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Abstract

Impairment of intestinal epithelial barriers contributes to the progression of HIV/SIV infection and leads to generalized HIV-
induced immune-cell activation during chronic infection. Rhesus macaques are the major animal model for studying HIV
pathogenesis. However, detailed characterization of isolated rhesus epithelial cells (ECs) from intestinal tissues is not well
defined. It is also not well documented whether isolated ECs had any other cell contaminants from intestinal tissues during
the time of processing that might hamper interpretation of EC preparations or cultures. In this study, we identify and
characterize ECs based on flow cytometry and immunohistochemistry methods using various enzymatic and mechanical
isolation techniques to enrich ECs from intestinal tissues. This study shows that normal healthy ECs differentially express
HLA-DR, CD23, CD27, CD90, CD95 and IL-10R markers. Early apoptosis and upregulation of ICAM-1 and HLA-DR in intestinal
ECs are thought to be the key features in SIV mediated enteropathy. The data suggest that intestinal ECs might be playing
an important role in mucosal immune responses by regulating the expression of different important regulatory and
adhesion molecules and their function.
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Introduction

The intestinal mucosal immune response in healthy individuals

is characterized by a balance between immunity, which protects

mucosal surfaces from harmful microbes, and tolerance, which

permits the intestinal mucosa to interact in a nonpathogenic way

with the commensal bacteria and dietary antigens to which it is

constantly exposed [1–3]. The small and large intestinal

epithelium is simple columnar, non-ciliated cells. Certain epithelial

cells (ECs) lining the small intestine also had the function to absorb

nutrients from the digestion of food. In glands, ECs are specialized

to secrete specific chemical substances such as enzymes, hormones

and lubricating fluids. HIV-1 infection is initiated primarily on the

mucosal surfaces, through sexual transmission [1,4]. The epithelial

layer seems to be an efficient mechanical barrier against several

pathogens including HIV-1 [5]. However, mucosal transmission

accounts for more than 90% of HIV infections [6–8]. Intestinal

ECs preferentially express coreceptor molecules like CCR5 rather

than CXCR4, however, they generally do not express the HIV-1

receptor CD4 [8]. Moreover, it is believed that for an efficient

HIV-1/SIV infection, the virus needs to bypass the epithelial

barrier to enter in the intraepithelial lymphocytes (IEL) or lamina

propria lymphocytes (LPL). The primary ECs were able to transfer

CCR5 tropic virus more efficiently than CXCR4 tropic virus

through transcytosis to indicator cells by in vitro experiments [9–

11]. Recent studies have shown that mucosal EC respond directly

to HIV envelope glycoproteins by upregulating inflammatory

cytokines that lead to impairment of barrier functions [12]. The

majority of studies on ECs and HIV interaction have been

performed using primary EC cultures from intestinal and

reproductive tissues or cell lines in vitro [12,13]. However, detailed

isolation and characterization of rhesus ECs from intestinal tissues

are poorly documented, whereas the rhesus macaque (RM) model

is well recognized for understanding HIV/SIV pathogenesis,

disease progression and HIV vaccine development [14]. It is also

not well documented whether isolated ECs have other cell

contaminants from intestinal tissues during the time of processing

or whether isolation methods could be improved or optimized to

reduce contamination that might hamper the study design using

EC cultures. Moreover, these ECs in normal uninfected and SIV

infected RMs were not characterized with respect to memory

and/or effector status, adhesion, antigen presentation, or regula-

tory receptor expression compared to intestinal CD45+ leukocytes.

Here we identify and characterize ECs using flow cytometry

and immunohistochemistry methods where we have compared

various enzymatic and mechanical isolation techniques to enrich

ECs from intestinal tissues. This study shows that ECs are positive

for HLA-DR, CD23, CD27, CD90, CD95 and IL-10R pheno-

types. Early apoptosis and upregulation of ICAM-1 and HLA-DR

in intestinal ECs are thought to be the key features in SIV

mediated enteropathy. The data suggest that intestinal ECs might

be playing an important role in mucosal immune responses by

regulating the expression of different important regulatory and

adhesion molecules and their function.
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Results

Increased epithelial cell isolation by either DTT or EDTA
treatment

Epithelial cells from jejunum and colon were isolated using

several enzymatic and isolation techniques that have been

diagrammatically represented in Figs. 1 & 2. To characterize

ECs, anti-cytokeratin and Ber-EP4 (epithelial antigen) monoclonal

antibodies (MAbs) were used in both immunohistochemistry and

flow cytometry assays (Fig. 3). Both anti-cytokeratin and Ber-EP4

MAbs yield similar percentages of ECs from each sample as

detected by flow cytometry (data not shown). Ber-EP4 has been

reported as an important epithelial cell marker to define ECs and to

differentiate from mesothelial cells [15–20]. Epithelial cells were

also identified in jejunum and colon mucosa based on their

morphology, epithelial location, and immunophenotype. To

identify and characterize ECs from different cell isolation protocols,

we performed flow cytometry using Ber-EP4 (CK; for epithelial cell

detection) and CD45 MAbs (reacts with leukocyte common antigens

present in all leukocytes including lymphocytes, monocytes,

granulocytes, eosinophils and thymocytes). All cells were catego-

rized into 4 different cell subsets based on their CK and CD45

expression (CK+CD452, CK2CD45+, CK2CD452, and

CK+CD45+). The dead cells were excluded by live/dead staining

for all ECs and CD45 leukocytes analysis. Both DTT (reducing

agent) and EDTA (cation chelant) solution has been used for the

isolation of intestinal ECs [21,22]. However, the purity of EC from

each isolation technique has not been clearly defined, where the

characterization of ECs was based on low to moderately sensitive

immunohistochemistry techniques. DTT treatment only yields

more purified single positive EC (CK+CD452; 72.3%69.9%)

compared to other steps examined in our protocol (Figs. 1 & 4).

Similar percentages of single positive ECs were also evident in

EDTA treated upper (70.2%65.6%) and lower (70.7%610.6%)

layer cells isolated from percoll gradient where no prior DTT

treatment was followed (Figs. 2, 5 & 6). ECs isolated from upper and

lower layer of EDTA wash with prior DTT treatment were 16.2%

and 14.4% respectively. There was no statistical differences in the

purity of ECs isolated from intestinal tissues after DTT wash and

steps where EDTA was used at the beginning without prior DTT

treatment (Fig. 6). ECs isolated from upper and lower layers of

collagenase wash without any prior DTT wash were 8.2% and

8.2% respectively (Fig. 6). However in all of our steps in the specified

protocols, there was a variable amount (1.4%–16.2%) of ECs

contamination in our LPL and IEL isolation protocols (Figs. 3, 4, 5

& 6). Similarly, single positive CD45 cells were also present in all

ECs isolation protocols (Figs. 3, 4 & 5). Double positive

(CK+CD45+) and double negative (CK2CD452) cells were

present at varied frequencies with mean value range from 0.9%–

3.0% and 3.4%–50.3% respectively in all different isolation

Figure 1. Schematic representation of epithelial cell and leukocyte isolation protocols from intestinal tissues after different
enzymatic treatments. Note that this protocol explains cell isolation procedures with initial DTT treatment.
doi:10.1371/journal.pone.0030247.g001

Rhesus Intestinal Epithelial Cells

PLoS ONE | www.plosone.org 2 January 2012 | Volume 7 | Issue 1 | e30247



protocols. None of our experimental procedures are able to yield

100% purified intestinal ECs population and are suggestive of single

cell sorting experiment for isolating purified ECs.

Cytokeratin expression by intestinal epithelial cells in
normal rhesus macaques

There was no colocalization either between epithelial (cytoker-

atin) and Ham56 (macrophage marker), epithelial and CD11c

(dendritic cell marker), and epithelial and CD54 (cell adhesion

molecule) (Figs. 7A–B & 7F). Few double positive CK+CD45+
cells were evident in ECs that also support our flow cytometry data

(Figs. 3 & 7C). However, increased HLA-DR expression was

observed both in ECs as well as intraepithelial region (Fig. 7D).

Limited IL-10R expression was also detected in intestinal ECs

(Fig. 7E). In summary, ECs do not express macrophage or

dendritic cell markers and they differentially express different

regulatory and activation molecules.

Immunophenotypic characterization of epithelial cells in
normal intestinal mucosa

To confirm the observations detected by immunohistochemis-

try, single-cell suspensions of isolated cells were generated from

intestinal mucosa followed by DTT wash as described in the

materials and methods section. These cell suspensions were

subsequently analyzed by multicolor flow cytometry analysis. In

addition to lymphocytes, macrophages, monocytes and other

leukocytes, these preparations also contain additional resident

cells. In these preparations, ECs are identified as Ber-EP4 positive

cells with no CD45 surface expression (Fig. 3). Fibroblast/

myofibroblast cells were identified using CD90 (Thy-1) marker

and those cells were negative for both Ber-EP4 and CD45 surface

marker [23]. CD90 and a smooth muscle actin fiber has also been

used for defining myofibroblast markers in human colonic mucosa

[24]. Interestingly, significantly increased HLA-DR expression was

observed on ECs (mean value 72.5%623.05%) compared to

CD45+ leukocytes (mean value 23.07%65.15%) (Fig. 8). In-

creased expression of HLA-DR in human intestinal ECs was

confirmed using a sensitive avidin biotin-peroxidase technique,

which may help to explain the unique properties of intestinal ECs

as antigen-presenting cells [25].

CD23, the low-affinity IgE receptor is widely distributed on B

cells in the follicular mantle, on resting B cells. CD23 is also

detected in monocytes and eosinophils and has influence on cell

differentiation and growth of both B and T cells. CD23 expression

in jejunum ECs (mean value 26.9%63.73%) was significantly

Figure 2. Schematic representation of epithelial cell and leukocyte isolation protocols from intestinal tissues after different
enzymatic treatments. Note that this protocol explains cell isolation procedures with initial EDTA treatment. No prior DTT treatment has been
used in this protocol.
doi:10.1371/journal.pone.0030247.g002
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higher than CD23 expressed by CD45 leukocytes (mean value

1.81%60.53%), however their function is not well understood

(Fig. 8).

Surface receptor CD27, a type 1 glycoprotein and a member of

the tumor necrosis factor receptor family was shown on a subset of

B and T cells and it was thought that their expression may be

required for the generation of memory and long term maintenance

of B and T cell immunity [26,27]. Interestingly ECs are also able

to express CD27 markers to some extent (mean; 5.6%62.24%;

Fig. 8), however their function in ECs are also not well defined.

Intracellular adhesion molecule-1 (ICAM-1; CD54) has an

important role to play in the intestinal immune response [28–30].

CD80 (B7.1) is a costimulatory molecule involved in T cell

activation and survival. Similar to CD80, CD86 is a protein

expressed on antigen-presenting cells that provide costimulatory

signals necessary for T cell activation and survival. We were

unable to detect any CD54, CD80 and/or CD86 expression in

ECs from normal jejunum and colon intestinal tissues both by

immunohistochemistry (Fig. 7) and flow cytometry (Fig. 8).

Intestinal CD45+ leukocytes had significantly higher expression

of CD80 (mean; 24.78%616.52%; Fig. 8) and CD86 (mean;

20.75%610.08%; Fig. 8) compared to ECs. However, CD45+
leukocytes had low CD54 expression as observed in ECs.

CD90, a glycophosphatidylinositol-linked glycoprotein was

initially described as a differentiation marker expressed predom-

inantly in the mouse brain and thymus [31]. The exact mechanism

and roles of Thy-1 remained unanswered and it has been proposed

that this molecule is involved in cell-cell interaction [32]. Recent

studies in murine Thy-1 expression, its signaling properties, and

the stimulatory effect of Thy-1 cross-linking on mouse T cells

indicate that Thy-1 is more than just a T cell marker [33]. In

humans, Thy-1 is expressed on the surface of a number of cells

including neurons, retinal ganglion cells, thymocytes, vesicular

pericytes, subsets of fibroblasts, activated endothelial cells,

Figure 3. Phenotyping epithelial cells of normal rhesus macaques. (A) Representative expression of cytokeratin (CK; epithelial cell marker)
and CD45 (leukocyte marker) in jejunum intestinal cells isolated from lower layer (‘‘lymphocyte enriched’’) of percoll gradient after treating with DTT
and EDTA solution (Fig. 1; Step IX). Note that 2.8% of cells were double positive for CK and CD45 receptors. Fractions of double negative CK2CD452
cells were also evident from isolated cells. Live cells were gated first from all acquired cells and plotted based on CK and CD45 markers. Visualization
of epithelial cells both in (B) colon at 206 and (C) jejunum at 56 resolution were detected by immunohistochemistry staining using anti-CK
monoclonal antibody with hematoxylin counterstain.
doi:10.1371/journal.pone.0030247.g003
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Figure 4. Isolation of epithelial cells and leukocytes from intestinal tissues with DTT, EDTA and collagenase treatments.
Representative dot plots of total cells from (A) DTT wash (Fig. 1, step IV); (B) lower layer of percoll density gradient, isolated after EDTA treatment
(Fig. 1, step IX); (C) lower layers of percoll density gradient, isolated after collagenase treatment (Fig. 1, step XIII) from jejunum tissue showing
distribution of epithelial cells (ECs; cytokeratin as an epithelial cell marker) and CD45 leukocytes in a normal uninfected healthy rhesus macaque. Each
quadrant shows percentages of specified cell populations. Note increased percentage of ECs were isolated from DTT wash compared to other
methods examined. Mean frequencies of cytokeratin (CK) positive, CD45 positive, double positive and double negative for CK and CD45 cell subsets
are shown as box and whisker vertical bars for different isolation protocols as specified in Fig. 1. In summary all the specified bars represent (D) cells
isolated from DTT wash (Fig. 1, step IV); (E) upper layer cells from percoll density gradient isolated after EDTA treatment (Fig. 1, step IX); (F) lower layer
cells from percoll density gradient isolated after EDTA treatment (Fig. 1, step IX); (G) upper layer cells from percoll density gradient isolated after
collagenase treatment (Fig. 1, step XIII); and (H) lower layer cells from percoll density gradient isolated after collagenase treatment (Fig. 1, step XIII)
from jejunum in healthy, normal, uninfected rhesus macaques (n = 5). Note that in all isolation protocols, there was a variable amount of CD45+ and
double negative CK2CD452 cells contamination observed. * Indicates significant differences between CK+CD452 and other different subsets of
total cells within the specified isolation protocol.
doi:10.1371/journal.pone.0030247.g004
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Figure 5. Isolation of epithelial cells and leukocytes from intestinal tissues with EDTA and collagenase treatment. Representative dot
plots of total cells from (A) upper layer of percoll density gradient isolated after EDTA treatment (Fig. 2, step VI); (B) lower layer of percoll density
gradient isolated after EDTA treatment (Fig. 2, step VI); (C) upper layer of percoll density gradient isolated after collagenase treatment (Fig. 2, step X);
and (D) lower layer of percoll density gradient isolated after collagenase treatment (Fig. 2, step X); in jejunum tissue showing distribution of epithelial

Rhesus Intestinal Epithelial Cells
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mesangial cells and mesenchymal and hematopoietic cells

[23,34,35]. The expression of CD90 in intestinal ECs is not yet

well studied. In this study, we have shown about 11.05%66.46%

of EC express CD90 (Fig. 8). In contrast, intestinal CD45+
leukocytes express significantly higher amount of CD90 (mean

value 38.65%64.88%; Fig. 8).

CD95 is a member of the tumor necrosis factor family and

induces apoptosis when cross-linked by its natural ligand, CD95L.

High percentages of ECs express CD95 (mean 74.9%612.9%).

However CD95 expression on ECs is significantly lower compared

to intestinal CD45+ leukocytes (mean 98.36%61.55%; Fig. 8).

IL-10 has been shown to mediate anti-inflammatory activity in

cells of different lineages by interacting with IL-10R expressed on

the cells. To determine the expression of IL-10R both in jejunum

and colon ECs we have used anti-IL-10R MAb. Quantitative

analysis by flow cytometry has shown surface IL-10R expression in

ECs (mean value 1.36%60.94% and 1.5%60.25% for jejunum

and colon respectively; Fig. 9). There was no statistically significant

difference in IL-10R expression between CD45+ leukocytes and

ECs (Fig. 9). In summary intestinal ECs did not express CD11c,

Ham56, CD3, CD54, CD80, and CD86 receptors by either

confocal or flow cytometry assays. A moderate to higher

expression of CD23, CD27, CD90, CD95 and HLA-DR was

detected in intestinal ECs. However, the percentages of CD23 and

HLA-DR expression in ECs were higher compared to CD45+
intestinal leukocytes.

Upregulation of apoptosis and ICAM-1 expression in
intestinal epithelial cells during SIV infection

To assess early jejunum ECs apoptosis in SIV infection, frozen

archived jejunum tissues from acute (21 days post infection) and

chronically (288 days post infection) SIV infected RMs were

stained with anti-active caspase-3 (AC-3) antibodies. Confirmation

of ECs apoptosis was performed using anti-cytokeratin antibodies

in all acute and chronically SIV infected RMs (Fig. 10A). As

predicted, there was an increased AC23+ jejunum ECs in both

acute and chronically SIV infected RMs suggestive of early ECs

apoptosis in SIV infected RMs. To understand the role of different

regulatory (CD54, CD80 and CD86) and activation (HLA-DR)

molecules, expression of CD54, CD80, CD86 and HLA-DR were

measured in freshly isolated ECs and CD45+ cells from

chronically SIV-infected animals and compared with SIV

uninfected healthy control macaques. A significant increase of

CD54 expression was detected both on ECs (mean 25.8% vs 0.4%)

and CD45+ (mean 7.2% vs 1.2%) cells in SIV infected RMs

compared to SIV uninfected controls ECs and CD45+ cell

population (Fig. 10B). Increased HLA-DR expression was also

detected both in ECs (mean 88.9% vs 72.5%) and CD45+ (mean

37.7% vs 23.1%) cells from SIV infected compared to control

animals. However, the difference in HLA-DR expression in ECs

from SIV-infected macaques compared to uninfected control RMs

was not statistically significant. No significant differences in CD80

and CD86 expression were detected in normal uninfected and

SIV-infected RMs. In contrast, a significantly higher expression of

CD80 (mean 54.7% vs 24.8%) was detected in CD45+ cells from

SIV-infected RMs compared to uninfected controls (Fig. 10B).

CD86 expression was higher on intestinal CD45+ cells (33.2% vs

20.7%) in SIV-infected animals, however the difference was not

statistically significant between control RMs (Fig. 10B). In

summary, increased apoptosis and upregulation of ICAM-1 and

HLA-DR expression in intestinal ECs from SIV infected RMs are

suggestive of its role in SIV enteropathy.

Discussion

Intestinal epithelium primarily takes part in the digestive system.

However, they play an important part in the immune system, both

cells (ECs; cytokeratin as an epithelial cell marker) and CD45 leukocytes in a normal uninfected healthy rhesus macaque. Each quadrant shows
percentages of specified populations. Note increased percentage of ECs were isolated from both upper and lower layer cells of percoll density
gradient isolated after EDTA treatment compared to other methods examined. Mean frequencies of cytokeratin (CK) positive, CD45 positive, double
positive and double negative for CK and CD45 cell subsets are shown as box and whisker vertical bars for different isolation protocols as specified in
Fig. 2. In summary all the specified bars represent (E) upper layer cells from percoll density gradient isolated after EDTA treatment (Fig. 2, step VI); (F)
lower layer cells from percoll density gradient isolated after EDTA treatment (Fig. 2, step VI); (G) upper layer cells from percoll density gradient
isolated after collagenase treatment (Fig. 2, step X); and (H) lower layer cells from percoll density gradient isolated after collagenase treatment (Fig. 2,
step X); from jejunum in healthy, normal, uninfected rhesus macaques (n = 5). Note that in all isolation protocols, there was a variable amount of
CD45+ and double negative CK2CD452 cells contamination observed. * Indicates significant differences between CK+CD452 and other different
subsets of total cells within the specified isolation protocol.
doi:10.1371/journal.pone.0030247.g005

Figure 6. Percentages of epithelial cells retrieved from
different isolation protocols. Mean percentages (6 standard
deviation) of isolated cytokeratin (CK)+ CD452 cells from jejunum
either after DTT, EDTA or collagenase treatment with or without prior
DTT wash (as discussed in details in Figs. 1 & 2) are shown from
uninfected normal healthy rhesus macaques (n = 5). Note that there was
increased yield of ECs either by DTT or EDTA only treatment compared
to other protocols followed in this experiment. Statistical significant
differences between each group of cells are shown. * Indicates
significant differences in ECs isolated from either DTT or EDTA only
treatment compared to other group of cells.
doi:10.1371/journal.pone.0030247.g006
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as a barrier and as a first-line pathogen recognition system [36].

The present study was designed to identify and characterize

intestinal ECs and their surface receptors for better understanding

their functional properties and immune protection both in normal

and SIV-infected RMs.

Combinations of mechanical preparation and enzymatic

digestion methods to enrich RM intestinal ECs from tissues

obtained from necropsied animals were compared. Using these

techniques, large numbers of intestinal ECs, with a viability of 90–

96%, were obtained. Bacterial contamination is rarely a problem

in these isolation procedures, as the majority or bacterial flora are

removed by several washing steps and percoll separation. Cells

isolated from directly after DTT wash may contain more bacterial

contamination that needs further investigation. The use of DTT or

EDTA was found to be best for isolating intestinal ECs as the

isolation procedure is faster, yields increased percentages of ECs,

and takes fewer steps to identify ECs. Further collagenase

enzymatic treatment reduces the yield of ECs and increases the

percentages of leukocytes. Overall in all isolation protocols, none

of the protocols yielded pure populations of ECs in our experiment

and there was contamination with fibroblast/myofibroblast cells

(CK2CD90+CD452) (data not shown) [23], leukocytes, and

other uncharacterized cell populations. A 50% percoll solution has

also been tested but no significant increase in the enrichment of

ECs from all different cell isolation protocol (as shown in Figs. 1 &

2) was observed (data not shown). To isolate purified ECs, one has

to perform single cell sorting experiment from DTT/EDTA

treated ECs that might be suitable for further molecular and

cultural experiments. The protein tyrosine phosphatase CD45 is

abundantly expressed on all nucleated hematopoietic cells and is

an essential protein in normal T and B cell development and

antigen receptor signaling [37,38]. The presence of minimal to low

Figure 7. Phenotyping colon and jejunum epithelial cells (ECs) by confocal microscopy. Essentially all colon (A–E) ECs (cytokeratin
positive) were negative for (A) Ham56 (macrophage marker), and (B) CD11c (dendritic cell marker). Very few colon ECs were double positive for (C)
both CD45 (leukocyte marker) and cytokeratin expression. A major population of colon ECs was positive for (D) HLA-DR expression. However, very
few colon ECs were positive for (E) IL-10R expression which was evident in apical regions. Jejunum ECs were also negative for (F) CD54 (ICAM-1, cell
adhesion marker). White arrow denotes the presence of double positive cells (cytokeratin and CD45/HLA-DR/IL-10R) for the specified sample and
fluorochrome.
doi:10.1371/journal.pone.0030247.g007
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frequencies of CK+CD45+ epithelial cells in intestinal tissues

demonstrate that these cells might be a population of progenitor

ECs as previously described in bone marrow and airway

epithelium from mice and humans [39]. The possibility exists

that culturing these CK+CD45+ ECs in vitro will allow us to further

characterize these progenitor cells both phenotypically and

functionally and study their distribution in different tissues

including the airway, lung, parenchyma, skin, bone marrow and

buffy coat.

Epithelial cells provide a shield of the intestinal mucosa from

other mononuclear cells below the epithelium, and express HLA-

DR molecules in the normal, noninflammed intestinal mucosa.

Our data confirms the earlier reports where expression of HLA-

DR in ECs has been shown in both small and large intestines

[40,41]. In human, CD90 is absent in thymocytes however both

thymocytes and peripheral T cells in mice are positive for CD90

[42]. We have detected the expression of CD90 in all normal

healthy uninfected rhesus intestinal ECs. The exact role of CD90

in intestinal ECs is not clear and needs further study to understand

its role in immune regulation. In this study we have also noticed

increased expression of CD95 and CD23 on EC that are in

agreement with previous human intestinal ECs studies [43–45]. In

inflammatory intestinal diseases, upregulation of CD23 in

association with increased MHC class II molecules may suggest

lymphoepithelial interactions resulting in exaggerated antigen

presentation [45–47]. It is possible that the expression of CD23 by

normal ECs may have significance in regulating mucosal

immunity by serving as a costimulatory molecule that also

warrants further study.

A wide variety of isolation methods for human and animal ECs

have been used including purely mechanical procedures [48],

calcium–chelating agents [49], chelating agents in combination

with enzymatic digestion [50], and combinations of enzyme

isolation procedures with mechanical preparation [51]. The first

successful isolation of human colonic ECs was performed by short

enzymatic digestion [52]. In our experiment, viability of ECs is not

Figure 8. Relative expression of CD3, CD23, CD27, CD54, CD80, CD86, CD90, CD95 and HLA-DR in intestinal epithelial cells (ECs)
from normal healthy macaques. (A) Jejunum ECs (open histogram) and isotype control (filled histogram) shown for expression of CD3, CD23,
CD27, CD54, CD80, CD86, CD90, CD95 and HLA-DR using anti-CD3, anti-CD23, anti-CD27, anti-CD54, anti-CD80, anti-CD86, anti-CD90, anti-CD95 and
anti-HLA-DR monoclonal antibodies respectively from a normal healthy rhesus macaque. (B) Mean frequencies (6 standard deviation) of cell
adhesion and regulatory markers are shown as bars for jejunum ECs and CD45+ leukocytes from uninfected normal rhesus macaques (n = 6). Note
that there was an increased expression of CD23 and HLA-DR in ECs compared to CD45+ leukocytes from jejunum tissues. DTT washed live cells from
jejunum tissue were gated from all acquired samples. All live cells were further gated based on CD45 and cytokeratin (CK) expression. Only
CK+CD452 and CK-CD45+ cells were identified for further phenotypic analysis. Statistical significant differences between each group of cells are
shown.
doi:10.1371/journal.pone.0030247.g008

Figure 9. IL-10R expression in intestinal epithelial cells (ECs). (A) Left contour plot shows the IL-10R positive cells in the gated region from a
normal healthy jejunum ECs. Jejunum ECs (open histogram) and isotype control (filled histogram) were also shown as histograms for expression of
anti-IL-10R in the right panel. (B) Mean percentages (6 standard deviation) of surface IL-10R expression are shown for both jejunum ECs and CD45+
leukocytes isolated from normal healthy rhesus macaques (n = 5). Statistical significant differences between each group of cells are shown.
doi:10.1371/journal.pone.0030247.g009
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affected by chemical or enzymatic treatments like DTT, EDTA or

collagenase. However, the collagenase enzymatic treatment has

always been preferred for the isolation of RM intestinal LPL [53–

55].

The most important costimulatory receptor expressed by a

majority of T cells is CD28, which interacts with CD80 and CD86

ligands on antigen presenting cells and plays a major role in T cell

activation. Our studies have shown the lack of CD80 and CD86

expression on intestinal ECs as previously reported for human

colonic ECs [56,57]. In contrast, normal human nasal, airway and

oral ECs are able to express different costimulatory molecules

including CD80 and CD86 [58,59]. Constitutive expression of

CD23, CD90, CD95 and MHC class II (HLA-DR) expression by

normal intestinal ECs may suggest functional significance in

regulating mucosal immunity.

IL-10 bears close resemblance to IFNc and their receptor

complexes also belong to the same cytokine receptor family [60].

The expression of IL-10R on different types of RM mucosal cells is

also an understudied area. The vast majority of reports of IL-10R

expression are on human leukocytes, natural killer cells, neutro-

phils, macrophages, monocytes, dendritic cells, and/or B and T

cells [61–64]. Evidence from experiments with the murine small

and large intestine has shown that IL-10 binds to a specific

receptor that is constitutively expressed on intestinal ECs [65].

Our study highlights the presence of IL-10R in macaque intestinal

ECs for the first time, which generates some more questions about

how IL-10 binds to this specific receptor on intestinal ECs and

how it may regulate the contribution of ECs to the inflammatory

and immune response in the digestive tract.

Despite the lack of CD3 and CD4 expression (data not shown)

on ECs, there was increased apoptosis of intestinal ECs in both

acute (21days pi) and chronically SIV-infected RMs (Fig. 10). Our

data is in agreement with previous publications where SIV

induced intestinal cell apoptosis is thought to be the underlying

mechanism of the regenerative enteropathy of early infection [66],

and for enhanced expression of cell cycle genes regulating mucosal

repair and regeneration during primary SIV infection [67,68].

ICAM-1 has been found to be an important adhesion molecule

that may facilitate the binding of infected cells to the ECs [69–73].

Increased ECs apoptosis was detected with significant upregula-

tion of CD54 expression in chronically SIV-infected RMs. Higher

ICAM-1 expression in ECs during SIV infection may suggest its

possible role in inducing more HIV transmission and transen-

dothelial migration of T lymphocytes and monocytes [74–76].

Figure 10. SIV infection induces apoptosis and upregulation of CD54 expression on intestinal epithelial cells (ECs). (A) Epithelial cells
apoptosis was detected in jejunum by multi-labeled immunofluorescent confocal microscopy. Note that increased apoptosis of jejunum ECs was
detected during acute (AV85; 21 days post infection) and chronic (HG58; 288 days post infection) SIV infection (as indicated by the white arrows). (B)
Mean frequencies (6 standard deviation) of surface CD54, CD80, CD86 and HLA-DR expression are shown for both jejunum ECs and CD45+
leukocytes from normal (n = 6) and chronically SIV-infected (n = 4) macaques. Note that a significant increase in CD54 expression on jejunum ECs was
detected in SIV-infected macaques. However, increased expression of CD54, CD80 and HLA-DR on CD45+ leukocytes was observed in SIV-infected
RMs. Statistically significant differences between each group of cells are shown.
doi:10.1371/journal.pone.0030247.g010
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Expression of ICAM-1 in colonic ECs from patients with colonic

carcinoma and inflammatory bowel disease was increased by two

fold compared to normal colonic ECs [29]. On the contrary,

increased ICAM-1 expression in ECs has also been suggested to

result in increased neutrophil adherence to those cells and induce

innate defense against bacterial infection [77] suggests a protective

mechanism against microbial translocation. SIV infection induces

higher ICAM-1 expression on ECs compared to CD45+
leukocytes. In chronically SIV-infected RMs, there was increased

HLA-DR expression on both ECs and CD45+ leukocytes. Our

observation supports the recent reports describing increased HLA-

DR transcripts in gut biopsies of HIV infected patients [78]. The

current data supports the notion of immune activation where ECs

play a major role by upregulating ICAM-1 and HLA-DR

expression that may recruit more inflammatory and cytokine

producing cells compared to CD45+ leukocytes. It may also be

possible that increased inflammation and cytokine influx in

intestinal lamina propria upregulates ICAM-1 expression and

apoptosis in ECs.

In summary, either DTT or EDTA chemical treatment yields

increased percentages of intestinal ECs compared to other

protocols tested. Furthermore, normal healthy rhesus ECs did

not express CD80 or CD86 costimulatory molecules. However,

they did express CD23 and HLA-DR suggesting they may play a

role in antigen presentation, which needs further verification.

Combined these results are consistent with the interpretation that

ECs are highly activated cells and capable of modulating immune

responses. Interestingly, a small percentage of CK+CD45+ ECs in

intestinal ECs were always present in normal intestinal mucosa,

which invites further exploration to discover the significance of

these potential ‘‘stem cells’’ and to define their role in restoration

of EC damage and SIV pathogenesis. Early apoptosis and

increased expression of ICAM-1 and HLA-DR in ECs in SIV

infected RMs are thought to be the key features of intestinal

enteropathy that is also associated with local inflammation, and

increased gut permeability. The immunoregulatory cells and their

cytokines that might play an important role in regulating ECs

apoptosis and their activation are the subject of our future studies.

The functional implication of CD23, IL-10R and CD90 receptors

in the pathophysiological mechanisms of HIV/SIV gut enterop-

athies, clearly deserves further investigation.

Materials and Methods

Ethics statement
Approval for all veterinary procedures in this study was

obtained from the Tulane University Animal Care and Use

Committee (Protocols #3567 & 3568), Animal Welfare Assurance

A-4499-01. All the animals in this project were housed at the

Tulane National Primate Research Center (TNPRC) and under

the full care of TNPRC veterinarians in accordance with the

standards incorporated in the Guide to the Care and Use of

Laboratory Animals (NIH) 78-23 (Revised, 1996). All veterinary

procedures were performed only with sedated animals. Animal

welfare and steps were taken to ameliorate suffering in accordance

with the recommendations of the Weatherall report, ‘‘The use of

non-human primates in research’’.

Animals, and tissue sampling
Sixteen Indian RMs (Macaca mulatta) either male or female

between 1.9–9.9 years of age, which were negative for HIV-2,

SIV, type D retrovirus and STLV-1 infection were used in this

study. Six RMs were infected either through intravenous or

intravaginal route with 300–500 TCID50 SIVMAC251. One SIV

infected animal was euthanized at 21 days (acute) post infection

and five SIV infected animals were euthanized within 167–401

days (chronic) post infection. The remaining 10 macaques were

SIV uninfected normal controls. Intestines (jejunum and/or colon)

and blood were collected from all animals at the time of necropsy

for phenotyping experiments.

Immunofluorescence and immunoperoxidase staining
Two to three small fresh pieces of colon and jejunum collected

from necropsied animals were fixed in 2% paraformaldehyde and

cryopreserved in 30% sucrose (Sigma, St. Louis, MO) in PBS, and

frozen in cryomolds containing OCT compound (Sakura Fintek,

Inc, Torrance, CA). Tissue sections of 8 mm thick were processed

for immunofluorescence staining as described previously [79,80].

Briefly, sections were stained sequentially for 2–3 colors by

incubating for 1 h with the primary antibody and then for 30 min

with Alexa Flour 488-conjugated secondary antibodies (diluted

1:1000, Invitrogen). Similarly, the slides were stained again with

another primary antibody followed by Alexa Flour 568-conjugated

secondary antibodies (dilution 1:1000, Invitrogen). Nuclear

staining was performed with anti-nuclear ToPro3 DNA antibodies

(1 mM; Invitrogen). Tissue sections were stained with one or

combinations of primary antibodies specified for CD11c (3.9,

BioLegend), CD45 (DO58-1283, BDBiosciences), CD54 (LB-2,

BDBiosciences), IL-10R (3F9, Biolegend), HLA-DR (LN3, eBios-

ciences), anti-human macrophage monoclonal antibody (Ham56,

Dako), Active caspase-3 (polyclonal antibody, Abcam), human

epithelial antigen (polyclonal rabbit anti-cytokeratin, Dako) or

cytokeratin-large spectrum monoclonal antibody (KL-1, Beckman

Coulter). All antibodies cross react with RMs. Stained tissue

sections were mounted using prolong antifade medium (Invitro-

gen). Imaging was performed with a TCS SP2 True confocal laser

scanning microscope (Leica, Wetzlar, Germany) equipped with

three lasers. Negative controls were performed by omitting either

the primary antibody or using isotype IgG1 and IgG (H+L)

control. NIH Image (version 1.62) and Adobe Photoshop CS5

(Adobe Systems) were used to assign colors to the channels

collected.

Immunoperoxidase staining of jejunum and colon ECs were

performed in 5 mm thick section. The slides were first depar-

affinized and heated at 95uC for 30 min in citrate buffer for

epitope retrieval. Slides were allowed to cool and finally rinsed in

PBS (pH 7.4). Slides were further incubated with endogenous

peroxidase block solution (Dako) followed by biotin blocking

system (Dako) according to manufacturer’s protocol. Slides were

then incubated with cytokeratin-large spectrum monoclonal

antibody (KL-1). Biotinylated mouse IgG and Vectastain ABC

reagent (VECTASTAINH ABC kit, Vector Laboratories) were

used for detection. Liquid DAB (Dako) were used as chromogen

for developing slides.

Epithelial cells isolation from intestine
Intestinal samples (6–10 cm long pieces of jejunum and colon)

were collected in 50 ml tubes with ice-cold calcium and

magnesium free HBSS (Fisher Scientific) and immediately

transported to the laboratory. Fat, blood vessels, and mesenteric

lymph nodes were trimmed. Mucus and gross debris were quickly

removed by covering the specimen with dry paper towels.

Specimens were further washed twice in cold PBS (pH 7.4).

Intestinal samples were cut into small pieces (approximately 0.5–

1 cm2).

All isolation protocols were performed on tissues from

necropsied animals to maintain consistency of protocols compared

to biopsy protocols where techniques may result in different
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proportions of ECs in samples. In brief, tissues were treated in 2

major ways. In one technique, the intestinal EC were separated

from intestinal pieces by incubating 0.5–1 cm2 pieces of tissue in

Dithriothreitol (0.15%, DTT, EMD Chemicals) (Fig. 1) [21]

followed by EDTA with shaking at 37uC. In another protocol,

minced tissues were directly treated with EDTA solution (Fig. 2) as

reported earlier [53,81]. Mucus and large debris were removed

from the supernatant by filtering through loosely packed glass

wool. After epithelial removal, LPL were collected by mincing the

remaining tissue into 1–2 mm pieces, followed by digestion in

complete RPMI-5 medium containing 5% fetal calf serum (FCS)

(RPMI-5) containing 60 units/ml of Type II collagenase (Sigma-

Aldrich) again with shaking at 37uC. For enrichment of

lymphocytes, supernatants of LPLs were centrifuged over

discontinuous Percoll (Sigma-Aldrich) density gradients followed

by washing with PBS [53,81]. All isolated cells were washed twice

and resuspended in complete RPMI-10 medium containing 10%

FCS before staining. All cells were .90% viable by trypan blue

dye exclusion method.

Immunofluorescent staining and flow cytometric analysis
For flow cytometry staining, cells were adjusted to 107 cells/ml

and 100 ml aliquots or 100 ml of whole blood samples were

incubated with appropriately diluted concentrations of antibodies

for 30 min at 4uC. Whole blood samples from normal RMs were

used for fluorochrome compensations. Whole blood cells were

then lysed using a whole blood lysis protocol as previously

described [81]. Stained cells were then washed once with PBS and

fixed with 16BD stabilizing fixative buffer (BD Biosciences). Cells

were kept protected from light at 4uC and acquisition was

performed within 24 hrs of staining. Cells isolated from intestinal

tissues were stained and processed similar to blood tissues with the

omission of the whole blood lysing technique [81]. Polychromatic

(6–10 parameter) flow cytometric acquisition was performed on a

Becton Dickinson LSR II instrument with three lasers (488 nm

blue laser, 633 nm red laser and 407 violet laser) using FITC, PE,

PE-Texas Red, PE-Cy5, APC, APC-Cy7, Pacific Blue, and

Amcyan as the available fluorochrome parameters. Anti-CD3

(SP32-2), CD23 (M-L233), CD27 (M-T271), CD54 (LB-2), CD80

(L307.4), CD86 (2331), CD90 (5E10), CD95 (DX2) and HLA-DR

(L243) MAbs were obtained from BD Biosciences. CD45 (MB4-

6D6) and IL-10R (3F9) were obtained from Miltenyi Biotec and

Biolegend respectively. All antibodies are cross reactive to RMs as

reported earlier [26,53,54,81–85]. To detect EC, intracellular

staining was performed by using anti-epithelial antigen (Ber-EP4

from Dako) and cytokeratin-large spectrum MAb (KL1, from

Beckman Coulter) as reported earlier [81]. All cells were first gated

on live cells where live/dead staining was performed using aqua

fluorescent reactive dye live/dead stain kit (Invitrogen). At least

100,000 events were collected from each sample by gating on live

cells and data were analyzed using FlowJo software (TreeStar Inc.)

version 9.1.

Statistics
Graphical presentation and statistical analysis of the data were

performed using GraphPad Prism (Version 5.0d, GraphPad

software, SanDiego, CA). Results between experimental groups

were compared using a one-way ANOVA and nonparametric

Mann-Whitney t test. Those p values,0.05 were considered

statistically significant.

Acknowledgments

We thank Maury Duplantis, Cecily Conerly Midkiff, Terri Rasmussen,

Janell LeBlanc, Kelsi Rasmussen, and all animal care staff of the

department of veterinary medicine for their technical assistance. Thanks

to Drs. Gus Kousoulas, Geeta Ramesh, Xavier Alvarez, Andrew Lackner,

Andrew Maclean, and Vida Dennis for help with this study.

Author Contributions

Conceived and designed the experiments: BP. Performed the experiments:

DP AD BP. Analyzed the data: DP AD DL BP. Contributed reagents/

materials/analysis tools: BP RSV. Wrote the paper: DP AD BP.

References

1. Shattock RJ, Haynes BF, Pulendran B, Flores J, Esparza J, et al. (2008)

Improving defences at the portal of HIV entry: mucosal and innate immunity.
PLoS Med 5: e81.

2. Wira CR, Grant-Tschudy KS, Crane-Godreau MA (2005) Epithelial cells in the
female reproductive tract: a central role as sentinels of immune protection.

Am J Reprod Immunol 53: 65–76.

3. Vroling AB, Fokkens WJ, van Drunen CM (2008) How epithelial cells detect
danger: aiding the immune response. Allergy 63: 1110–1123.

4. Brenchley JM, Douek DC (2008) HIV infection and the gastrointestinal immune

system. Mucosal Immunol 1: 23–30.

5. Miller CJ, Shattock RJ (2003) Target cells in vaginal HIV transmission.

Microbes Infect 5: 59–67.

6. Hladik F, Hope TJ (2009) HIV infection of the genital mucosa in women. Curr
HIV/AIDS Rep 6: 20–28.

7. Hladik F, McElrath MJ (2008) Setting the stage: host invasion by HIV. Nat Rev

Immunol 8: 447–457.

8. Poles MA, Elliott J, Taing P, Anton PA, Chen IS (2001) A preponderance of

CCR5(+) CXCR4(+) mononuclear cells enhances gastrointestinal mucosal
susceptibility to human immunodeficiency virus type 1 infection. J Virol 75:

8390–8399.

9. Bomsel M (1997) Transcytosis of infectious human immunodeficiency virus

across a tight human epithelial cell line barrier. Nat Med 3: 42–47.

10. Bomsel M, David V (2002) Mucosal gatekeepers: selecting HIV viruses for early
infection. Nat Med 8: 114–116.

11. Meng G, Wei X, Wu X, Sellers MT, Decker JM, et al. (2002) Primary intestinal

epithelial cells selectively transfer R5 HIV-1 to CCR5+ cells. Nat Med 8:

150–156.

12. Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay MJ, et al. (2010)
Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing

microbial translocation. PLoS Pathog 6: e1000852.

13. MacDonald EM, Savoy A, Gillgrass A, Fernandez S, Smieja M, et al. (2007)

Susceptibility of human female primary genital epithelial cells to herpes simplex

virus, type-2 and the effect of TLR3 ligand and sex hormones on infection. Biol

Reprod 77: 1049–1059.

14. Hu SL (2005) Non-human primate models for AIDS vaccine research. Curr

Drug Targets Infect Disord 5: 193–201.

15. Bhatt RI, Brown MD, Hart CA, Gilmore P, Ramani VA, et al. (2003) Novel

method for the isolation and characterisation of the putative prostatic stem cell.

Cytometry A 54: 89–99.

16. Sankaran S, George MD, Reay E, Guadalupe M, Flamm J, et al. (2008) Rapid

onset of intestinal epithelial barrier dysfunction in primary human immunode-
ficiency virus infection is driven by an imbalance between immune response and

mucosal repair and regeneration. J Virol 82: 538–545.

17. Dorosko SM, Connor RI (2010) Primary human mammary epithelial cells

endocytose HIV-1 and facilitate viral infection of CD4+ T lymphocytes. J Virol
84: 10533–10542.

18. Desnues B, Ihrig M, Raoult D, Mege JL (2006) Whipple’s disease: a macrophage
disease. Clin Vaccine Immunol 13: 170–178.

19. Nagashima R, Maeda K, Imai Y, Takahashi T (1996) Lamina propria
macrophages in the human gastrointestinal mucosa: their distribution, immuno-

histological phenotype, and function. J Histochem Cytochem 44: 721–731.

20. Latza U, Niedobitek G, Schwarting R, Nekarda H, Stein H (1990) Ber-EP4: new

monoclonal antibody which distinguishes epithelia from mesothelial. J Clin
Pathol 43: 213–219.

21. Roche JK (2001) Isolation of a purified epithelial cell population from human
colon. Methods Mol Med 50: 15–20.

22. Leon F, Roy G (2004) Isolation of human small bowel intraepithelial
lymphocytes by annexin V-coated magnetic beads. Lab Invest 84: 804–809.

23. Saalbach A, Kraft R, Herrmann K, Haustein UF, Anderegg U (1998) The
monoclonal antibody AS02 recognizes a protein on human fibroblasts being

highly homologous to Thy-1. Arch Dermatol Res 290: 360–366.

24. Saada JI, Pinchuk IV, Barrera CA, Adegboyega PA, Suarez G, et al. (2006)

Subepithelial myofibroblasts are novel nonprofessional APCs in the human

colonic mucosa. J Immunol 177: 5968–5979.

Rhesus Intestinal Epithelial Cells

PLoS ONE | www.plosone.org 13 January 2012 | Volume 7 | Issue 1 | e30247



25. Mayer L, Eisenhardt D, Salomon P, Bauer W, Plous R, et al. (1991) Expression
of class II molecules on intestinal epithelial cells in humans. Differences between

normal and inflammatory bowel disease. Gastroenterology 100: 3–12.

26. Das A, Xu H, Wang X, Yau CL, Veazey RS, et al. (2011) Double-positive

CD21+CD27+ B cells are highly proliferating memory cells and their

distribution differs in mucosal and peripheral tissues. PLoS One 6: e16524.

27. Mattapallil JJ, Letvin NL, Roederer M (2004) T-cell dynamics during acute SIV

infection. AIDS 18: 13–23.

28. Parkos CA, Colgan SP, Diamond MS, Nusrat A, Liang TW, et al. (1996)

Expression and polarization of intercellular adhesion molecule-1 on human
intestinal epithelia: consequences for CD11b/CD18-mediated interactions with

neutrophils. Mol Med 2: 489–505.

29. Dippold W, Wittig B, Schwaeble W, Mayet W, Meyer zum Buschenfelde KH
(1993) Expression of intercellular adhesion molecule 1 (ICAM-1, CD54) in

colonic epithelial cells. Gut 34: 1593–1597.

30. Bernstein CN, Sargent M, Gallatin WM, Wilkins J (1996) Beta 2-integrin/

intercellular adhesion molecule (ICAM) expression in the normal human

intestine. Clin Exp Immunol 106: 160–169.

31. Reif AE, Allen JM (1964) The Akr Thymic Antigen and Its Distribution in

Leukemias and Nervous Tissues. J Exp Med 120: 413–433.

32. Williams AF, Gagnon J (1982) Neuronal cell Thy-1 glycoprotein: homology with

immunoglobulin. Science 216: 696–703.

33. Haeryfar SM, Hoskin DW (2004) Thy-1: more than a mouse pan-T cell marker.

J Immunol 173: 3581–3588.

34. Bradley JE, Ramirez G, Hagood JS (2009) Roles and regulation of Thy-1, a
context-dependent modulator of cell phenotype. Biofactors 35: 258–265.

35. Saalbach A, Wetzel A, Haustein UF, Sticherling M, Simon JC, et al. (2005)
Interaction of human Thy-1 (CD 90) with the integrin alphavbeta3 (CD51/

CD61): an important mechanism mediating melanoma cell adhesion to activated
endothelium. Oncogene 24: 4710–4720.

36. van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation

in the intestinal epithelium. Annu Rev Physiol 71: 241–260.

37. Koretzky GA, Picus J, Thomas ML, Weiss A (1990) Tyrosine phosphatase CD45

is essential for coupling T-cell antigen receptor to the phosphatidyl inositol
pathway. Nature 346: 66–68.

38. Kishihara K, Penninger J, Wallace VA, Kundig TM, Kawai K, et al. (1993)
Normal B lymphocyte development but impaired T cell maturation in CD45-

exon6 protein tyrosine phosphatase-deficient mice. Cell 74: 143–156.

39. Gomperts BN, Belperio JA, Rao PN, Randell SH, Fishbein MC, et al. (2006)
Circulating progenitor epithelial cells traffic via CXCR4/CXCL12 in response

to airway injury. J Immunol 176: 1916–1927.

40. McDonald GB, Jewell DP (1987) Class II antigen (HLA-DR) expression by

intestinal epithelial cells in inflammatory diseases of colon. J Clin Pathol 40:
312–317.

41. Hershberg RM, Framson PE, Cho DH, Lee LY, Kovats S, et al. (1997)

Intestinal epithelial cells use two distinct pathways for HLA class II antigen
processing. J Clin Invest 100: 204–215.

42. Tokugawa Y, Koyama M, Silver J (1997) A molecular basis for species
differences in Thy-1 expression patterns. Mol Immunol 34: 1263–1272.

43. Park SM, Chen L, Zhang M, Ashton-Rickardt P, Turner JR, et al. (2010) CD95
is cytoprotective for intestinal epithelial cells in colitis. Inflamm Bowel Dis 16:

1063–1070.

44. Moller P, Koretz K, Leithauser F, Bruderlein S, Henne C, et al. (1994)
Expression of APO-1 (CD95), a member of the NGF/TNF receptor

superfamily, in normal and neoplastic colon epithelium. Int J Cancer 57:
371–377.

45. Kaiserlian D, Lachaux A, Grosjean I, Graber P, Bonnefoy JY (1993) Intestinal
epithelial cells express the CD23/Fc epsilon RII molecule: enhanced expression

in enteropathies. Immunology 80: 90–95.

46. Aubry JP, Pochon S, Graber P, Jansen KU, Bonnefoy JY (1992) CD21 is a
ligand for CD23 and regulates IgE production. Nature 358: 505–507.

47. Pochon S, Graber P, Yeager M, Jansen K, Bernard AR, et al. (1992)
Demonstration of a second ligand for the low affinity receptor for immuno-

globulin E (CD23) using recombinant CD23 reconstituted into fluorescent

liposomes. J Exp Med 176: 389–397.

48. Altmann GG, Quaroni A (1990) Behavior of fetal intestinal organ culture

explanted onto a collagen substratum. Development 110: 353–370.

49. Whitehead RH, Brown A, Bhathal PS (1987) A method for the isolation and

culture of human colonic crypts in collagen gels. In Vitro Cell Dev Biol 23:
436–442.

50. Quaroni A, Wands J, Trelstad RL, Isselbacher KJ (1979) Epithelioid cell cultures

from rat small intestine. Characterization by morphologic and immunologic
criteria. J Cell Biol 80: 248–265.

51. Fonti R, Latella G, Bises G, Magliocca F, Nobili F, et al. (1994) Human
colonocytes in primary culture: a model to study epithelial growth, metabolism

and differentiation. Int J Colorectal Dis 9: 13–22.

52. Baten A, Sakamoto K, Shamsuddin AM (1992) Long-term culture of normal

human colonic epithelial cells in vitro. FASEB J 6: 2726–2734.

53. Pahar B, Lackner AA, Piatak M, Jr., Lifson JD, Wang X, et al. (2009) Control of
viremia and maintenance of intestinal CD4(+) memory T cells in SHIV(162P3)

infected macaques after pathogenic SIV(MAC251) challenge. Virology 387:
273–284.

54. Das A, Veazey RS, Wang X, Lackner AA, Xu H, et al. (2011) Simian
immunodeficiency virus infection in rhesus macaques induces selective tissue

specific B cell defects in double positive CD21+CD27+ memory B cells. Clin

Immunol 140: 223–228.

55. Veazey RS, Rosenzweig M, Shvetz DE, Pauley DR, DeMaria M, et al. (1997)

Characterization of gut-associated lymphoid tissue (GALT) of normal rhesus

macaques. Clin Immunol Immunopathol 82: 230–242.

56. Bloom S, Simmons D, Jewell DP (1995) Adhesion molecules intercellular

adhesion molecule-1 (ICAM-1), ICAM-3 and B7 are not expressed by

epithelium in normal or inflamed colon. Clin Exp Immunol 101: 157–163.

57. Sanderson IR, Ouellette AJ, Carter EA, Walker WA, Harmatz PR (1993)

Differential regulation of B7 mRNA in enterocytes and lymphoid cells.

Immunology 79: 434–438.

58. Salik E, Tyorkin M, Mohan S, George I, Becker K, et al. (1999) Antigen

trafficking and accessory cell function in respiratory epithelial cells. Am J Respir

Cell Mol Biol 21: 365–379.

59. Han DC, Huang GT, Lin LM, Warner NA, Gim JS, et al. (2003) Expression of

MHC Class II, CD70, CD80, CD86 and pro-inflammatory cytokines is

differentially regulated in oral epithelial cells following bacterial challenge. Oral

Microbiol Immunol 18: 350–358.

60. Ding Y, Qin L, Zamarin D, Kotenko SV, Pestka S, et al. (2001) Differential IL-

10R1 expression plays a critical role in IL-10-mediated immune regulation.

J Immunol 167: 6884–6892.

61. Lai CF, Ripperger J, Morella KK, Jurlander J, Hawley TS, et al. (1996)

Receptors for interleukin (IL)-10 and IL-6-type cytokines use similar signaling

mechanisms for inducing transcription through IL-6 response elements. J Biol

Chem 271: 13968–13975.

62. Takasugi K, Yamamura M, Iwahashi M, Otsuka F, Yamana J, et al. (2006)

Induction of tumour necrosis factor receptor-expressing macrophages by

interleukin-10 and macrophage colony-stimulating factor in rheumatoid

arthritis. Arthritis Res Ther 8: R126.

63. Du Z, Kelly E, Mecklenbrauker I, Agle L, Herrero C, et al. (2006) Selective

regulation of IL-10 signaling and function by zymosan. J Immunol 176:

4785–4792.

64. Elbim C, Reglier H, Fay M, Delarche C, Andrieu V, et al. (2001) Intracellular

pool of IL-10 receptors in specific granules of human neutrophils: differential

mobilization by proinflammatory mediators. J Immunol 166: 5201–5207.

65. Denning TL, Campbell NA, Song F, Garofalo RP, Klimpel GR, et al. (2000)

Expression of IL-10 receptors on epithelial cells from the murine small and large

intestine. Int Immunol 12: 133–139.

66. Li Q, Estes JD, Duan L, Jessurun J, Pambuccian S, et al. (2008) Simian

immunodeficiency virus-induced intestinal cell apoptosis is the underlying

mechanism of the regenerative enteropathy of early infection. J Infect Dis 197:

420–429.

67. George MD, Reay E, Sankaran S, Dandekar S (2005) Early antiretroviral

therapy for simian immunodeficiency virus infection leads to mucosal CD4+ T-

cell restoration and enhanced gene expression regulating mucosal repair and

regeneration. J Virol 79: 2709–2719.

68. George MD, Sankaran S, Reay E, Gelli AC, Dandekar S (2003) High-

throughput gene expression profiling indicates dysregulation of intestinal cell

cycle mediators and growth factors during primary simian immunodeficiency

virus infection. Virology 312: 84–94.

69. Pearce-Pratt R, Phillips DM (1996) Sulfated polysaccharides inhibit lymphocyte-

to-epithelial transmission of human immunodeficiency virus-1. Biol Reprod 54:

173–182.

70. Taguchi M, Sampath D, Koga T, Castro M, Look DC, et al. (1998) Patterns for

RANTES secretion and intercellular adhesion molecule 1 expression mediate

transepithelial T cell traffic based on analyses in vitro and in vivo. J Exp Med

187: 1927–1940.

71. van der Linden PJ, de Goeij AF, Dunselman GA, van der Linden EP,

Ramaekers FC, et al. (1994) Expression of integrins and E-cadherin in cells from

menstrual effluent, endometrium, peritoneal fluid, peritoneum, and endometri-

osis. Fertil Steril 61: 85–90.

72. Dustin ML, Rothlein R, Bhan AK, Dinarello CA, Springer TA (1986) Induction

by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of

a natural adherence molecule (ICAM-1). J Immunol 137: 245–254.

73. Rothlein R, Dustin ML, Marlin SD, Springer TA (1986) A human intercellular

adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol 137: 1270–1274.

74. Reiss Y, Hoch G, Deutsch U, Engelhardt B (1998) T cell interaction with

ICAM-1-deficient endothelium in vitro: essential role for ICAM-1 and ICAM-2

in transendothelial migration of T cells. Eur J Immunol 28: 3086–3099.

75. Greenwood J, Wang Y, Calder VL (1995) Lymphocyte adhesion and

transendothelial migration in the central nervous system: the role of LFA-1,

ICAM-1, VLA-4 and VCAM-1. off. Immunology 86: 408–415.

76. Oppenheimer-Marks N, Davis LS, Bogue DT, Ramberg J, Lipsky PE (1991)

Differential utilization of ICAM-1 and VCAM-1 during the adhesion and

transendothelial migration of human T lymphocytes. J Immunol 147:

2913–2921.

77. Frick AG, Joseph TD, Pang L, Rabe AM, St Geme JW, 3rd, et al. (2000)

Haemophilus influenzae stimulates ICAM-1 expression on respiratory epithelial

cells. J Immunol 164: 4185–4196.

78. Maingat F, Halloran B, Acharjee S, van Marle G, Church D, et al. (2011)

Inflammation and epithelial cell injury in AIDS enteropathy: involvement of

endoplasmic reticulum stress. FASEB J 25: 2211–2220.

Rhesus Intestinal Epithelial Cells

PLoS ONE | www.plosone.org 14 January 2012 | Volume 7 | Issue 1 | e30247



79. Ramesh G, Alvarez X, Borda JT, Aye PP, Lackner AA, et al. (2005) Visualizing

cytokine-secreting cells in situ in the rhesus macaque model of chronic gut

inflammation. Clin Diagn Lab Immunol 12: 192–197.

80. Zhao W, Pahar B, Borda JT, Alvarez X, Sestak K (2007) A decline in CCL3-5

chemokine gene expression during primary simian-human immunodeficiency

virus infection. PLoS One 2: e726.

81. Wang X, Das A, Lackner AA, Veazey RS, Pahar B (2008) Intestinal double-

positive CD4+CD8+ T cells of neonatal rhesus macaques are proliferating,

activated memory cells and primary targets for SIVMAC251 infection. Blood

112: 4981–4990.

82. Yoshino N, Ami Y, Terao K, Tashiro F, Honda M (2000) Upgrading of flow

cytometric analysis for absolute counts, cytokines and other antigenic molecules

of cynomolgus monkeys (Macaca fascicularis) by using anti-human cross-reactive

antibodies. Exp Anim 49: 97–110.
83. Vugmeyster Y, Howell K, Bakshi A, Flores C, Hwang O, et al. (2004) B-cell

subsets in blood and lymphoid organs in Macaca fascicularis. Cytometry A 61:

69–75.
84. Pahar B, Lackner AA, Veazey RS (2006) Intestinal double-positive CD4+CD8+

T cells are highly activated memory cells with an increased capacity to produce
cytokines. Eur J Immunol 36: 583–592.

85. Xu H, Wang X, Pahar B, Moroney-Rasmussen T, Alvarez X, et al. (2010)

Increased B7-H1 expression on dendritic cells correlates with programmed
death 1 expression on T cells in simian immunodeficiency virus-infected

macaques and may contribute to T cell dysfunction and disease progression.
J Immunol 185: 7340–7348.

Rhesus Intestinal Epithelial Cells

PLoS ONE | www.plosone.org 15 January 2012 | Volume 7 | Issue 1 | e30247


