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Abstract

Impairment of intestinal epithelial barriers contributes to the progression of HIV/SIV infection and leads to generalized HIV-
induced immune-cell activation during chronic infection. Rhesus macaques are the major animal model for studying HIV
pathogenesis. However, detailed characterization of isolated rhesus epithelial cells (ECs) from intestinal tissues is not well
defined. It is also not well documented whether isolated ECs had any other cell contaminants from intestinal tissues during
the time of processing that might hamper interpretation of EC preparations or cultures. In this study, we identify and
characterize ECs based on flow cytometry and immunohistochemistry methods using various enzymatic and mechanical
isolation techniques to enrich ECs from intestinal tissues. This study shows that normal healthy ECs differentially express
HLA-DR, CD23, CD27, CD90, CD95 and IL-10R markers. Early apoptosis and upregulation of ICAM-1 and HLA-DR in intestinal
ECs are thought to be the key features in SIV mediated enteropathy. The data suggest that intestinal ECs might be playing
an important role in mucosal immune responses by regulating the expression of different important regulatory and
adhesion molecules and their function.
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Introduction

The intestinal mucosal immune response in healthy individuals
is characterized by a balance between immunity, which protects
mucosal surfaces from harmful microbes, and tolerance, which
permits the intestinal mucosa to interact in a nonpathogenic way
with the commensal bacteria and dietary antigens to which it is
constantly exposed [1-3]. The small and large intestinal
epithelium is simple columnar, non-ciliated cells. Certain epithelial
cells (ECs) lining the small intestine also had the function to absorb
nutrients from the digestion of food. In glands, ECs are specialized
to secrete specific chemical substances such as enzymes, hormones
and lubricating fluids. HIV-1 infection 1s initiated primarily on the
mucosal surfaces, through sexual transmission [1,4]. The epithelial
layer seems to be an efficient mechanical barrier against several
pathogens including HIV-1 [5]. However, mucosal transmission
accounts for more than 90% of HIV infections [6-8]. Intestinal
ECs preferentially express coreceptor molecules like CCR5 rather
than CXCR4, however, they generally do not express the HIV-1
receptor CD4 [8]. Moreover, it is believed that for an efficient
HIV-1/SIV infection, the virus needs to bypass the epithelial
barrier to enter in the intraepithelial lymphocytes (IEL) or lamina
propria lymphocytes (LPL). The primary ECs were able to transfer
CCR)5 tropic virus more efficiently than CXCR4 tropic virus
through transcytosis to indicator cells by i vitro experiments [9—
11]. Recent studies have shown that mucosal EC respond directly
to HIV envelope glycoproteins by upregulating inflammatory

@ PLoS ONE | www.plosone.org

cytokines that lead to impairment of barrier functions [12]. The
majority of studies on ECs and HIV interaction have been
performed using primary EC cultures from intestinal and
reproductive tissues or cell lines  vitro [12,13]. However, detailed
isolation and characterization of rhesus ECs from intestinal tissues
are poorly documented, whereas the rhesus macaque (RM) model
is well recognized for understanding HIV/SIV pathogenesis,
disease progression and HIV vaccine development [14]. It is also
not well documented whether isolated ECs have other cell
contaminants from intestinal tissues during the time of processing
or whether isolation methods could be improved or optimized to
reduce contamination that might hamper the study design using
EC cultures. Moreover, these ECs in normal uninfected and SIV
infected RMs were not characterized with respect to memory
and/or effector status, adhesion, antigen presentation, or regula-
tory receptor expression compared to intestinal CD45+ leukocytes.

Here we identify and characterize ECs using flow cytometry
and immunohistochemistry methods where we have compared
various enzymatic and mechanical isolation techniques to enrich
ECs from intestinal tissues. This study shows that ECs are positive
for HLA-DR, CD23, CD27, CD90, CD95 and IL-10R pheno-
types. Early apoptosis and upregulation of ICAM-1 and HLA-DR
in intestinal ECs are thought to be the key features in SIV
mediated enteropathy. The data suggest that intestinal ECs might
be playing an important role in mucosal immune responses by
regulating the expression of different important regulatory and
adhesion molecules and their function.
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Results

Increased epithelial cell isolation by either DTT or EDTA
treatment

Epithelial cells from jejunum and colon were isolated using
several enzymatic and isolation techniques that have been
diagrammatically represented in Figs. 1 & 2. To characterize
ECs, anti-cytokeratin and Ber-EP4 (epithelial antigen) monoclonal
antibodies (MAbs) were used in both immunohistochemistry and
flow cytometry assays (Fig. 3). Both anti-cytokeratin and Ber-EP4
MAbs yield similar percentages of ECs from each sample as
detected by flow cytometry (data not shown). Ber-EP4 has been
reported as an important epithelial cell marker to define ECs and to
differentiate from mesothelial cells [15-20]. Epithelial cells were
also identified in jejunum and colon mucosa based on their
morphology, epithelial location, and immunophenotype. To
identify and characterize ECs from different cell isolation protocols,
we performed flow cytometry using Ber-EP4 (CK; for epithelial cell
detection) and CD45 MAbs (reacts with leukocyte common antigens
present in all leukocytes including lymphocytes, monocytes,
granulocytes, eosinophils and thymocytes). All cells were catego-
rized into 4 different cell subsets based on their CK and CD45
expression (CK+CD45—, CK—-CD45+, CK—-CD45—, and
CK+CD45+). The dead cells were excluded by live/dead staining
for all ECs and CD45 leukocytes analysis. Both DTT (reducing
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agent) and EDTA (cation chelant) solution has been used for the
isolation of intestinal ECs [21,22]. However, the purity of EC from
each isolation technique has not been clearly defined, where the
characterization of ECs was based on low to moderately sensitive
immunohistochemistry techniques. DTT treatment only vyields
more purified single positive EC (CK+CD45—; 72.3%%*9.9%)
compared to other steps examined in our protocol (Figs. 1 & 4).
Similar percentages of single positive ECs were also evident in
EDTA treated upper (70.2%%5.6%) and lower (70.7%=*10.6%)
layer cells isolated from percoll gradient where no prior DTT
treatment was followed (Figs. 2, 5 & 6). ECs isolated from upper and
lower layer of EDTA wash with prior DT'T treatment were 16.2%
and 14.4% respectively. There was no statistical differences in the
purity of ECs isolated from intestinal tissues after D'T'T wash and
steps where EDTA was used at the beginning without prior D'TT
treatment (Fig. 6). ECs isolated from upper and lower layers of
collagenase wash without any prior DTT wash were 8.2% and
8.2% respectively (Fig. 6). However in all of our steps in the specified
protocols, there was a variable amount (1.4%-16.2%) of ECs
contamination in our LPL and IEL isolation protocols (Figs. 3, 4, 5
& 6). Similarly, single positive CD45 cells were also present in all
ECs isolation protocols (Figs. 3, 4 & 5). Double positive
(CK+CD45+) and double negative (CK—CD45—) cells were
present at varied frequencies with mean value range from 0.9%—
3.0% and 3.4%-50.3% respectively in all different isolation

Step |: Intestinal specimens were washed twice in ice-cold PBS to remove gross debris and covered with dry paper towels to remove mucus. Cut
into small strips (approximate 0.5-1 cm?)

Step II: Small intestinal strips were treated with HBSS with 0.15% DTT in 25 cm? TC flask by intermittent shaking for 30 min at 37°C

v

Step IlI: Collect the wash and filter through
mesh screen

v v

Step IV: Washed in ice-cold PBS thrice and

suspended in RPMI-1640 complete media at 4°C through mesh screen

Step VII: Washed thrice in RPMI-1640 complete
media and stored at 4°C

Step VIII: All cells were layered over 30-60%

Step VI: Collect the EDTA wash and filter

v

Step V: Remaining tissues in flasks from step |l were treated with complete HBSS media
containing 10% FCS, 1mM EDTA, pH7.2 in shaker for 60 min at 37°C

v

Step X: Remaining tissues cut into small
pieces and further treated with complete
RPMI-1640 with 10% FCS containing 60
units /ml collagenase type Il in a shaker for
45 min at 37°C

Step XI: Collect the wash and filter through
mesh screen

percoll gradients; spin at 1000g for 20min

Step XIlI: All cells were layered over 30-60%
percoll gradients; spin at 1000g for 20 min

EDTA wash
30% percoll
60% percoll

Step IX: Collect both upper and lower
layers between 30-60 % percoll gradients

Cells from upper layer

Collagen wash
30% percoll
60% percoll

Step Xlll: Collect both upper and lower
layers between 30-60 % percoll gradients

Cells from lower layer

Cells from upper layer

Cells from lower layer

Figure 1. Schematic representation of epithelial cell and leukocyte isolation protocols from intestinal tissues after different
enzymatic treatments. Note that this protocol explains cell isolation procedures with initial DTT treatment.

doi:10.1371/journal.pone.0030247.g001
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Step I: Intestinal specimens were washed twice in ice-cold PBS to remove gross debris and covered with dry paper towels to remove mucus. Cut
into small pieces (approximate 0.5-1 cm?)

v

Step ll: Tissues were treated with complete HBSS media containing 10% FCS, 1mM EDTA,

pH7.2 in a shaker for 60 min at 37°C

v

Step lll: Collect the EDTA wash and filter through

mesh screen

Step IV: Washed thrice in RPMI-1640 complete

media and stored at 4°C

Step V: All cells were layered over 30-60%
percoll gradients; spin at 1000g for 20min

EDTA wash
30% percoll

KBO% percoll

Step VI: Collect both upper and lower
layers between 30-60 % percoll gradients

Cells from upper layer

Cells from lower layer

v

Step VII: Remaining tissues cut into small
pieces and further treated with complete
RPMI-1640 with 10% FCS containing 60
units /ml collagenase type Il in a shaker for
45 min at 37°C

v

Step VIII: Collect the wash and filter through
mesh screen

Step IX: All cells were layered over 30-60%
percoll gradients; spin at 1000g for 20 min

Collagen wash
30% percoll
60% percoll

Step X: Collect both upper and lower
layers between 30-60 % percoll gradients

Cells from upper layer

Cells from lower layer

Figure 2. Schematic representation of epithelial cell and leukocyte isolation protocols from intestinal tissues after different
enzymatic treatments. Note that this protocol explains cell isolation procedures with initial EDTA treatment. No prior DTT treatment has been

used in this protocol.
doi:10.1371/journal.pone.0030247.9g002

protocols. None of our experimental procedures are able to yield
100% purified intestinal ECs population and are suggestive of single
cell sorting experiment for isolating purified ECs.

Cytokeratin expression by intestinal epithelial cells in
normal rhesus macaques

There was no colocalization either between epithelial (cytoker-
atin) and Hamb6 (macrophage marker), epithelial and CDllc
(dendritic cell marker), and epithelial and CD54 (cell adhesion
molecule) (Figs. 7A-B & 7F). Few double positive CK+CD45+
cells were evident in ECs that also support our flow cytometry data
(Figs. 3 & 7C). However, increased HLA-DR expression was
observed both in ECs as well as intraepithelial region (Fig. 7D).
Limited IL-10R expression was also detected in intestinal ECs
(Fig. 7E). In summary, ECs do not express macrophage or
dendritic cell markers and they differentially express different
regulatory and activation molecules.

Immunophenotypic characterization of epithelial cells in
normal intestinal mucosa

To confirm the observations detected by immunohistochemis-
try, single-cell suspensions of isolated cells were generated from
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intestinal mucosa followed by DTT wash as described in the
materials and methods section. These cell suspensions were
subsequently analyzed by multicolor flow cytometry analysis. In
addition to lymphocytes, macrophages, monocytes and other
leukocytes, these preparations also contain additional resident
cells. In these preparations, ECs are identified as Ber-EP4 positive
cells with no CD45 surface expression (Fig. 3). Fibroblast/
myofibroblast cells were identified using CD90 (Thy-1) marker
and those cells were negative for both Ber-EP4 and CD45 surface
marker [23]. CD90 and o smooth muscle actin fiber has also been
used for defining myofibroblast markers in human colonic mucosa
[24]. Interestingly, significantly increased HLA-DR expression was
observed on ECs (mean value 72.5%=%23.05%) compared to
CD45+ leukocytes (mean value 23.07%=*5.15%) (Fig. 8). In-
creased expression of HLA-DR in human intestinal ECs was
confirmed using a sensitive avidin biotin-peroxidase technique,
which may help to explain the unique properties of intestinal ECs
as antigen-presenting cells [25].

CD23, the low-affinity IgE receptor is widely distributed on B
cells in the follicular mantle, on resting B cells. CD23 is also
detected in monocytes and eosinophils and has influence on cell
differentiation and growth of both B and T cells. CD23 expression
in jejunum ECs (mean value 26.9%*3.73%) was significantly
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Figure 3. Phenotyping epithelial cells of normal rhesus macaques. (A) Representative expression of cytokeratin (CK; epithelial cell marker)
and CD45 (leukocyte marker) in jejunum intestinal cells isolated from lower layer (“lymphocyte enriched”) of percoll gradient after treating with DTT
and EDTA solution (Fig. 1; Step IX). Note that 2.8% of cells were double positive for CK and CD45 receptors. Fractions of double negative CK—CD45—
cells were also evident from isolated cells. Live cells were gated first from all acquired cells and plotted based on CK and CD45 markers. Visualization
of epithelial cells both in (B) colon at 20x and (C) jejunum at 5x resolution were detected by immunohistochemistry staining using anti-CK

monoclonal antibody with hematoxylin counterstain.
doi:10.1371/journal.pone.0030247.g003

higher than CD23 expressed by CD45 leukocytes (mean value
1.81%*0.53%), however their function is not well understood
(Fig. 8).

Surface receptor CD27, a type 1 glycoprotein and a member of
the tumor necrosis factor receptor family was shown on a subset of
B and T cells and it was thought that their expression may be
required for the generation of memory and long term maintenance
of B and T cell immunity [26,27]. Interestingly ECs are also able
to express CD27 markers to some extent (mean; 5.6% *£2.24%;
Fig. 8), however their function in ECs are also not well defined.

Intracellular adhesion molecule-1 (ICAM-1; CD54) has an
important role to play in the intestinal immune response [28-30].
CD80 (B7.1) is a costimulatory molecule involved in T cell
activation and survival. Similar to CD80, CD86 is a protein
expressed on antigen-presenting cells that provide costimulatory
signals necessary for T cell activation and survival. We were
unable to detect any CD54, CD80 and/or CD86 expression in
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ECs from normal jejunum and colon intestinal tissues both by
immunohistochemistry (Fig. 7) and flow cytometry (Fig. 8).
Intestinal CD45+ leukocytes had significantly higher expression
of CD80 (mean; 24.78%*16.52%; Fig. 8) and CD86 (mean;
20.75%*10.08%; Fig. 8) compared to ECs. However, CD45+
leukocytes had low CD54 expression as observed in ECs.

CDY90, a glycophosphatidylinositol-linked glycoprotein was
initially described as a differentiation marker expressed predom-
inantly in the mouse brain and thymus [31]. The exact mechanism
and roles of Thy-1 remained unanswered and it has been proposed
that this molecule is involved in cell-cell interaction [32]. Recent
studies in murine Thy-1 expression, its signaling properties, and
the stimulatory effect of Thy-1 cross-linking on mouse T cells
indicate that Thy-1 is more than just a T cell marker [33]. In
humans, Thy-1 is expressed on the surface of a number of cells
including neurons, retinal ganglion cells, thymocytes, vesicular
pericytes, subsets of fibroblasts, activated endothelial cells,
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Figure 4. Isolation of epithelial cells and leukocytes from intestinal tissues with DTT, EDTA and collagenase treatments.
Representative dot plots of total cells from (A) DTT wash (Fig. 1, step IV); (B) lower layer of percoll density gradient, isolated after EDTA treatment
(Fig. 1, step IX); (C) lower layers of percoll density gradient, isolated after collagenase treatment (Fig. 1, step Xlll) from jejunum tissue showing
distribution of epithelial cells (ECs; cytokeratin as an epithelial cell marker) and CD45 leukocytes in a normal uninfected healthy rhesus macaque. Each
quadrant shows percentages of specified cell populations. Note increased percentage of ECs were isolated from DTT wash compared to other
methods examined. Mean frequencies of cytokeratin (CK) positive, CD45 positive, double positive and double negative for CK and CD45 cell subsets
are shown as box and whisker vertical bars for different isolation protocols as specified in Fig. 1. In summary all the specified bars represent (D) cells
isolated from DTT wash (Fig. 1, step IV); (E) upper layer cells from percoll density gradient isolated after EDTA treatment (Fig. 1, step IX); (F) lower layer
cells from percoll density gradient isolated after EDTA treatment (Fig. 1, step IX); (G) upper layer cells from percoll density gradient isolated after
collagenase treatment (Fig. 1, step XIll); and (H) lower layer cells from percoll density gradient isolated after collagenase treatment (Fig. 1, step XIlI)
from jejunum in healthy, normal, uninfected rhesus macaques (n=5). Note that in all isolation protocols, there was a variable amount of CD45+ and
double negative CK—CD45— cells contamination observed. * Indicates significant differences between CK+CD45— and other different subsets of
total cells within the specified isolation protocol.

doi:10.1371/journal.pone.0030247.g004
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Figure 5. Isolation of epithelial cells and leukocytes from intestinal tissues with EDTA and collagenase treatment. Representative dot
plots of total cells from (A) upper layer of percoll density gradient isolated after EDTA treatment (Fig. 2, step VI); (B) lower layer of percoll density
gradient isolated after EDTA treatment (Fig. 2, step VI); (C) upper layer of percoll density gradient isolated after collagenase treatment (Fig. 2, step X);
and (D) lower layer of percoll density gradient isolated after collagenase treatment (Fig. 2, step X); in jejunum tissue showing distribution of epithelial
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cells (ECs; cytokeratin as an epithelial cell marker) and CD45 leukocytes in a normal uninfected healthy rhesus macaque. Each quadrant shows
percentages of specified populations. Note increased percentage of ECs were isolated from both upper and lower layer cells of percoll density
gradient isolated after EDTA treatment compared to other methods examined. Mean frequencies of cytokeratin (CK) positive, CD45 positive, double
positive and double negative for CK and CD45 cell subsets are shown as box and whisker vertical bars for different isolation protocols as specified in
Fig. 2. In summary all the specified bars represent (E) upper layer cells from percoll density gradient isolated after EDTA treatment (Fig. 2, step VI); (F)
lower layer cells from percoll density gradient isolated after EDTA treatment (Fig. 2, step VI); (G) upper layer cells from percoll density gradient
isolated after collagenase treatment (Fig. 2, step X); and (H) lower layer cells from percoll density gradient isolated after collagenase treatment (Fig. 2,
step X); from jejunum in healthy, normal, uninfected rhesus macaques (n=5). Note that in all isolation protocols, there was a variable amount of
CD45+ and double negative CK—CD45— cells contamination observed. * Indicates significant differences between CK+CD45— and other different

subsets of total cells within the specified isolation protocol.
doi:10.1371/journal.pone.0030247.9005

mesangial cells and mesenchymal and hematopoietic cells
[23,34,35]. The expression of CD90 in intestinal ECs is not yet
well studied. In this study, we have shown about 11.05% *£6.46%
of EC express CD90 (Fig. 8). In contrast, intestinal CD45+
leukocytes express significantly higher amount of CD90 (mean
value 38.65% *4.88%; Fig. 8).

CDY95 is a member of the tumor necrosis factor family and
induces apoptosis when cross-linked by its natural ligand, CD95L.
High percentages of ECs express CD95 (mean 74.9% *12.9%).
However CD95 expression on ECis is significantly lower compared
to intestinal CD45+ leukocytes (mean 98.36% *£1.55%; Fig. 8).

IL-10 has been shown to mediate anti-inflammatory activity in
cells of different lineages by interacting with IL-10R expressed on
the cells. To determine the expression of IL-10R both in jejunum
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Figure 6. Percentages of epithelial cells retrieved from
different isolation protocols. Mean percentages (+ standard
deviation) of isolated cytokeratin (CK)}+ CD45— cells from jejunum
either after DTT, EDTA or collagenase treatment with or without prior
DTT wash (as discussed in details in Figs. 1 & 2) are shown from
uninfected normal healthy rhesus macaques (n=5). Note that there was
increased yield of ECs either by DTT or EDTA only treatment compared
to other protocols followed in this experiment. Statistical significant
differences between each group of cells are shown. * Indicates
significant differences in ECs isolated from either DTT or EDTA only
treatment compared to other group of cells.
doi:10.1371/journal.pone.0030247.g006
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and colon ECs we have used anti-IL-10R MAb. Quantitative
analysis by flow cytometry has shown surface IL-10R expression in
ECs (mean value 1.36%%0.94% and 1.5%*0.25% for jejunum
and colon respectively; Fig. 9). There was no statistically significant
difference in IL-10R expression between CD45+ leukocytes and
ECs (Fig. 9). In summary intestinal ECs did not express CD1lc,
Hamb56, CD3, CD54, CD80, and CD86 receptors by either
confocal or flow cytometry assays. A moderate to higher
expression of CD23, CD27, CD90, CD95 and HLA-DR was
detected in intestinal ECs. However, the percentages of CD23 and
HLA-DR expression in ECs were higher compared to CD45+
intestinal leukocytes.

Upregulation of apoptosis and ICAM-1 expression in
intestinal epithelial cells during SIV infection

To assess early jejunum ECs apoptosis in SIV infection, frozen
archived jejunum tissues from acute (21 days post infection) and
chronically (288 days post infection) SIV infected RMs were
stained with anti-active caspase-3 (AC-3) antibodies. Confirmation
of ECs apoptosis was performed using anti-cytokeratin antibodies
in all acute and chronically SIV infected RMs (Fig. 10A). As
predicted, there was an increased AC—3+ jejunum ECs in both
acute and chronically SIV infected RMs suggestive of early ECs
apoptosis in SIV infected RMs. To understand the role of different
regulatory (CD54, CD80 and CD86) and activation (HLA-DR)
molecules, expression of CD54, CD80, CD86 and HLA-DR were
measured in freshly isolated ECs and CD45+ cells from
chronically SIV-infected animals and compared with SIV
uninfected healthy control macaques. A significant increase of
CD54 expression was detected both on ECs (mean 25.8% vs 0.4%)
and CD45+ (mean 7.2% vs 1.2%) cells in SIV infected RMs
compared to SIV uninfected controls ECs and CD45+ cell
population (Fig. 10B). Increased HLA-DR expression was also
detected both in ECs (mean 88.9% vs 72.5%) and CD45+ (mean
37.7% vs 23.1%) cells from SIV infected compared to control
animals. However, the difference in HLA-DR expression in ECs
from SIV-infected macaques compared to uninfected control RMs
was not statistically significant. No significant differences in CD80
and CD86 expression were detected in normal uninfected and
SIV-infected RMs. In contrast, a significantly higher expression of
CDB80 (mean 54.7% vs 24.8%) was detected in CD45+ cells from
SIV-infected RMs compared to uninfected controls (Fig. 10B).
CD86 expression was higher on intestinal CD45+ cells (33.2% vs
20.7%) in SIV-infected animals, however the difference was not
statistically significant between control RMs (Fig. 10B). In
summary, increased apoptosis and upregulation of ICAM-1 and
HLA-DR expression in intestinal ECs from SIV infected RMs are
suggestive of its role in SIV enteropathy.

Discussion

Intestinal epithelium primarily takes part in the digestive system.
However, they play an important part in the immune system, both
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Figure 7. Phenotyping colon and jejunum epithelial cells (ECs) by confocal microscopy. Essentially all colon (A-E) ECs (cytokeratin
positive) were negative for (A) Ham56 (macrophage marker), and (B) CD11c¢ (dendritic cell marker). Very few colon ECs were double positive for (C)
both CD45 (leukocyte marker) and cytokeratin expression. A major population of colon ECs was positive for (D) HLA-DR expression. However, very
few colon ECs were positive for (E) IL-10R expression which was evident in apical regions. Jejunum ECs were also negative for (F) CD54 (ICAM-1, cell
adhesion marker). White arrow denotes the presence of double positive cells (cytokeratin and CD45/HLA-DR/IL-10R) for the specified sample and

fluorochrome.
doi:10.1371/journal.pone.0030247.g007

as a barrier and as a first-line pathogen recognition system [36].
The present study was designed to identify and characterize
intestinal ECs and their surface receptors for better understanding
their functional properties and immune protection both in normal
and SIV-infected RMs.

Combinations of mechanical preparation and enzymatic
digestion methods to enrich RM intestinal ECs from tissues
obtained from necropsied animals were compared. Using these
techniques, large numbers of intestinal ECs, with a viability of 90—
96%, were obtained. Bacterial contamination is rarely a problem
in these isolation procedures, as the majority or bacterial flora are
removed by several washing steps and percoll separation. Cells
isolated from directly after DT'T wash may contain more bacterial
contamination that needs further investigation. The use of DT'T or
EDTA was found to be best for isolating intestinal ECs as the
isolation procedure is faster, yields increased percentages of ECs,

@ PLoS ONE | www.plosone.org

and takes fewer steps to identify ECs. Further collagenase
enzymatic treatment reduces the yield of ECs and increases the
percentages of leukocytes. Overall in all isolation protocols, none
of the protocols yielded pure populations of ECs in our experiment
and there was contamination with fibroblast/myofibroblast cells
(CK—=CDY90+CD45—) (data not shown) [23], leukocytes, and
other uncharacterized cell populations. A 50% percoll solution has
also been tested but no significant increase in the enrichment of
ECs from all different cell isolation protocol (as shown in Figs. 1 &
2) was observed (data not shown). To isolate purified ECs, one has
to perform single cell sorting experiment from DTT/EDTA
treated ECs that might be suitable for further molecular and
cultural experiments. The protein tyrosine phosphatase CD45 is
abundantly expressed on all nucleated hematopoietic cells and is
an essential protein in normal T and B cell development and
antigen receptor signaling [37,38]. The presence of minimal to low
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Figure 8. Relative expression of CD3, CD23, CD27, CD54, CD80, CD86, CD90, CD95 and HLA-DR in intestinal epithelial cells (ECs)
from normal healthy macaques. (A) Jejunum ECs (open histogram) and isotype control (filled histogram) shown for expression of CD3, CD23,
CD27, CD54, CD80, CD86, CD90, CD95 and HLA-DR using anti-CD3, anti-CD23, anti-CD27, anti-CD54, anti-CD80, anti-CD86, anti-CD90, anti-CD95 and
anti-HLA-DR monoclonal antibodies respectively from a normal healthy rhesus macaque. (B) Mean frequencies (= standard deviation) of cell
adhesion and regulatory markers are shown as bars for jejunum ECs and CD45+ leukocytes from uninfected normal rhesus macaques (n=6). Note
that there was an increased expression of CD23 and HLA-DR in ECs compared to CD45+ leukocytes from jejunum tissues. DTT washed live cells from
jejunum tissue were gated from all acquired samples. All live cells were further gated based on CD45 and cytokeratin (CK) expression. Only
CK+CD45— and CK-CD45+ cells were identified for further phenotypic analysis. Statistical significant differences between each group of cells are

shown.
doi:10.1371/journal.pone.0030247.g008

frequencies of CK+CD45+ epithelial cells in intestinal tissues
demonstrate that these cells might be a population of progenitor
ECs as previously described in bone marrow and airway
epithelium from mice and humans [39]. The possibility exists
that culturing these CK+CD45+ ECs in vitro will allow us to further
characterize these progenitor cells both phenotypically and
functionally and study their distribution in different tissues
including the airway, lung, parenchyma, skin, bone marrow and
buffy coat.

Epithelial cells provide a shield of the intestinal mucosa from
other mononuclear cells below the epithelium, and express HLA-
DR molecules in the normal, noninflammed intestinal mucosa.
Our data confirms the earlier reports where expression of HLA-
DR in ECs has been shown in both small and large intestines
[40,41]. In human, CD90 is absent in thymocytes however both
thymocytes and peripheral T cells in mice are positive for CD90
[42]. We have detected the expression of CD90 in all normal
healthy uninfected rhesus intestinal ECs. The exact role of CD90

in intestinal ECs 1s not clear and needs further study to understand
its role in immune regulation. In this study we have also noticed
increased expression of CD95 and CD23 on EC that are in
agreement with previous human intestinal ECs studies [43-45]. In
inflammatory intestinal diseases, upregulation of CD23 in
association with increased MHC class II molecules may suggest
lymphoepithelial interactions resulting in exaggerated antigen
presentation [45—47]. It is possible that the expression of CD23 by
normal ECs may have significance in regulating mucosal
immunity by serving as a costimulatory molecule that also
warrants further study.

A wide variety of isolation methods for human and animal ECs
have been used including purely mechanical procedures [48],
calcium—chelating agents [49], chelating agents in combination
with enzymatic digestion [50], and combinations of enzyme
isolation procedures with mechanical preparation [51]. The first
successful isolation of human colonic ECs was performed by short
enzymatic digestion [52]. In our experiment, viability of ECs is not
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Figure 9. IL-10R expression in intestinal epithelial cells (ECs). (A) Left contour plot shows the IL-10R positive cells in the gated region from a
normal healthy jejunum ECs. Jejunum ECs (open histogram) and isotype control (filled histogram) were also shown as histograms for expression of
anti-IL-10R in the right panel. (B) Mean percentages (+ standard deviation) of surface IL-10R expression are shown for both jejunum ECs and CD45+
leukocytes isolated from normal healthy rhesus macaques (n=5). Statistical significant differences between each group of cells are shown.
doi:10.1371/journal.pone.0030247.9g009
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affected by chemical or enzymatic treatments like DTT, EDTA or
collagenase. However, the collagenase enzymatic treatment has
always been preferred for the isolation of RM intestinal LPL [53—
55].

The most important costimulatory receptor expressed by a
majority of T cells is CD28, which interacts with CD80 and CD86
ligands on antigen presenting cells and plays a major role in T cell
activation. Our studies have shown the lack of CD80 and CD86
expression on intestinal ECs as previously reported for human
colonic ECs [56,57]. In contrast, normal human nasal, airway and
oral ECs are able to express different costimulatory molecules
including CD80 and CD86 [58,59]. Constitutive expression of
CD23, CD90, CDY5 and MHC class II (HLA-DR) expression by
normal intestinal ECs may suggest functional significance in
regulating mucosal immunity.

IL-10 bears close resemblance to IFNy and their receptor
complexes also belong to the same cytokine receptor family [60].
The expression of IL-10R on different types of RM mucosal cells is
also an understudied area. The vast majority of reports of IL-10R
expression are on human leukocytes, natural killer cells, neutro-
phils, macrophages, monocytes, dendritic cells, and/or B and T
cells [61-64]. Evidence from experiments with the murine small
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and large intestine has shown that IL-10 binds to a specific
receptor that is constitutively expressed on intestinal ECs [65].
Our study highlights the presence of IL-10R in macaque intestinal
ECs for the first time, which generates some more questions about
how IL-10 binds to this specific receptor on intestinal ECs and
how it may regulate the contribution of ECs to the inflammatory
and immune response in the digestive tract.

Despite the lack of CD3 and CD4 expression (data not shown)
on ECs, there was increased apoptosis of intestinal ECs in both
acute (21days pi) and chronically SIV-infected RMs (Fig. 10). Our
data is In agreement with previous publications where SIV
induced intestinal cell apoptosis is thought to be the underlying
mechanism of the regenerative enteropathy of early infection [66],
and for enhanced expression of cell cycle genes regulating mucosal
repair and regeneration during primary SIV infection [67,68].
ICAM-1 has been found to be an important adhesion molecule
that may facilitate the binding of infected cells to the ECs [69-73].
Increased ECs apoptosis was detected with significant upregula-
tion of CD54 expression in chronically SIV-infected RMs. Higher
ICAM-1 expression in ECs during SIV infection may suggest its
possible role in inducing more HIV transmission and transen-

dothelial migration of T lymphocytes and monocytes [74-76].
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Expression of ICAM-1 in colonic ECs from patients with colonic
carcinoma and inflammatory bowel disease was increased by two
fold compared to normal colonic ECs [29]. On the contrary,
increased ICAM-1 expression in ECs has also been suggested to
result in increased neutrophil adherence to those cells and induce
mnate defense against bacterial infection [77] suggests a protective
mechanism against microbial translocation. SIV infection induces
higher ICAM-1 expression on ECs compared to CD45+
leukocytes. In chronically SIV-infected RMs, there was increased
HLA-DR expression on both ECs and CD45+ leukocytes. Our
observation supports the recent reports describing increased HLA-
DR transcripts in gut biopsies of HIV infected patients [78]. The
current data supports the notion of immune activation where ECs
play a major role by upregulating ICAM-1 and HLA-DR
expression that may recruit more inflammatory and cytokine
producing cells compared to CD45+ leukocytes. It may also be
possible that increased inflammation and cytokine influx in
intestinal lamina propria upregulates ICAM-1 expression and
apoptosis in ECs.

In summary, either DTT or EDTA chemical treatment yields
increased percentages of intestinal ECs compared to other
protocols tested. Furthermore, normal healthy rhesus ECs did
not express CD80 or CD86 costimulatory molecules. However,
they did express CD23 and HLA-DR suggesting they may play a
role in antigen presentation, which needs further verification.
Combined these results are consistent with the interpretation that
ECs are highly activated cells and capable of modulating immune
responses. Interestingly, a small percentage of CK+CD45+ ECs in
intestinal ECs were always present in normal intestinal mucosa,
which invites further exploration to discover the significance of
these potential “stem cells” and to define their role in restoration
of EC damage and SIV pathogenesis. Early apoptosis and
increased expression of ICAM-1 and HLA-DR in ECs in SIV
infected RMs are thought to be the key features of intestinal
enteropathy that is also associated with local inflammation, and
increased gut permeability. The immunoregulatory cells and their
cytokines that might play an important role in regulating ECs
apoptosis and their activation are the subject of our future studies.
The functional implication of CD23, IL-10R and CD90 receptors
in the pathophysiological mechanisms of HIV/SIV gut enterop-
athies, clearly deserves further investigation.

Materials and Methods

Ethics statement

Approval for all veterinary procedures in this study was
obtained from the Tulane University Animal Care and Use
Committee (Protocols #3567 & 3568), Animal Welfare Assurance
A-4499-01. All the animals in this project were housed at the
Tulane National Primate Research Center (ITINPRC) and under
the full care of TNPRC veterinarians in accordance with the
standards incorporated in the Guide to the Care and Use of
Laboratory Animals (NIH) 78-23 (Revised, 1996). All veterinary
procedures were performed only with sedated animals. Animal
welfare and steps were taken to ameliorate suffering in accordance
with the recommendations of the Weatherall report, “The use of
non-human primates in research”.

Animals, and tissue sampling

Sixteen Indian RMs (Macaca mulatta) either male or female
between 1.9-9.9 years of age, which were negative for HIV-2,
SIV, type D retrovirus and STLV-1 infection were used in this
study. Six RMs were infected either through intravenous or
intravaginal route with 300-500 TCIDsy SIVyac251. One SIV
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infected animal was euthanized at 21 days (acute) post infection
and five SIV infected animals were euthanized within 167401
days (chronic) post infection. The remaining 10 macaques were
SIV uninfected normal controls. Intestines (jejunum and/or colon)
and blood were collected from all animals at the time of necropsy
for phenotyping experiments.

Immunofluorescence and immunoperoxidase staining

Two to three small fresh pieces of colon and jejunum collected
from necropsied animals were fixed in 2% paraformaldehyde and
cryopreserved in 30% sucrose (Sigma, St. Louis, MO) in PBS, and
frozen in cryomolds containing OCT compound (Sakura Fintek,
Inc, Torrance, CA). Tissue sections of 8 um thick were processed
for immunofluorescence staining as described previously [79,80].
Briefly, sections were stained sequentially for 2-3 colors by
incubating for 1 h with the primary antibody and then for 30 min
with Alexa Flour 488-conjugated secondary antibodies (diluted
1:1000, Invitrogen). Similarly, the slides were stained again with
another primary antibody followed by Alexa Flour 568-conjugated
secondary antibodies (dilution 1:1000, Invitrogen). Nuclear
staining was performed with anti-nuclear ToPro3 DNA antibodies
(I uM; Invitrogen). Tissue sections were stained with one or
combinations of primary antibodies specified for CD1lc (3.9,
BioLegend), CD45 (DO58-1283, BDBiosciences), CD54 (LB-2,
BDBiosciences), IL-10R (3F9, Biolegend), HLA-DR (LN3, eBios-
ciences), anti-human macrophage monoclonal antibody (Ham56,
Dako), Active caspase-3 (polyclonal antibody, Abcam), human
epithelial antigen (polyclonal rabbit anti-cytokeratin, Dako) or
cytokeratin-large spectrum monoclonal antibody (KL-1, Beckman
Cloulter). All antibodies cross react with RMs. Stained tissue
sections were mounted using prolong antifade medium (Invitro-
gen). Imaging was performed with a TCS SP2 True confocal laser
scanning microscope (Leica, Wetzlar, Germany) equipped with
three lasers. Negative controls were performed by omitting either
the primary antibody or using isotype IgGl and IgG (H+L)
control. NIH Image (version 1.62) and Adobe Photoshop CS5
(Adobe Systems) were used to assign colors to the channels
collected.

Immunoperoxidase staining of jejunum and colon ECs were
performed in 5 um thick section. The slides were first depar-
affinized and heated at 95°C for 30 min in citrate buffer for
epitope retrieval. Slides were allowed to cool and finally rinsed in
PBS (pH 7.4). Slides were further incubated with endogenous
peroxidase block solution (Dako) followed by biotin blocking
system (Dako) according to manufacturer’s protocol. Slides were
then incubated with cytokeratin-large spectrum monoclonal
antibody (KL-1). Biotinylated mouse IgG and Vectastain ABC
reagent (VECTASTAIN® ABC kit, Vector Laboratories) were
used for detection. Liquid DAB (Dako) were used as chromogen
for developing slides.

Epithelial cells isolation from intestine

Intestinal samples (6-10 cm long pieces of jejunum and colon)
were collected in 50 ml tubes with ice-cold calcium and
magnesium free HBSS (Fisher Scientific) and immediately
transported to the laboratory. Fat, blood vessels, and mesenteric
lymph nodes were trimmed. Mucus and gross debris were quickly
removed by covering the specimen with dry paper towels.
Specimens were further washed twice in cold PBS (pH 7.4).
Intestinal samples were cut into small pieces (approximately 0.5—
1 cm?).

All isolation protocols were performed on tissues from
necropsied animals to maintain consistency of protocols compared
to biopsy protocols where techniques may result in different
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proportions of ECs in samples. In brief, tissues were treated in 2
major ways. In one technique, the intestinal EC were separated
from intestinal pieces by incubating 0.5-1 cm? pieces of tissue in
Dithriothreitol (0.15%, DTT, EMD Chemicals) (Fig. 1) [21]
followed by EDTA with shaking at 37°C. In another protocol,
minced tissues were directly treated with ED'TA solution (Fig. 2) as
reported earlier [53,81]. Mucus and large debris were removed
from the supernatant by filtering through loosely packed glass
wool. After epithelial removal, LPL were collected by mincing the
remaining tissue into 1-2 mm pieces, followed by digestion in
complete RPMI-5 medium containing 5% fetal calf serum (FCS)
(RPMI-5) containing 60 units/ml of Type II collagenase (Sigma-
Aldrich) again with shaking at 37°C. For enrichment of
lymphocytes, supernatants of LPLs were centrifuged over
discontinuous Percoll (Sigma-Aldrich) density gradients followed
by washing with PBS [53,81]. All isolated cells were washed twice
and resuspended in complete RPMI-10 medium containing 10%
FCS before staining. All cells were >90% viable by trypan blue
dye exclusion method.

Immunofluorescent staining and flow cytometric analysis

For flow cytometry staining, cells were adjusted to 107 cells/ml
and 100 pl aliquots or 100 ul of whole blood samples were
incubated with appropriately diluted concentrations of antibodies
for 30 min at 4°C. Whole blood samples from normal RMs were
used for fluorochrome compensations. Whole blood cells were
then lysed using a whole blood lysis protocol as previously
described [81]. Stained cells were then washed once with PBS and
fixed with 1 x BD stabilizing fixative buffer (BD Biosciences). Cells
were kept protected from light at 4°C and acquisition was
performed within 24 hrs of staining. Cells isolated from intestinal
tissues were stained and processed similar to blood tissues with the
omission of the whole blood lysing technique [81]. Polychromatic
(6-10 parameter) flow cytometric acquisition was performed on a
Becton Dickinson LSR II instrument with three lasers (488 nm
blue laser, 633 nm red laser and 407 violet laser) using FITC, PE,
PE-Texas Red, PE-Cy5, APC, APC-Cy7, Pacific Blue, and

References

1. Shattock RJ, Haynes BF, Pulendran B, Flores J, Esparza J, et al. (2008)
Improving defences at the portal of HIV entry: mucosal and innate immunity.
PLoS Med 5: e81.

2. Wira CR, Grant-Tschudy KS, Crane-Godreau MA (2005) Epithelial cells in the
female reproductive tract: a central role as sentinels of immune protection.
Am J Reprod Immunol 53: 65-76.

3. Vroling AB, Fokkens WJ, van Drunen CM (2008) How epithelial cells detect
danger: aiding the immune response. Allergy 63: 1110-1123.

4. Brenchley JM, Douek DC (2008) HIV infection and the gastrointestinal immune
system. Mucosal Immunol 1: 23-30.

5. Miller CJ, Shattock R]J (2003) Target cells in vaginal HIV transmission.
Microbes Infect 5: 59-67.

6. Hladik F, Hope TJ (2009) HIV infection of the genital mucosa in women. Curr
HIV/AIDS Rep 6: 20-28.

7. Hladik F, McElrath M]J (2008) Setting the stage: host invasion by HIV. Nat Rev
Immunol 8: 447-457.

8. Poles MA, Elliott J, Taing P, Anton PA, Chen IS (2001) A preponderance of
CCR5(+) CXCR4(+) mononuclear cells enhances gastrointestinal mucosal
susceptibility to human immunodeficiency virus type 1 infection. J Virol 75:
8390-8399.

9. Bomsel M (1997) Transcytosis of infectious human immunodeficiency virus

across a tight human epithelial cell line barrier. Nat Med 3: 42-47.

. Bomsel M, David V (2002) Mucosal gatekeepers: selecting HIV viruses for early
infection. Nat Med 8: 114-116.

. Meng G, Wei X, Wu X, Sellers MT, Decker JM, et al. (2002) Primary intestinal
epithelial cells selectively transfer R5 HIV-1 to CCR5+ cells. Nat Med 8:
150-156.

. Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay M]J, et al. (2010)
Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing
microbial translocation. PLoS Pathog 6: ¢1000852.

. MacDonald EM, Savoy A, Gillgrass A, Fernandez S, Smieja M, et al. (2007)

Susceptibility of human female primary genital epithelial cells to herpes simplex

@ PLoS ONE | www.plosone.org

13

Rhesus Intestinal Epithelial Cells
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staining was performed by using anti-epithelial antigen (Ber-EP4
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Beckman Coulter) as reported earlier [81]. All cells were first gated
on live cells where live/dead staining was performed using aqua
fluorescent reactive dye live/dead stain kit (Invitrogen). At least
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cells and data were analyzed using Flow]Jo software (TreeStar Inc.)
version 9.1.

Statistics

Graphical presentation and statistical analysis of the data were
performed using GraphPad Prism (Version 5.0d, GraphPad
software, SanDiego, CA). Results between experimental groups
were compared using a one-way ANOVA and nonparametric
Mann-Whitney t test. Those p values<<0.05 were considered
statistically significant.
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