human, retina. In contrast to rodents and humans, zebrafish

are capable of regenerating their retina following damage.

Following Fgf signaling withdrawal, we observe proliferation in

the INL, and BrdU pulse-chase labeling also marks the newly

formed photoreceptors, thus confirming the capacity to regen-

erate photoreceptors also after Fgf signaling withdrawal-induced

ablation. Generally, the Fgf signaling withdrawal assay may also

be useful as a novel inducible genetic photoreceptor lesion model

to study adult retinal regeneration.

Figure 7. Recovery of retinal tissue architecture and marker gene expression after photoreceptor ablation. A, B) Hematoxylin-eosin
staining of control retina after one month. dn-fgfr1 transgenic, regenerated retina has recovered a similar layered structure as the retina of wild-type
control siblings. C, D) Expression of the double cone marker Zpr1 is recovered in the photoreceptor cells of dn-fgfr1 fish (arrowheads) after seven
days of regeneration and displays a pattern comparable to control retinas. E, F) rho expression recovers in transgenic fish and is highly comparable to
control fish (arrowheads). G, H) UV opsin (opn1sw1) expression shows the same pattern in control and in transgenic retinas (arrowheads). I, J)
Expression of the downstream target gene etv5b, indicative of Fgf signaling activity, has recovered in dn-fgfr1 fish after seven days of regeneration
and expression is indistinguishable from control fish (arrowheads). Scale bar = 20 mm.
doi:10.1371/journal.pone.0030365.g007

Fgfs Maintain Photoreceptor Survival
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Transgenic dn-fgfr1 line as a tool to study retinal Fgf
function

We used a dn-fgfr1 transgenic line (Tg(hsp70l:dnfgfr1-EGFP) [20]

to study the role of Fgfr-mediated signaling in the adult zebrafish

retina in vivo. This transgenic line has been used successfully in

several zebrafish studies (e.g. heart, fin, brain; [20,38]). Impor-

tantly, this line allows temporally conditional and ubiquitous

activation of dn-fgfr1. The Fgf signaling block is thus not confined

to the retina or specific retinal cell types. Although we cannot rule

out at present that systemic effects might contribute to the

observed retinal phenotype, the absence of Fgf target gene

expression in the retina upon heat shock induced dn-fgfr1

activation confirms disruption of Fgf signaling in the retina.

Further genetic studies using e.g. the CreERT2/loxP system [39]

will be needed to further dissect the tissue and cell type specific

requirements for Fgf signaling in the zebrafish retina.

Figure 8. Fgf signaling withdrawal dependent photoreceptor death triggers proliferation response in ONL and INL. A) The control
retina shows few BrdU+ cells in the ONL (arrowhead). B) Non-heatshocked control transgenic fish show similar numbers of BrdU+ nuclei in the ONL
(arrowhead) as the control. C) After 3 days of heat shock treatment, a strong proliferation response is detectable in the INL (arrowhead). D) After five
days, cell clusters and fusiform-shaped cells are found in the INL (arrowhead). E) After seven days of heat shock induction, a large number of BrdU+
nuclei are located in the ONL (arrowhead). F) Quantifications of BrdU+ cells per section. Under control conditions, control siblings and non-treated
transgenic fish show hardly any BrdU incorporation. After one day of HS induction, proliferation increases in both groups of experimental fish
compared to non-heatshocked controls. There is no significant difference between transgenic and WT siblings (p = 0,11). After three days, many cells
proliferate mainly in the INL of transgenic siblings (p = 0,01). At seven days of Fgf signaling inhibition, the number of proliferating cells in the INL and
ONL increases even further in dn-fgfr1 fish (p = 4,3E-13). Shown are the mean numbers of BrdU+ nuclei/section. The error bars indicate the SEM. p-
values: *#0.05, **#0.01, ***#0.001. G) After 5 d of HS, experimental fish were soaked in BrdU, followed by a one month chase time. In control
siblings, BrdU+ nuclei were found after one month of regeneration in the ONL (arrowhead). H) In transgenic fish elongated BrdU+ cell nuclei, which
are characteristic for photoreceptor cells, are detected in the photoreceptor layer (arrowhead). I) Zpr1 and BrdU (arrowhead) double positive nuclei
were not detectable in control fish. J) In contrast, numerous Zpr1 and BrdU double-labeled cells were found in the photoreceptor layer in retinas of
transgenic fish (arrowhead). Scale bars = 20 mm.
doi:10.1371/journal.pone.0030365.g008
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Fgf signaling in mammalian and zebrafish
photoreceptors

Previous studies in rodents and human have detected expression

of Fgf pathway components in the retina [40] (and references

therein), and suggested a role in cone photoreceptor development

[40,41]. Fgfs are thought to exert neuroprotective effects on

mammalian photoreceptors in vivo and in vitro [42,43]. The spatial

distribution of Fgf pathway components that we observed in the

adult zebrafish retina is in agreement with such studies. Blocking

Fgf signaling in the mammalian retina has generally led to much

milder phenotypes than we observe. In mouse, Campochiaro et al.

expressed either dominant negative Fgfr1 or Fgfr2 under the

control of the rhodopsin promoter, which led to progressive rod

cell death, albeit over a much slower time of months [25], rather

than days as observed from zebrafish retinas (this study).

Transgenic retinas of one-month-old mice were hardly distin-

guishable from normal ones. The degeneration of photoreceptors

occurred gradually from two months, until around five months of

age restricted areas with loss of rods were seen [25]. Our study in

zebrafish suggests a more direct dependence of both rod and cone

photoreceptors on continued Fgf signaling, because complete

photoreceptor loss is observed within one week upon Fgf signaling

withdrawal. Apart from unknown species-specific differences,

additional criteria likely contribute to this observed difference.

For instance, Fgf signaling might be blocked more strongly in the

zebrafish transgenic dn-fgfr1 line than in the mouse studies.

Indeed, dosage is critical, because we observed that overexpression

from a single copy of the dn-fgfr1 transgene produces a much less

severe photoreceptor degeneration phenotype than two copies

(data not shown). Alternatively, blocking Fgf signaling in the entire

retina might have a different effect from blocking it only in

photoreceptors, or another cell type. In agreement with this

possibility, Rousseau et al. found that overexpressing a dn-fgfr1

construct in developing mouse RPE, a known source of Fgf-2 for

photoreceptors [27], caused a loss of up to 50% of all

photoreceptors in six-month-old mice. This phenotype is however

not getting more severe in 15-month-old animals [27]. In this

example, both developmental and RPE-specific Fgf signaling

might contribute to ensure photoreceptor survival. Due to the

conditional nature of the dn-fgfr1 transgenic line, our study

Figure 9. Identification of BrdU+ cells. A) Müller glia cells (green) are proliferating in the INL after seven days of HS (white arrowheads). B) The
vast majority of BrdU+ cells in control and transgenic fish in the GCL colocalize with the pan-leukocyte marker L-Plastin (white arrowhead). C) BrdU+
cells in the INL and ONL do not colocalize with L-Plastin in seven days HS control fish (white arrows). D) BrdU+ cells in the INL do not colocalize with
L-Plastin in transgenic heat shocked fish (white arrows). Scale bar = 20 mm.
doi:10.1371/journal.pone.0030365.g009

Figure 10. Fgf function in proliferation during regeneration. A) Many cells proliferate in the adult retina 3 days after light lesion (white
arrowheads). B) When Fgf signaling is blocked, proliferation is strongly reduced. C) The quantifications show a significant reduction of proliferation
after light lesion when Fgf signaling is blocked during the regeneration phase. Scale bar = 20 mm.
doi:10.1371/journal.pone.0030365.g010
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circumvents the well known embryonic developmental require-

ments for Fgf signaling in the retina (e.g. [44,45,46,47]), and

revealed its requirement in adult photoreceptor homeostasis. In

teleosts, development of the retina continues life-long in the ciliary

marginal zone (CMZ) of the adult retina. We did not observe,

however, a difference in BrdU incorporation rates in the CMZ

following Fgf inhibition (see Table 1), suggesting that Fgf does not

play a major role in the adult CMZ. It remains a possibility that

disrupting Fgf signaling in multiple cell types of the central

zebrafish retina reveals a more stringent requirement for Fgf in

photoreceptors. High resolution Cre ERT2/loxP studies might help

to resolve the requirement for Fgf signaling by individual cell

types.

What is the benefit of continued Fgf signaling to adult

photoreceptors? Joly et al. suggested that, in juvenile rats, FGF-2

(and CNTF) might act as a neuroprotective signal for juvenile, but

not adult, mammalian photoreceptors. Retinas of juvenile

Sprague-Dawley rats have a remarkable intrinsic resistance to

light-induced retinopathy, which correlated with overexpression of

Fgf-2 [48]. In agreement, we observed a continuous requirement

for Fgf signaling, not only during adverse conditions. Nevertheless,

continued Fgf signaling in adult retina might similarly increase the

likelihood of retaining photoreceptors also under adverse envi-

ronmental conditions, for instance by continuously reinforcing the

differentiated state of photoreceptors.

Fgf and proliferation during retinal regeneration
In contrast to rodents, the photoreceptor degeneration elicited

in the Fgf signaling withdrawal paradigm in zebrafish leads to

proliferation and regeneration responses that result in recovery of

the lost photoreceptors. During the regeneration phase, cells of the

INL start to proliferate three days after onset of Fgf inhibition as

soon as the first signs of apoptotic photoreceptor cells become

apparent. Previous data from several laboratories have shown that

Müller glia cells residing in the INL re-enter the cell cycle and

proliferate to give rise to the regenerated cell types [36,49], and

our results suggest that this is also the case after Fgf signaling

withdrawal. As regeneration proceeds, we observe BrdU+ nuclei

first in the INL and later in the ONL (Fig. 7). In a previous report,

ONL proliferation was detected first after light lesions, but spread

only secondarily to the INL [35]. This difference in the order of

activated progenitor cell types might reflect the differential

sensitivity of the photoreceptor subtypes to the lesion paradigm:

after Fgf inhibition, cone photoreceptor are more quickly lost than

rods (Fig. 6), which may result in more rapid stimulation of MGCs

in the INL (Fig. 8), whereas light lesion results in preferential

stimulation of rod progenitors in the ONL.

For applications in regenerative biomedicine, it is of great

interest to understand the signals that are involved in controlling

the regeneration of adult vertebrate photoreceptors. The activity

of Fgf pathway genes that we observe in the INL of the non-

lesioned retina, and the requirement for Fgf in proliferation

following light-lesion, indicates that Fgfs might serve additional

roles in the inner retinal layers. For instance, Fgfs might contribute

through MGCs in the INL to cell type specification, growth and

homeostasis or regeneration, which are exciting possibilities that

need further testing.

While this paper was in revision, Qin et al. reported on the role

of Fgf signaling in the adult zebrafish retina [50]. Our studies

agree on the importance of Fgf signaling in the adult zebrafish

retina and suggest a role of Fgf signaling in photoreceptor

maintenance. However, differing from our study, Qin et al. report

expression only of fgfr1, whereas we detected expression of fgfr1a,

fgfr2, fgfr3 and fgfr4, and the expression patterns of Fgf ligands and

downstream targets in the adult retina. Furthermore, our results

show a fast degeneration of ZPR1+ red-green double cones,

opn1sw1+ UV cones and rho+ rods upon blockage of Fgf signaling

(Fig. 6), whereas Qin et al. report degeneration only of rods, not of

cones. We tentatively suggest that this difference might reflect the

dosage of dn-fgfr1 transgene employed: we studied fish carrying

two copies of the dn-fgfr1 transgene (homozygous), whereas Qin et

al. studied fish with one copy of the dn-fgfr1 transgene

(heterozygous). Indeed, as mentioned above, heterozygous siblings

showed weaker photoreceptor degeneration than homozygous

animals also in our hands (data not shown). The difference in dn-

fgfr1 gene dosage may also explain a difference in the outcome of

the regeneration response experiment. While our results show

diminished proliferation after light lesion in the INL during Fgf

signaling withdrawal (Fig. 10), this is not seen by Qin et al.

Materials and Methods

Ethics statement
All experimental procedures were in accordance with the live

animal handling and research experimentation regulations of the

University and State of Saxony, Germany, review boards

(Regierungspräsidium Dresden, permit AZ 24D-9168.11-1/

2008-1 and -4). This institutional review board specifically

approved this study.

Fish maintenance
Fish were kept under standard conditions as previously

described [51,52]. Wild-type experimental animals were adult fish

from the gol-b1 line in the AB genetic background [53]. Adult fish

were 6–8 months old and were 24 mm–32 mm long.

dn-fgfr1 transgenic line
The dn-fgfr1 transgenic line contains a direct fusion of the

dominant negative version of fgfr1a to GFP and is under the

control of the conditional heat shock 70-like promotor (line kindly

provided by Ken Poss); [20]. Heat shock treatment was done at

37uC for 1 h per day. Following heat shock induction of the

transgene, both mRNA and GFP protein from the fusion

transgene are ubiquitously expressed in the CNS and retina [38].

BrdU labeling
To label cells in S-phase of the cell cycle, zebrafish were

immersed in 10 mM BrdU (Sigma) solution [54]. BrdU was

dissolved in E3 medium and adjusted to pH 7.5.

Tissue preparation and sectioning
Fish heads were fixed at 4uC overnight in 4% paraformalde-

hyde/0.1 M phosphate buffer (PB), pH 7.5. They were washed

twice with 0.1 M PB and transferred for decalcification to 20%

Table 1. No influence of Fgf inhibition on neurogenesis in
the CMZ.

no. BrdU+ cells (1 d HS) no. BrdU+ cells (7 d HS)

ctrl 11.95 (61.61) 9.62 (61.87)

dn-fgfr1 10.86 (65.04) 14.56 (65.60)

The numbers represent the average of BrdU+ cells in the CMZ (6 standard
deviation). For this experiment, transgenic and control siblings were
heatshocked for one- or seven days, respectively. BrdU-positive cells in the CMZ
of both eyes of at least three individuals were counted for each time point.
doi:10.1371/journal.pone.0030365.t001
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sucrose/20% EDTA in 0.1 M PB, pH 7.5. For cryosections heads

were frozen in 7.5% gelatine/20% sucrose and sectioned into

14 mm cryosections. Sections were stored at 220uC until use. For

paraffin sections processing was done in a Paraffin-Infiltration-

Processor (STP 420, Zeiss) according to the following program:

ddH20 1619; 50% EtOH 1659; 70% EtOH 16109; 96% EtOH

16259; 96% EtOH 26209; 100% EtOH 26209; xylene 26209;

paraffin 36409/60uC; paraffin 16609/60uC. The heads were

embedded and 1 mm sections were prepared. The slides were

dried on a 37uC heating plate and stored at room temperature

until use.

Immunohistochemistry
Immunohistochemistry was performed as previously described

[8,54]. Primary antibodies were mouse anti-BrdU (1:500, Becton

Dickinson); rabbit anti-GFP (1:500, Molecular Probes), mouse

anti-Zpr1 (1:500, Developmental Studies Hybridoma Bank, Ames,

IA); rabbit anti-activated Caspase-3 (1:3000, Abcam), mouse anti-

HuC/D (1:300, Invitrogen), rabbit anti-Fgfr1a (1:200, Anaspec),

rabbit anti-Fgfr3 (1:500, Anaspec), mouse anti-glutamine synthe-

tase (1:1000, MAB302, Millipore), rabbit anti-L-Plastin (Lcp1,

1:7500, a kind gift from Michael Redd, University of Utah, Salt

Lake City, UT, USA) were used. Briefly, primary and secondary

antibodies were incubated in PBS with 0.3% TritonX100

(PBSTx). Primary antibodies were incubated overnight at 4uC
and secondary antibodies for 2 h at room temperature. The slides

were washed in PBSTx and mounted. The secondary antibodies

were Alexa 488-, 555- and 635-conjugated (Invitrogen, Karls-

ruhe). All immunostainings were done on at least three individuals.

Specificity of FgfR antibodies
As a control for specificity of FgfR antibodies, blocking peptides

(also obtained from Anaspec) for FgfR1a and FgfR3 were included

during antibody incubation, which abolished the IHC signal (Fig.

S1). The diluted antibody in PBSTx was incubated with 0,1 mg/ml

of the respective blocking peptide on a shaker over night at 4uC.

As controls, the antibody without blocking peptide and the

antibody with a non-corresponding blocking peptide were

incubated. After incubation immunohistochemistry was performed

as described above. In addition, the FgfR antibodies recognized an

IHC signal on adult brain sections that closely resembles the

expression pattern detected by ISH (Fig. S2). In sum, we consider

it likely that the antibodies indeed recognize FgfR1 and 3, as

claimed by the manufacturer.

In situ hybridization
In situ hybridization and probe generation was essentially

performed as previously described [55]. In situ probes for fgfr1a

[56], fgfr2, fgfr3, fgfr4 [57], fgf8a [55], fgf20a [24], fgf24 [58], spry1,

spry2 [59], spry4 [60], etv5a, etv5b [34], dusp6 [61], rho and neuroD

[12] were used in 1:100 dilution. All in situ hybridizations were

done on at least three individuals.

Light lesion paradigm
Light lesions were performed as previously reported [36].

Supporting Information

Figure S1 Specificity test for Fgfr antibodies. A) Fgfr1a

antibody staining the GCL, INL and photoreceptor layer (white

arrows). B) The specific blocking peptide suppresses binding of the

Fgfr1a antibody (white arrow). C) Fgfr3 antibody staining in the

outer part of the INL adjacent to the photoreceptor synaptic

terminals (white arrow). D) The specific blocking peptide inhibits

binding of the Fgfr3 antibody (white arrows). Scale bar = 20 mm.

(TIF)

Figure S2 Comparison of Fgfr antibody stainings with
in situ hybridizations on telencephalic brain sections of
adult zebrafish. A) Fgfr1a staining the ventricle (white arrows)

B) In situ hybridization for fgfr1a detectable at the ventricle (black

arrows). C) Fgfr3 is expressed in the ventricular zone of the dorsal

glia domain (white arrow). D) Similar expression is detected for

fgfr3 (black arrow).

(TIF)

Figure S3 Identification of rod progenitors. A) In situ

hybridization of neuroD shows expression in the ONL in one month

chase control fish (white arrows). B) BrdU labeling of one month

pulse chase fish shows labeling of BrdU in the ONL (white arrows).

C) The merged picture shows double labeling of some neuroD+ cells

with BrdU (white arrows). neuroD labeled cells which do not

colocalize with BrdU are also found in the ONL (white

arrowhead). Scale bar = 20 mm.

(TIF)
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