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Abstract

FILIA is a member of the recently identified oocyte/embryo expressed gene family in eutherian mammals, which is
characterized by containing an N-terminal atypical KH domain. Here we report the structure of the N-terminal fragment of
FILIA (FILIA-N), which represents the first reported three-dimensional structure of a KH domain in the oocyte/embryo
expressed gene family of proteins. The structure of FILIA-N revealed a unique N-terminal extension beyond the canonical KH
region, which plays important roles in interaction with RNA. By co-incubation with the lysates of mice ovaries, FILIA and
FILIA-N could sequester specific RNA components, supporting the critical roles of FILIA in regulation of RNA transcripts
during mouse oogenesis and early embryogenesis.
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Introduction

RNA binding proteins (RBPs) play critical roles in germline and

early embryonic development in model organisms by regulating

RNA splicing, RNA subcellular localization, mRNA stability and

translation [1,2,3,4]. In mouse oocytes, RNA is transcribed and

accumulated during oogenesis and most of the RNA is translated

directly into proteins [5]. However, some RNA remains dormant

and becomes activated later during oogenesis by carefully

orchestrated polyadenylation [6]. The transcription becomes

quiescent during meiotic maturation prior to ovulation and the

majority of their polyadenylated RNA disappears after ovulation

[7,8]. Furthermore, most of the RNA in oocytes is degraded

during the maternal-to-zygotic transition in the early stages of

embryonic development following fertilization [9]. Therefore,

RBPs have a significant physiological role during mouse oogenesis

and early embryogenesis.

The hnRNP K homology (KH) domain was first identified in

the human heterogeneous nuclear ribonucleoprotein K (hnRNP

K) [10,11]. The KH domain consists of approximately 70 amino

acids and is well known for its RNA binding ability [2,3,12,13,14],

but the consequences of this interaction are not completely

understood. The KH domain usually acts in concert in a multiple-

KH manner, and many KH-containing proteins, such as hnRNP

K [10], FMR1 [15], and Nova [16], include more than one KH

domains within a single molecule. However, some KH domain

containing proteins possess only a single KH domain, such as

Mer1p [17] and Sam68 [18]. Using in vitro assay systems, KH-

containing proteins have been shown to typically bind poly-

pyrimidine RNA [19]. It is implied that KH domain containing

proteins play critical roles in gene expression by regulating pre-

mRNA splicing, and by their involvement in polyadenylation,

translation and RNA degradation. Accumulating evidence shows

that KH-containing proteins function in various physiological

processes, such as early embryonic development [20], neuron

degeneration [21,22], apoptosis [12,23], and cancer development

[24]. Currently, the direct link between the RNA binding activity

of KH domains and their physiological consequences remain to be

clarified.

Recently, we have identified a subcortical maternal complex

(SCMC) in mouse oocytes and early embryos essential for

cleavage-stage mouse embryogenesis [25]. The SCMC contains

a core formed by FLOPED [20], MATER [26], TLE6, and

FILIA. FILIA has been shown to directly interact with MATER,

but not FLOPED and TLE6 [25]. The genes in the SCMC are

transcribed and accumulate during oogenesis and degrade when

the oocytes mature, but the protein components in SCMC exist

until the blastocyst stage [25]. The lack of either FLOPED or

MATER in oocytes does not affect folliculogenesis, ovulation, or

fertilization, but leads to the failure of early embryos to complete

cleavage stage development, resulting in a striking female sterile

phenotype in these mutant mice [25,26,27]. However, filiatm/tm

female mice are not completely sterile, and the early embryos in

filiatm/tm female mice exhibit significant delays in their develop-

ment. FILIA is important in regulation of mitotic kinase activity

and spindle assembly checkpoint activation, and contributes to
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chromosome stability [28], although the molecular basis for the

relationship between its special localization and its unique function

is not clear.

Filia is located in Chromosome 9 in mouse, and is encoded by a

single-copy gene [29]. Filia is transcribed as two types of transcripts

with respective lengths of 1.2 k and 1.6 k base pairs that co-exist in

oocytes, but only the former transcript is translated into a

functional protein with 346 residues. The FILIA protein is unique

in primary sequence without any clearly identifiable domains. The

C-terminus of FILIA is composed of 10 tandem repeats with each

repeat comprising 23 residues. This arrangement of repeats was

identified for the first time in FILIA and no homology to other

known proteins has been observed [29,30]. Filia has been classified

into a new oocyte/embryo expressed gene family in eutherian

mammals, along with khdc1, dppa5, and floped [31]. Proteins in this

gene family are characterized by an atypical N-terminal KH

domain and their sequence varies greatly beyond the KH domain.

Compared to other canonical KH domains, a conserved N-

terminal extension is identified prior to the KH domain in these

proteins, although their function remains unknown.

In order to study the structural basis for its function, we

expressed and crystallized the N-terminal domain of FILIA

ranging from 1 to 124 amino acids (named FILIA-N hereafter).

The structure of FILIA-N shows several features unique to FILIA

and the probable function of the N-terminal extension prior to the

KH domain was studied with regard to RNA binding. Further-

more, FILIA-N forms a stable dimer in both crystals and solution

with high affinity, which is distinct from canonical KH domains.

Results

1. Overall view of the FILIA-N structure
The crystal structure of FILIA-N (1–124 AA) was solved by the

single wavelength anomalous diffraction (SAD) method (see

Figure 1. The structure of FILIA-N. (A) Overall structure of FILIA-N. Molecule is shown colored from blue at the N-terminus to red at the C-
terminus, and secondary structure elements are labeled. (B) Superimposition of FILIA-N (monomer1) and Nova2-KH3. FILIA-N is colored green from
residues 40–117, and pale green from residues 2–39; Nova2-KH3 is shown in yellow. (C) Sequence alignment for members of the oocyte/embryo
expressed gene family by ClustalW [60]. All sequences are from mouse, and only the N-terminal KH region is shown. The number following the
sequence in parentheses refers to the number of remaining residues in the variable C-terminus of the protein. Residues are colored according to their
characteristics, i.e., red for hydrophobic, green for polar, blue for negatively charged and purple for positively charged. Invariant residues are shown
with brown background, and conserved residues are shown with yellow background. Secondary structure elements are labeled on top of the
alignment, as in Fig. 1A.
doi:10.1371/journal.pone.0030209.g001
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Materials and Methods for details). FILIA-N crystallized with two

molecules in an asymmetric unit forming a stable dimer. The

monomer structure of FILIA-N was used to search for similar

known 3-dimensional structures in the Protein Data Bank by

DALI [32]. The hit yielding the highest score (Z score 6.9) was the

KH3 domain of Nova2 (PDB code 1EC6) [33], which represents a

canonical type I KH domain. From residues 40–118, FILIA-N

forms a classical KH module with a b-a-a-b-b-a topology (Fig. 1A).

The root mean square deviation (RMSD) between the two KH

domain structures is 1.85 Å based on superposition of Ca atoms

from FILIA residues 40–118 and Nova2-KH3 residues 6–83

(Fig. 1B). A salient structural feature of FILIA-N was the presence

of an N-terminal extension prior to the FILIA KH region (Fig. 1A).

Starting with an unstructured stretch, this loop-b-b-a substructure

capped one surface of the KH domain. In particular, the two anti-

parallel b-stands (b-1 and b0, Fig. 1A) are positioned almost

perpendicular to the b2-b3 sheet within the KH domain, thus

extending the canonical RNA binding area of the KH domain as

deduced from the Nova2-KH3/RNA complex (PDB code 1EC6).

Interestingly, the beginning stretch of around 12 residues of

FILIA-N lies in a groove formed by the KH domain and the N-

terminal extension, contributing to the overall stability of the

whole molecule. The N-terminus of other oocyte/embryo-

expressed proteins, such as Dppa5 and Khdc1, possess a much

shorter N-terminal extension of around 20 residues (Fig. 1C).

Compared with Nova2-KH3, it is evident that the three b-strands

constituting the core of the molecule are well conserved in

conformation in FILIA-N, but three a-helices, namely a1, a2, and

a3, were tilted a little relative to their equivalents in Nova2-KH3.

Significant differences were found in a non-conserved loop region

between b2 and b3. This loop was 4 residues shorter in FILIA-N

than in Nova2-KH3, shrinking laterally in space and leaving more

room for the N-terminal residues of the extension region (Fig. 1C).

On the surface of Nova2-KH3, a negatively charged groove was

employed for interaction with RNA. By superposition of FILIA-N

with the Nova2-KH3/RNA complex (PDB code 1EC6), a similar

negatively charged patch on the surface of FILIA-N, involving the

N-terminal extension, was also identified. Interestingly, a positively

charged area adjacent to this negatively charged patch formed

mainly by b0 and a0 was also observed, the function of which is

unknown.

2. Unique dimerization of FILIA-N
KH domains are well known for their oligomerization ability,

and it is postulated that these molecules mediate their roles in a

concerted multi-KH manner accompanying RNA binding, though

in most cases the interactions between KH domains are weak and

unstable. In contrast, FILIA-N was confirmed to form a stable

dimer in solution by analytical ultra-centrifugation (Fig. 2A), and

this observation was further supported by our crystal structure. In

our orthorhombic crystals, two FILIA-N molecules in one

asymmetric unit formed a stable dimer (Fig. 2B). Nova2-KH3

also formed dimers [21] although, despite the overall high

similarity between the individual KH domains of FILIA-N and

Nova2-KH3, the two molecules exhibited a significantly different

mode of interaction in their dimerization interface. From the top

view along the non-crystallographic 2-fold symmetry axis, one

monomer in FILIA-N was rotated by about 30u relative to another

monomer when compared against the Novo2-KH3 dimer, leading

to a much more stable interaction surface. The total buried area in

the dimer of FILIA-N was approximately 1920 Å2 compared to

930 Å2 for the Nova2-KH3 dimer. This data lead us to speculate

that FILIA functions as a dimer in vivo. On the dimerization

surface, most of the interactions involve the helices a2 and a3.

Hydrophobic interactions contribute most of the stabilizing forces,

including residues Met68, Met101, Leu65, Leu69, and Leu105.

Three histidines, His61, His64, and His70, form hydrogen bonds

with a neighboring molecule at the edge of the buried surface. The

loop between b3 and a3 from monomer2 protrudes into a shallow

pocket on the surface of monomer1 (monomer 1 and 2 are named

according to their chain name), with the benzyl ring of Phe94

playing an anchoring role (Fig. 2C). While considering the high

flexibility of this region, we doubt this interaction plays a critical

role in stabilization of the dimer. The N-terminal extension is

located outside of the interaction interface and contributes to a

surface for possible RNA binding (Fig. 2C).

Comparison of two monomers within one dimer showed several

differences. With the exception of the different orientation of the

first 5 residues at the N-terminus, the loop between b3 and a3 is

the most significant divergence between the two monomers. In

monomer 2, this loop protruded out towards monomer 1. In

monomer 1, however, this loop was reorganized and most of the

loop region participated in the formation of a3, forming a

continuous a-helix along with the following residues. This loop

region showed large flexibility, as evidenced by high temperature

factors and poor electron density, and possibly exists in varying

conformations depending on the surrounding environment.

Another substantial difference between the two monomers was

located in a0 and b1, which correspond to the beginning of the

canonical KH domain (Fig. 2D). Furthermore, the residues in a3

that were assigned from electron density were different in the two

monomers, indicating that the length of a3 could vary between

different molecules provided the stability of the KH domain was

maintained. The RMSD between the two monomers was 0.65 Å

based on the Ca atoms of all residues (Fig. 2D).

The homo-dimerization of KH domains has long been

proposed, but solid data to support the existence of this kind of

homo-dimer has been tenuous [34]. We identified a stable KH

domain homo-dimer in our FILIA-N crystals and demonstrated its

existence in solution by sedimentation velocity measurements

(Fig. 2A). In order to confirm this result, a sedimentation

equilibrium measurement was performed to analyze the precise

affinity of this homo-dimer. Purified FILIA-N with various

concentrations was detected under different centrifugal forces to

measure the dissociation constant of this dimer. A measured

molecular mass of 29814 Da was obtained with a Kd of 10 nM,

indicating a stable dimer with high affinity (Fig. 2E). This, to the

best of our knowledge, is the first KH domain homo-dimer with

such high affinity to be identified to date. In contrast, the Nova2-

KH3 region is shown to exist as a monomer in solution by

sedimentation velocity (Fig S1).

3. The unique feature of the N-terminal extension in
FILIA-N

The N-terminal 39 residues prior to the KH region form a

unique substructure in FILIA-N. This substructure is composed of

a loop at the beginning (residues 2-12), followed by two anti-

parallel b-strands (b-1 and b0) and an a-helix (a0). Interestingly, in

the newly identified oocyte/embryo specific gene family which

includes dppa5, khdc1, filia and floped, the cognate proteins Dppa5

and Khdc1 possess a short extension around 20 residues, while

FILIA and FLOPED had extensions of approximately 40 residues

at their N-termini. A sequence alignment shows that all of these

proteins are conserved in their KH regions and the preceding a0

helix, but not in other regions, indicating these oocyte/embryo

specific proteins possess both a conserved KH domain and an a-

helical (a0) extension. Both FILIA and FLOPED have a much

longer N-terminal extension compared to Dppa5 and Khdc1, but

FILIA KH Domain Structure and RNA-Binding
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no sequence similarity could be identified between these two

proteins prior to the a0 helix, reminiscent of their divergent roles

in embryogenesis based on filia and floped knockout mice [25,28].

To investigate the significance of this N-terminal extension, we

performed a Blast search for orthologous proteins from other

mammals against mouse FILIA. Interestingly, this N-terminal

extension is conserved in different species with comparable

sequence identity to each other, as with the following conserved

KH region, suggesting the similar loop-b-b-a extension also exists

in other mammals (Fig. 3A). This result underlines the importance

of the N-terminal extension in the function of FILIA. In contrast, a

similar Blast search for FLOPED suggested that the N-terminus

preceding a0 in FLOPED from different species is quite divergent

in both length and sequence, indicating a non-conserved and/or

even less critical N-terminus for FLOPED. Taken together, the

loop-b-b-a extension is a unique substructure in FILIA and might

have emerged later during gene evolution within the oocyte/

embryo specific gene family.

The first 12 residues in FILIA-N form a loop situated between

two substructures formed by the N-terminal extension and the

typical KH region, effectively bridging the whole molecule

together. By sequence alignment of FILIA from different species,

three invariant residues, i.e., Phe7, Thr9 and Leu10, were

identified. Mutations of these residues to alanine reduced the

solubility of these proteins when over-expressed in E. coli or sf9

insect cells (data not shown), implying the importance of these

residues in maintaining the overall structure of FILIA-N. In our

FILIA-N crystal structure, Phe7 protrudes into a hydrophobic

pocket surrounded by Leu51, Phe55, Ile62, Val75 and Val77,

contributing to the stabilization of the local conformation. Thr9

forms a stable hydrogen bond with Glu66, and the conservation of

Glu or Gln at position 66 in various species reiterates the

importance of this interaction. Leu10 and the following conserved

Val11 are also important for structural stabilization by hydropho-

bic interaction with surrounding residues (Fig. 3B). By measuring

the secondary structure of these mutants with circular dichroism,

all proteins had similar spectra to the wild-type protein, with a

minor difference around the valley at 225 nm, implying these

mutants are correctly folded but exhibit some differences on local

conformation (Fig S2).

Figure 3. Features of the N-terminal extension. (A) Sequence alignment of FILIA-N from different mammals. Residues are colored and labeled as
in Fig. 1(C). (B) Interaction of the N-terminal fragment (AA 2–12) with other parts of FILIA-N. The dominant and conserved residues within different
mammals are shown in stick representation and labeled.
doi:10.1371/journal.pone.0030209.g003

Figure 2. Dimerization of FILIA-N. (A) Sedimentation velocity analysis of FILIA-N. The peak corresponds to a molecular mass of 29 KDa, indicating
a dimer in solution. (B) Dimer in an asymmetric unit. Monomer1 is colored green from residues 40–117, and pale green from residues 2–39;
monomer2 is colored magenta from residues 40–114, and light pink from residues 4–39 AA. (C) Interaction surface within dimer. Monomer1 of FILIA-
N is shown represented by electrostatic surface potential, while monomer2 is shown in ribbon representation. The residues involved in the
interaction between monomer1 and monomer2 are shown in stick representation and depicted in detail on the right picture. (D) Superposition of
monomer1 and monomer2 of FILIA-N, colored as in Fig. 2(B). (E) Protein concentrations plotted versus radius for an AUC equilibrium experiment. 25.5,
15.3 and 10.2 mM FILIA-N were spun at 15,000, 22,500 and 28,500 rpm at 4uC. The solid line showed a fit of the data to a model of a dimer with a
molecular weight of 29,814 (rmsd of 0.005). The molecular weight of the monomer calculated from its sequence is 14,625 Da. Residuals are shown at
the top of the plot. A SDS-PAGE gel of FILIA-N used in this experiment is also shown.
doi:10.1371/journal.pone.0030209.g002
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4. The interaction between FILIA and RNA stretch from
poly-C and poly-U

The KH domain has long been recognized to bind RNA, but

the consequences of this binding remain unclear. To date, the

exact RNA sequence that binds to FILIA is unknown, and thus

poly-C and poly-U segments were used here as substitutes for

authentic RNA to test the interaction between FILIA and RNA.

As residues 40–124 of FILIA-N form the KH domain, and

residues 1–39 form an extension ahead of KH, we made a series of

truncated FILIA-N constructs and examined their ability to bind

RNA. Both the full-length FILIA and FILIA-N proteins bound

RNA with similar binding ability. Surprisingly, although the

FILIA 40–124 (FILIA-ND39) protein lacking the N-terminal

extension still possessed a KH domain, it completely lost the ability

to bind RNA. Other constructs with varying lengths of sequence at

the N-terminus, i.e., FILIA 13–124 (FILIA-ND12) lacking only an

unstructured stretch at the N-terminus, and FILIA 29–124

(FILIA-ND28) retaining the conserved a0, also lost their ability

to bind RNA (Fig. 4A). These results support the indispensable

roles of the N-terminal extension ahead of the canonical KH

domain in RNA binding. The N-terminal extension forms a new

layer of b-sheet on top of the original 3-strand b-sheet formed by

b1-b2-b3, constituting a new b-sheet-b-sheet-a-helix three-layer

conformation. The peptide from residues 2–12 is located in a

groove formed by the b-1-b0-sheet and the b1-b2-b3 sheet,

bridging the N-terminal extension and canonical KH region, thus

contributing towards the stability of the whole molecule.

The folding of these mutants, i.e. FILIA 13–124, FILIA 29–124,

FILIA 40–124, were detected by circular dichroism to exclude the

possibility of misfolding and/or aggregation leading to the loss of

RNA binding. All of these mutants shared similar spectra to the

wild-type protein, indicating the correct folding of these proteins.

Further denaturing by high temperature of 85uC without/with

4 M guanidine distorted the spectrum either partially or

completely, which further strengthens our conclusion (Fig S3).

The authentic RNA substrate that binds to FILIA is unknown to

date. Taking advantage of the availability of the structure of the

Nova2-KH3/RNA complex (PDB code 1EC6), we superimposed

FILIA-N onto the Nova2-KH3/RNA complex. Clearly the

sequence and/or conformation of the RNA fragment from the

Nova2-KH3/RNA complex were not suitable for binding to

FILIA-N. Most of the conflicts arose from residues 2–12, which

clashed with the RNA derived from the Nova2-KH3/RNA

complex. The other clash arose from the variable loop between b2

and b3 (Fig. 4B). On the RNA side, most of the clashes were

derived from U12-C16, the core segment for Nova2-KH3-RNA

recognition. Due to the flexibility of RNA, it is difficult to speculate

further on the detailed aspects of the interaction between FILIA-N

and its authentic RNA sequence. The structure of FILIA in

complex with authentic RNA substrate(s) is required to elucidate

the details of this interaction.

5. FILIA binds intrinsic RNA in ovaries
As FILIA has the ability to bind RNA in vitro, we tried to

determine if FILIA could bind intrinsic RNA in vivo. FILIA was

specifically expressed in oocytes and early embryos. Due to the

scarcity of intrinsic FILIA in oocytes, we used recombinant FILIA

proteins purified from E. coli to pull-down the total RNA from

mouse ovaries (see Materials and Methods for details). FILIA-N,

but not FILIA 13–124 or GST, clearly pulled down a specific

RNA band sized between 3 Kbs and 4 Kbs from ovarian RNA,

although full-length FILIA pulled down several bands including

the specific RNA band from total ovarian RNA (Fig. 5A). The

specificity of FILIA-N binding RNA was demonstrated by

repeating pull-down experiments in which the residual RNA after

pull-down was further incubated with FILIA-N. The bound RNA

in repeated pull-down experiments was significantly decreased,

although there were no significant differences in the residual RNA

(Fig. 5B).

Discussion

FILIA is a member of a recently identified oocyte/embryo

expressed family whose members are characterized by an atypical

KH domain. This protein family, including Khdc1a, Khdc1b,

Khdc1c, Dppa5a, Dppa5b, Dppa5c, FILIA (Ecat1) and FLOPED

(OOEP/MOEP19), are specifically expressed by oocytes and play

important roles in oogenesis, folliculogenesis, or early embryo

development in eutherian mammals [31]. Khdc1a/Ndg1 was

originally described as a downstream target of Nur77, a nuclear

orphan steroid receptor in T-cells, and may be involved in

apoptosis [31,35]. Khdc1b and Khdc1c are splicing isoforms of

Khdc1a and may play important roles during mouse oogenesis

and early embryonic development [31,36]. Dppa5/ESG1/PH34/

ECAT2 was first isolated as a gene down-regulated during the

differentiation of embryonic carcinoma cells [37,38] and then as a

gene expressed specifically in mouse ES cells, germline cells [37]

and pre-implantation embryos [39]. Although Dppa5 is dispens-

Figure 4. Interaction of FILIA with RNA. (A) The binding of FILIA or
FILIA-N with poly-C or poly-U RNA. In panel (a), purified recombinant
proteins (FILIA, FILIA-N, FILIA-ND12, FILIA-ND28 and FILIA-ND39) were
detected by anti-6xHis antibody. Proteins are labeled on top and
molecular mass of marker bands are shown on right. In panel (b),
purified recombinant proteins were sequestered by poly-C ribonucle-
otide homopolymers and detected by anti-6xHis antibody. In panel (c),
purified recombinant proteins were sequestered by poly-U ribonucle-
otide homopolymers and detected by anti-6xHis antibody. (B) Nova2-
KH3/RNA complex (PDB code 1EC6) was superimposed onto FILIA-N.
Proteins are colored as in Fig. 1(C), and the RNA molecule is shown in
ribbon representation.
doi:10.1371/journal.pone.0030209.g004
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able in ES cells and mice according to gene mutant studies [37],

Dppa5 was shown to interact with many mRNA including cdc25a,

cdc42, ezh2, nfyc and nr5a2 and regulate the expression of these

genes [37,40]. FLOPED was originally identified as MOEP19

(mouse oocyte and early embryo protein 19) and was shown to

bind oligonucleotides using an in vitro assay system [20]. In the

present study, we have demonstrated that the crystal structure of

the N-terminus of FILIA is similar to the Nova2-KH3 domain and

shown that FILIA binds polynucleotides and endogenous RNA in

vitro. Furthermore, the identification of a unique N-terminal

extension preceding the canonical KH region in FILIA-N

structurally distinguishes FILIA from other KH domain contain-

ing proteins. Overall, the results described above indicate this

atypical KH domain in this oocyte/embryo expressed gene family

binds RNA like other canonical KH-domain proteins, but might

have unique consequences that are restricted to oocytes and early

embryonic development.

Compared to other canonical KH-containing proteins, such as

Nova-1, Nova-2 [16], FBP [41,42] and Vigilin [43,44,45], these

proteins possess only one KH domain in their N-terminus and the

precise roles of these proteins are unclear. The postulated KH

domain of FILIA is distinct from other canonical KH proteins.

First, the primary sequence is not conserved with other canonical

KH domains. The KH domain of FILIA therefore cannot be

predicted solely from its amino acid sequence. Second, the N-

terminal 39 amino acids of FILIA form a substructure attached to

the KH domain, which plays a critical role in RNA binding. The

N-terminal extension sequence is unique among the oocyte/

embryo expressed gene family, but the length of the extension

varies between different proteins. Khdc1a, Khdc1b, Khdc1c and

Dppa5 share a very short N-terminal extension varying between

15–20 residues, while FLOPED and FILIA possess a long N-

terminal extension of up to 40 residues [31]. The latter are both

components of a recently identified subcortical maternal complex

(SCMC) [25]. Interestingly, although the N-terminal extension is

shorter in Khdc1 and Dppa5, their additional N-terminal residues

can be precisely aligned to the N-terminal a0 region of FILIA.

From the sequence alignment, we can conclude that at least helix

a0 is also conserved in this oocyte/embryo-expressed gene family

besides the KH domain.

As previously described, the KH domain generally functions in

a multiple-KH manner in KH domain containing proteins. In the

current study, we demonstrated that FILIA-N forms a stable dimer

in solution and in the crystal structure. Furthermore, our previous

study showed that FILIA and FLOPED, which both contain KH

domains, co-exist in the SCMC [25]. Due to their similar

expression profiles and their versatile binding with RNA via KH

domains, we speculate that FILIA and FLOPED function, either

as a homo-dimer or in a multiple-KH manner together in the

SCMC in vivo, in RNA degradation during oocyte maturation or

early embryogenesis. Further studies to identify the specific RNA

substrate of this novel atypical KH domain or SCMC will help to

elucidate the mechanism of RNA degradation in oogenesis and

early embryogenesis in mammals.

The homodimerization of KH domains and the relationship to

their function has been proposed for a long time, but conclusive

evidence for the existence of homo-dimers formed by KH domains

is lacking. Most of the buried dimerization area identified in KH

domain crystal structures was less than 1200 Å2, a required area

for a stable dimer suggested by Janin et al. [46]. Recently two KH

domain dimers with large buried surface areas were reported, i.e.,

PCBP2 KH1 (1890 Å2, PDB code 2AXY) and hFMRP KH1-

KH2 (2100 Å2, PDB code 2QND). Nevertheless, in PCBP2, no

solution data to support the existence of a stable dimer is available

[47]; and in hFMRP, analytical ultracentrifugation measurements

clearly showed that the protein is monomeric in solution [48]. A

monomer-dimer equilibrium with 10–20% dimer of Nova1 KH3

in solution was also suggested by Ramos et al. [49], but a low

Figure 5. Intrinsic RNA pulled down by FILIA-N, FILIA-ND12 and
FILIA. (A). FILIA-N and FILIA pull-down intrinsic RNA. Total RNA was
purified from mice ovaries and incubated with FILIA-N, FILIA-ND12,
FILIA, GST and Ni-NTA beads. The pull-down RNA and total RNA were
separated by urea denatured PAGE and stained with SYBR Green II. The
results were scanned with FLA 7000. (B). Repeating pull-down
experiments. Pull-down lane 1 was RNA pulled down by FILIA-N from
total ovarian RNA; Pull-down lane 2 was RNA pulled down by FILIA-N
from the first residual RNA; Pull-down lane 3 was RNA pulled down by
FILIA-N from the second residual RNA; After pull-down lane 1 was the
first residual RNA; After pull-down lane 2 was the second residual RNA;
After pull-down lane 3 was the third residual RNA.
doi:10.1371/journal.pone.0030209.g005
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dissociation constant in the millimolar range was roughly

estimated and no quantitative data was provided by further

experiments. Taken together, these data imply that the possible

KH domain homo-dimers but with large uncertainty. In this

manuscript, we described the structure of FILIA-N, which forms a

stable dimer in both crystals and in solution with a dissociation

constant of about 10 nM, and we analyzed the dimer interface in

detail. To the best of our knowledge, this is the first case of an

isolated KH domain forming high affinity dimers using only

elements of the KH fold. The STAR/GSG-containing proteins

(signal transduction and activation of RNA/GRP33, Sam68,

GLD-1) also form homo-dimers, but their dimerization predom-

inantly involves the QUA1 region preceding the KH domain [50],

and the latter behaves as a monomer in the absence of the QUA1

motif [51].

Structural extensions are present in some KH domains. For

example, QUA1 and QUA2 extensions prior to and following the

KH domain in STAR/GSG-containing proteins, such as sam68,

QK1 and GLD-1, have been identified for a long time [18].

Nevertheless, unlike the N-terminal extension described here,

QUA1 is composed of a coiled-coil that dimerizes perpendicularly

to each other, and play largely autonomous roles with little direct

interaction with the subsequent KH domain [50]. Furthermore,

the unavailability of a structure for the full STAR/GSG domain

encompassing both QUA1 and KH domains to date prevents the

comparison of these substructures to the loop-b-b-a extension in

FILIA-N in the context of the KH region. A b0-turn0 element

prior to the canonical KH region was also found in the structure of

KSRP KH1, in which b0 interacts with b1 in the KH domain in

an anti-parallel manner [52]. However, this extension does not

bury hydrophobic side chains and its deletion has little effect on

protein stability. Both N-terminal extensions in STAR/GSG and

KSRP are not involved in RNA binding directly. Therefore, these

extensions are completely different from that of FILIA-N as

described here, in which the N-terminal extension of around 40

residues forms a tight contact with the canonical KH region,

contributing to both structural stability and the functional role of

this protein. This unique extension, which is inseparable from the

canonical KH region, defines a new extended KH domain that is

presumed to function in a distinct manner from regular KH

domain-containing proteins in mammalian oogenesis and early

embryogenesis.

Considering the significance of the interaction between oocyte-

specific factors and RNA transcripts, and the importance of this

new eutherian oocyte/embryo expressed gene family in mamma-

lian oogenesis and early embryogenesis, our results not only reveal

the unique features of these oocyte/embryo specific proteins in

RNA binding, but also provide a structural basis for possible

intervention of abnormal embryonic development such as habitual

abortion.

Materials and Methods

Ethics Statement
All research involving animals in this study follow the guidelines

and byelaws governing experiments on animals, and have been

approved by the Ethics and Experimental Animal Committee of

the Institute of Zoology, Chinese Academy of Sciences. The

Animal Research Committee does not issue a number to a specific

study. But each study requires the permit to use animals from the

Committee, and this research was under the supervision of the

Committee for all procedures. The animal facility at Institute of

Zoology gets licensing from the experimental animal committee of

Beijing city and the animal handling staff (including each post-doc

and doctor student) must be trained before using animals. The

mice were killed by cervical dislocation. The only procedure

performed on the dead animals is the collection of oocytes from

the oviduct. Oocytes were collected according to procedures

described previously [25] and were used for one time to extract

total RNA. No cell lines were established and no oocytes were kept

for further use.

1. Cloning, expression and purification
The gene encoding full-length filia was cloned from total RNA

from mouse ovary cells. The primers 59-TACTTCCAATC-

CAATGCCATGGCCTCTCTGAAG-39 (forward) and 59-TTA-

TCCACTTCCAATGCTACTCAACTCCAGCCTC-39 (reverse)

were designed to amplify the sequence coding for amino acids 1–

124 of FILIA (FILIA-N). The target sequence was cloned into the

pET30-TEV/LIC Vector (Novagen) downstream of a 66His tag

via the ligation independent cloning method.

The plasmid carrying the target gene was transformed into

Escherichia coli BL21 (DE3) strain. Cells were grown in LB Broth

medium and induced with 0.3 mM isopropyl-b-D-thiogalactopyr-

anoside (IPTG) for protein expression. Cell lysis was performed by

sonication on ice in Ni-NTA resin binding buffer (50 mM Tris,

500 mM NaCl, 4 mM imidazole, pH 8.0). The lysate was clarified

by centrifugation and supernatant was loaded onto a Ni-NTA

resin column (Qiagen). The 66His-FILIA-N protein was eluted in

elution buffer (binding buffer with 500 mM imidazole). After being

concentrated in an Amicon Ultra filter (Millipore), the protein was

dissolved into low salt buffer (50 mM Tris, 50 mM NaCl, pH 8.0).

Afterwards, the 66His tagged protein was digested by TEV

protease at 289 K for 24 h. Following removal of the 66His tag,

the protein was purified by HiTrap Q HP column (GE

Healthcare) and then loaded onto a HiLoad 16/60 Superdex-

200 size-exclusion column (GE Healthcare) for further purifica-

tion. A sharp peak corresponding to the target protein was pooled

and concentrated to 15 mg ml21 for further crystal screening.

For expression of a seleno-methionyl derivative protein, the

pET30-FILIA-N vector was transformed into methionine auxo-

troph strain B834 (DE3). Cells were then cultured with M9

minimal medium supplemented with 50 mg ml21 L-methionine to

an absorption value of 1.0 at OD600. After L-methionine

depletion, 50 mg ml21 seleno-methionine was provided and

0.2 mM IPTG was used to induce protein expression. The

isolation and purification procedures were the same as for the

native protein.

Human Nova2-KH3 fragment (residues 406–492) was cloned,

expressed and purified by a similar procedure as described above.

The protein lacking the N-terminal 66His tag was chromato-

graphically purified prior to analytical ultracentrifugation exper-

iments.

2. Crystallization and data collection
FILIA-N crystals were grown by the hanging-drop vapor

diffusion method at 277 K. A 2 ml droplet of protein solution

(15 mg ml21) mixed with an equal amount of mother liquor was

equilibrated against 500 ml reservoir solution (1.4 M ammonium

sulfate, 0.1 M Tris 8.2, 12% v/v Glycerol) to yield FILIA-N

crystals suitable for data collection. The seleno-methionyl

derivative protein was crystallized by 0.2 M ammonium formate,

16% w/v PEG3350.

Data collection from native crystals was performed at 100 K

using a wavelength of 0.9798 Å at the Photon Factory (KEK),

Tsukuba, Japan. Data from seleno-methionyl derivative crystals

were collected at the Shanghai Synchrotron Radiation Facility

(SSRF), Shanghai, China. For data collection under cryogenic
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conditions, crystals were soaked for a few seconds in a mixed

solution of mother liquor with 20% (v/v) glycerol. Crystals were

then mounted on the beam line in a nylon loop and flash-cooled in

a liquid-nitrogen stream at 100 K. Native data sets were collected

by rotating 180u with an increment of 1u per frame. For the

derivative crystal, a single dataset was collected at the peak

wavelength of 0.9795 Å over 180u. All data sets were processed

using the HKL2000 package [53]. Data collection and processing

results are summarized in Table 1.

3. Structure determination
Due to the high quality of the data, we successfully located the

positions of 9 out of 12 selenium atoms in an asymmetric unit from

the peak data set, and the preliminary model was readily built

following single-wavelength anomalous diffraction (SAD) [54,55]

phasing using the Phenix package [56]. The model built using the

experimental SAD phases was used as a starting model for

molecular replacement against high-resolution native data. The

Phenix refinement program (phenix.refine) was used in refine-

ment. Simulated annealing, positional refinement and B-factor

refinement were used in multiple rounds. Non-crystallographic

symmetry restraints were not applied during refinement. Ordered

water molecules were added to the structure in the last round of

refinement. Refinement statistics are summarized in Table 1.

4. Analytical ultracentrifugation
Sedimentation velocity (SV) and sedimentation equilibrium (SE)

experiments were performed using a Beckman/Coulter XL-I

analytical ultracentrifuge with double-sector or six-channel

centerpieces and sapphirine windows. An additional protein

purification step on a HiLoad 16/60 Superdex 200 gel-filtration

column in 50 mM Tris pH 8.0, 200 mM NaCl and 1 mM TCEP

was performed before the experiments. SV experiments were

conducted at 60,000 r.p.m and 4uC using absorbance detection

and double-sector cells loaded with approximately 43 mM for

FILIA-N and 84 mM for Navo2-KH3. For the SE experiments,

data were collected at 4uC and 15,000, 22,500 and 28,500 r.p.m

with 25.5, 15.3 and 10.2 mM FILIA-N respectively. The buffer

composition (density and viscosity) and protein partial specific

volume (V-bar) were obtained using the program SEDNTERP

(http://www.rasmb.bbri.org/). The SV and SE data were

analyzed using the programs SEDFIT and SEDPHAT [57,58].

5. Circular dichroism spectroscopy
This protocol was adapted from a previously published method

[59]. Briefly, CD spectra were recorded in a 1 cm path-length

cuvette using BioLogic MOS 450 (Science Instruments, Inc.) at

20uC and 85uC. Protein samples were diluted in CD buffer

(50 mM phosphate buffer pH 8.0, 200 mM NaCl) or denaturation

buffer (CD buffer with 4 M guanidine hydrochloride) to a final

concentration of 10 mM. For each sample spectrum recorded, a

buffer blank was subtracted from the raw signal.

6. Interaction of FILIA with poly-C and poly-U RNA
Full length FILIA, FILIA-N lacking the N-terminal 12 residues

(FILIA-ND12), FILIA-N lacking the N-terminal 28 residues

(FILIA-ND28) and FILIA-N lacking the N-terminal 39 residues

(FILIA-ND39) were cloned and expressed using the same protocol

for wild-type FILIA-N described above. Purified proteins were

incubated with poly-C and poly-U agarose beads (SIGMA) in a

binding buffer (10 mM Tris, 100 mM NaCl, 2.5 mM MgCl2,

0.5% Triton X-100 pH 7.4). After thorough washing, the beads

were boiled in loading buffer (300 mM Tris-HCl, pH 8.0, 10%

SDS, 20 mM EDTA, 25% b-mercaptoethanol, 0.1% bromophe-

nol blue, 50% glycerol) and loaded onto an SDS-PAGE

(polyacrylamide gel electrophoresis) gel. After running for 1 hour

at 180 voltages, samples were transferred to PVDF membrane and

blotted by anti-6xHis antibody (Santa Cruz). HRP-labeled

secondary antibody (SIGMA) was used to produce chemilumines-

cent signals.

7. FILIA interaction with intrinsic RNA from mouse ovaries
Ovary total RNA was purified from homogenized 6 week old

CD1 mouse ovaries with TRIzol (Invitrogen) and digested by

DNase (Promega). After phenol-chloroform extraction, the

precipitated RNA was dissolved in interaction buffer (50 mM

NaH2PO4, 50 mM NaCl, 20 mM Imidazole, 0.005% Tween20,

Table 1. X-ray crystallographic data and refinement statistics
for FILIA-N.

Crystals Native Se-derivative (peak)

Data collection

Space group P212121 P212121

Unit cell dimensions

a, b, c (Å) 38.30, 73.96, 89.96 56.54, 59.16, 89.62

a, b, c (u) 90, 90, 90 90, 90, 90

Molecules per ASUW 2 2

Resolution (Å)* 2.2(2.32-2.2) 2.8(3.04-2.8)

Completeness (%)* 98.0(95.7) 98.7(92.5)

Redundancy* 5.4(2.1) 5.9(2.3)

No. of unique reflection* 14029(801) 9324(624)

I/s* 16.2(2.7) 17.4(2.6)

Rsym
*{ 9.2(42.4) 7.4(29.9)

Figure of merit 0.5

Refinement statistics

Resolution (Å) 2.2

No. of reflections 13955

Rwork/Rfree (%){1 21.08/27.53

No. of atoms

Protein 1896

Water 102

B-factors (Å2)

Protein 42.33

Water 44.01

R.m.s. deviations

Bond length (Å) 0.007

Bond angle (u) 1.187

Ramachandran analysis

Most favored (%) 89.6

Additional allowed (%) 9.9

Generously allowed (%) 0.5

Disallowed (%) 0

WASU = asymmetric unit.
*Values in parentheses are for the highest resolution shell.
{Rsym = S|I2,I.|/S,I., where I is the observed intensity, and ,I. is the
average intensity of multiple observations of symmetry related reflections.
{R = Shkl||Fobs|2|Fcalc||/Shkl|Fobs|.
1Rfree is calculated from 5% of the reflections excluded from refinement.
doi:10.1371/journal.pone.0030209.t001
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pH 8.0) and incubated with Ni-NTA Magnetic Agarose Beads

(Qiagen) which were pre-sequestered with 6xHis tagged proteins

(FILIA, FILIA-N, FILIA-ND12 and GST) at room temperature

for 2 hours. After washing 6 times with interaction buffer, the

bound RNA was eluted by high salt buffer (50 mM NaH2PO4,

1 M NaCl, 20 mM Imidazole). The pulled down RNA was further

purified by co-precipitation with glycogen (0.5 ug ul21) and

loaded onto 5% urea denatured PAGE. After running for

1.25 hours at 200 V, the gel was stained with SYBR Green II

for 10 minutes and scanned with FLA 7000 (Fujifilm). Repeating

pull-down experiments were performed by re-incubating residual

RNA with FILIA-N sequestered beads and then eluting and

analyzing as above.

Supporting Information

Figure S1 Sedimentation velocity analysis of Nova2-
KH3. The peak corresponded to a molecular mass of 11 KD,

indicating a dominant monomeric form in solution (predicted

9749 dalton). An unknown component of 2.63 KD co-purified

with Nova2-KH3 impeded our trial of sedimentation equilibrium

analysis of this protein.

(TIF)

Figure S2 Circular dichroism analysis of N-terminal
mutants of FILIA-N. (a) Circular dichroism result of FILIA-N,

FILIA-N F7A, FILIA-N T9A and FILIA-N L10A at 20uC. Four

proteins were colored as blue, green, cyan and red, respectively. (b)

Circular dichroism result of different conditions of FILIA-N.

Results of 20uC, 85uC, and 85uC with 4 M guanidine hydrochlo-

ride were colored by red, green and blue, respectively. (c), (d), (e)

Circular dichroism result of different conditions of FILIA-N F7A,

FILIA-N T9A, and FILIA-N L10A. Results under various

conditions were colored as in (b).

(TIF)

Figure S3 Circular dichroism analysis of N-terminal
truncations of FILIA-N. (a) Circular dichroism result of FILIA-

N, FILIA-ND12, FILIA-ND28 and FILIA-ND39 at 20uC. Four

proteins were colored by blue, green, cyan and red, respectively.

(b) Circular dichroism result of different conditions of FILIA-N.

Results at 20uC, 85uC, and 85uC with 4 M guanidine hydrochlo-

ride were colored by red, green and blue, respectively. (c), (d), (e)

Circular dichroism result of different conditions of FILIA-ND12,

FILIA-ND28, and FILIA-ND39. Results under various conditions

were colored as in (b).

(TIF)
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