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Abstract

Background: Esophageal adenocarcinoma (EAC) is a rarely curable disease and is rapidly rising worldwide in incidence.
Barret’s esophagus (BE) and high-grade dysplasia (HGD) are considered major risk factors for invasive adenocarcinoma. In
the current study, unbiased global metabolic profiling methods were applied to serum samples from patients with EAC, BE
and HGD, and healthy individuals, in order to identify metabolite based biomarkers associated with the early stages of EAC
with the goal of improving prognostication.

Methodology/Principal Findings: Serum metabolite profiles from patients with EAC (n = 67), BE (n = 3), HGD (n = 9) and
healthy volunteers (n = 34) were obtained using high performance liquid chromatography-mass spectrometry (LC-MS)
methods. Twelve metabolites differed significantly (p,0.05) between EAC patients and healthy controls. A partial least-
squares discriminant analysis (PLS-DA) model had good accuracy with the area under the receiver operative characteristic
curve (AUROC) of 0.82. However, when the results of LC-MS were combined with 8 metabolites detected by nuclear
magnetic resonance (NMR) in a previous study, the combination of NMR and MS detected metabolites provided a much
superior performance, with AUROC = 0.95. Further, mean values of 12 of these metabolites varied consistently from healthy
controls to the high-risk individuals (BE and HGD patients) and EAC subjects. Altered metabolic pathways including a
number of amino acid pathways and energy metabolism were identified based on altered levels of numerous metabolites.

Conclusions/Significance: Metabolic profiles derived from the combination of LC-MS and NMR methods readily distinguish
EAC patients and potentially promise important routes to understanding the carcinogenesis and detecting the cancer.
Differences in the metabolic profiles between high-risk individuals and the EAC indicate the possibility of identifying the
patients at risk much earlier to the development of the cancer.
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Introduction

Esophageal cancer is a deadly disease with an estimated 16,640

new cases and 14,500 deaths in the United States in 2010 [1]. In the

year 2000 the corresponding numbers were 12,300 and 12,100,

respectively [2], which indicate a significant rise in incidence. Of the

two cancer types, esophageal adenocarcinoma (EAC) and squamous

cell carcinoma, EAC is more prevalent in the United States.

Although the risk factors associated with the EAC are not clearly

understood to date, Barrett’s esophagus (BE) is considered to be a

factor for the carcinogenesis of the esophagus [3]. In addition, high-

grade dysplasia (HGD) is considered as an immediate precursor to

invasive adenocarcinoma [4]. However, no intervention currently

exists that can prevent the progression of BE or HGD to EAC [5].

The traditional methods for diagnosing esophageal cancer,

including endoscopy and barium swallow, suffer from poor

specificity and sensitivity, which typically result in detection of the

disease only at an advanced stage [6,7,8,9]. Alternatively, it is hoped

that a certain subset of molecular biomarkers can characterize the

stage of the disease and help personalize treatment [10]. At the

molecular level, carcinogenesis of esophagus is thought to be a

complex process involving multiple genetic abnormalities and

environmental factors. Numerous studies report specific alterations

in proteins, genes and metabolic pathways in EAC that may be

useful to aid in the diagnosis, prognosis and treatment of esophageal

cancer [11,12,13,14]. Microarray studies have also focused

discovery of new markers based on individual tumor genetic

composition [15]. However, reliable markers, especially at an early

and potentially curative stage, are still in great demand.

Metabolomics, also commonly known as metabolic profiling and

metabonomics, is a fast growing field in systems biology and offers a

powerful and promising approach to identify biomarkers associated

with cancer and other diseases. Metabolomics focuses on deriving

the concentrations and fluxes of low molecular weight metabolites

(,,1 kDa) in biofluids or tissue, which provide detailed informa-

tion on biological systems and their current status [16,17]. Mass
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spectrometry (MS) and nuclear magnetic resonance (NMR)

spectroscopy are the two most powerful and commonly used

analytical methods for metabolic fingerprinting [17,18]. The two

methods are complementary; while MS is highly sensitive, NMR is

highly quantitative and reproducible. Utilization of both MS and

NMR methods leads to the routine analysis of over 1000

metabolites.

A growing number of metabolomics studies have been reported

for detecting various cancers [19,20,21,22,23]. However, studies

that focus on EAC are still relatively small in number. Recently,

two papers reported on the analysis of tissue metabolites using

magic-angle spinning (MAS) NMR and gas chromatography (GC)

MS each combined with multivariate statistical methods [24,25].

Both works reported a number of statistically significant

distinguishing metabolites. Another 1H NMR study investigated

human plasma and identified variations in several metabolite

concentrations associated with EAC that differed among ethnic

groups [26]. Efforts in our laboratory have been focused on the

development of metabolomics tools and biomarker candidates to

detect early EAC and to identify patients at high risk of developing

EAC. We recently reported metabolomics-based investigations of

EAC using 1H NMR spectroscopy and showed that eight serum

metabolites differentiated EAC from healthy controls [27]. We

also targeted a number of nucleosides in serum using liquid

chromatography-triple quadruple (LC-QqQ) MS and showed very

significant variations in a number of normal and methylated

nucleosides in EAC [28]. With the goal of enhancing the sensitivity

and specificity of the patient classification as well as identifying

individuals at risk of developing the cancer, in this study we

applied global metabolic profiling approach to the serum samples

from EAC, BE and HGD patients, and healthy controls using

highly sensitive and resolved time-of-flight mass spectrometry

coupled with liquid chromatography (LC-TOF) MS. Metabolic

profiles were analyzed separately and in combination with

previously derived metabolite markers using NMR methods

[27]. We evaluated the combination of NMR and MS data in

terms of their performance in classifying EAC patients and healthy

controls when compared to the performance of either MS or

NMR data alone. The ability of the metabolic profiles to

distinguish high-risk individuals (BE and HGD patients) from

EAC as well as healthy controls was examined. We also identified

a number of metabolites that acted as trending markers, in that

their mean levels increased/decreased continuously from healthy

controls to high-risk subjects and then EAC patients.

Materials and Methods

Chemicals
Deuterium oxide (99.9% D) was purchased from Cambridge

Isotope Laboratories, Inc. (Andover, MA). Trimethylsilylpropionic

acid-d4 sodium salt (TSP), tridecanoic acid, chlorophenylalanine,

lactic acid, valine, leucine, isoleucine, methionine, carnitine,

tyrosine, tryptophan, myristic acid, margaric acid, linolenic acid,

linoleic acid and pyroglutamic acid were purchased from Sigma-

Aldrich (analytical grade, St. Louis, MO). 5-hydroxytryptophan

was purchased from Alfa-Aesar (analytical grade, Ward Hill, MA).

HPLC-grade methanol and acetic acid were purchased from

Fisher Scientific (Pittsburgh, PA). Deionized water was obtained

from an EASYpure II UV water purification system (Barnstead

International, Dubuque, IA).

Serum sample collection and storage
Fasting blood samples from patients with histologically proven

EAC (n = 67), HGD (n = 9) and BE (n = 3) were collected at the

Indiana University School of Medicine (Indianapolis, IN). The

detailed clinicopathologic characteristics of EAC patients were

described in our previous paper [27], and a summary is shown in

Table S1. We used 68 EAC, 11 HGD and 5 BE samples in the

previous NMR study. However, due to the limited amounts of

some samples, we removed 1 EAC, 2 HGD and 2 BE samples for

the LC-MS experiments and further analysis in this work; the

corresponding NMR data was also excluded from the combined

analysis and discussion. Blood samples from healthy volunteers

(n = 34) were obtained under fasting conditions. Each blood

sample was allowed to clot for 45 min and then centrifuged at

2,000 rpm for 10 min. The serum was collected, aliquoted in a

separate vial, frozen, and shipped over dry ice to Purdue

University (West Lafayette, IN), where they were stored at

280uC until use. All samples were collected following the protocol

approved by Indiana University School of Medicine and Purdue

University Institutional Review Boards. All subjects included in the

study provided written informed consent according to institutional

guidelines.

Sample preparation and data acquisition
For LC-MS analysis, frozen serum samples were thawed, and

the protein was precipitated by mixing 100 mL serum and 200 mL

cold methanol. Two internal standards, tridecanoic acid and

chlorophenylalanine were also included to monitor the extraction

efficiency. The mixture was centrifuged at 13200 rpm for 10 min.

The supernatant solution obtained after protein removal was dried

under vacuum and the obtained residue was reconstituted in

15 mL methanol/water (1:1) solution. The resulting solution was

again centrifuged at 13200 rpm for 10 min to remove particulate

matter, if any, and the supernatant was transferred to an LC vial.

Separately, a pooled sample was obtained by mixing together

20 mL from each of 20 human serum samples randomly selected

from all the samples, and the metabolites were extracted using the

same procedure as above. This pooled sample, referred to as the

quality control (QC) matrix sample, was subjected to analysis

periodically between every 10 samples. QC sample data also

served as technical replicates throughout the data set to assess

process reproducibility. LC-MS analysis was performed using an

Agilent LC-QTOF system (Agilent Technologies, Santa Clara,

CA) consisting of an Agilent 1200 SL liquid chromatography

system coupled online with an Agilent 6520 time-of-flight mass

spectrometer. A 3 mL aliquot of reconstituted sample was injected

onto a 2.1650 mm Agilent Zorbax Extend-C18 1.8 mm particle

column with a 2.1630 mm Agilent Zorbax SB-C8 3.5 mm particle

guard column, which were both heated to 60uC. Serum

metabolites were gradient-eluted at 600 mL/min using mobile

phase A: 0.2% acetic acid in water and mobile phase B: 0.2%

acetic acid in methanol (2% to 98% B in 13 min, 98% B for

6 min). Electrospray ionization (ESI) was used in positive mode.

The MS interface capillary was maintained at 325uC, with a

sheath gas flow of 9 L/min. The spray voltage for positive ion

injection was 4.0 kV. The mass analyzer was scanned over a range

of 50–1000 m/z. Agilent MassHunter Workstation LC-TOF and

QTOF Acquisition software (B.02.01) was used for automatic peak

detection and mass spectrum deconvolution.

Detailed procedures for sample preparation and NMR

experiments were recently published elsewhere [27]. Briefly,

frozen serum samples were thawed, and 200 mL was mixed with

350 mL of D2O. Resulting solutions were transferred to 5-mm

NMR tubes. A 60 mL solution of TSP (0.12 mg/mL) in a sealed

capillary was utilized as an internal standard, which acted as the

chemical shift reference (d= 0.00). All 1H NMR experiments were

carried out at 25uC on a Bruker DRX-500 spectrometer equipped

Esophageal Cancer Metabolite Biomarkers Discovery
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with a triple resonance 1H inverse detection probe with triple axis

magnetic field gradients. 1H NMR spectra were acquired using the

standard one-dimensional CPMG (Carr-Purcell-Meiboom-Gill)

pulse sequence with water signal presaturation. Each dataset was

averaged over 64 transients using 16 K time domain points. The

data were Fourier transformed after multiplying by an exponential

window function with a line broadening of 1 Hz, and the spectra

were phase and baseline corrected using Bruker TopSpin software

(version 3.0).

Data analysis
LC-MS data was processed using Agilent’s MassHunter

Qualitative Analysis software (version B.03.01) for compound

identification. A list of ion intensities for each detected peak was

generated using a retention time (RT) index and m/z data as the

identifiers for each ion. Agilent MassHunter Workstation Mass

Profiler Professional software (version B.02.00) was then used for

compound peak alignment. A filter was set to remove any

metabolite signals that had missing peaks (ion intensity = 1) in

more than 10% of the samples in any group. Peaks from internal

standards were also removed. Finally, the Agilent Formula

Database (Agilent, 2010) was used for compound identification

by matching the accurate mass spectrum to a database of

metabolite compounds. Unpaired Student’s t-test analysis of the

data was performed to assess the differences of detected compound

intensities among EAC, BE and HGD samples, and healthy

controls. Metabolites with low p-values (,0.05) were selected as

potential biomarker candidates and verified from the mass spectra

and RTs of authentic commercial compounds run separately. The

fold change (FC) for each metabolite was calculated to determine

metabolite’s variation between the groups.

NMR spectral regions were binned to 4 K buckets of equal

width (1.5 Hz) to minimize errors due to any fluctuations of

chemical shifts arising from pH or ion concentration variations.

Table 1. Differentiating metabolites (p-value ,0.05) among EAC, high-risk (BE and HGD) and control groups.

Metabolite Detection EAC vs Control EAC vs High-risk High risk vs Control

p-valuea FCb p-valuea FCb p-valuea FCb

lactic acid LC-MS 1.2E-07 1.6 3.4E-02 1.6

NMR 2.7E-03 1.3 1.6E-02 1.4

valine LC-MS 2.9E-07 21.6 1.0E-02 1.6

NMR 3.7E-02 1.2

leucine/isoleucinec LC-MS 2.7E-07 21.2 4.2E-02 1.2

methionine LC-MS 2.0E-05 21.6 2.4E-02 -1.6

carnitine LC-MS 5.7E-05 1.2

tyrosine LC-MS 4.0E-03 21.1

NMR 3.7E-02 1.2

tryptophan LC-MS 3.2E-05 21.2

5-hydroxytryptophan LC-MS 2.6E-02 21.1

myristic acid LC-MS 1.2E-03 21.4 1.8E-02 21.4

margaric acid LC-MS 9.5E-03 1.3

linolenic acid LC-MS 1.5E-02 21.4 4.3E-02 21.2

linoleic acid LC-MS 1.1E-04 21.5

pyroglutamic acid LC-MS 9.2E-06 2.0 1.4E-04 22.2

glutamine NMR 3.0E-02 1.1

b-hydroxybutyrate NMR 2.3E-05 1.3

citrate NMR 3.3E-04 1.3

unknown 1 NMR 3.0E-05 1.3

lysine NMR 9.6E-04 1.1 2.8E-02 1.2

creatinine NMR 2.2E-02 1.2

glucose NMR 1.5E-04 1.2

N-acetylated protein NMR 6.4E-04 1.2 3.7E-02 21.1

proline NMR 3.1E-03 22.7 1.3E-02 2.1

histidine NMR 7.4E-03 1.3

alanine NMR 9.2E-03 1.3

glutamate NMR 3.6E-02 1.2

unknown 2 NMR 1.4E-02 21.5

ap-value determined from Student’s t-test, only p-values ,0.05 are displayed;
bFC: fold change between esophageal adenocarcinoma (EAC) and healthy controls. Positive sign indicates a higher level in EAC and a negative value indicates a lower
level;
cThe structural isomers of leucine and isoleucine could not be separated with the current LC method.
doi:10.1371/journal.pone.0030181.t001
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Each spectrum was aligned to the methyl peak of alanine at

1.48 ppm, and normalized using the integrated TSP signal.

Spectral regions of 0.3 to 10.0 ppm were used for the analysis after

deleting the water and urea signals (4.5 to 6.0 ppm). Univariate

analysis was performed by applying the unpaired Student’s t-test to

identify significantly different spectral bins among EAC, BE and

HGD patients, and healthy controls. Bins that showed significant

differences between various patient/controls groups were then

assigned to the corresponding metabolites by comparing chemical

shifts and multiplicities of peaks to the literature or online

databases [29,30,31]. The characteristic spectral regions for each

metabolite were integrated, and p-values and fold changes between

different groups were calculated.

The MS/NMR data of the selected statistically significant

metabolites (with p,0.05) were imported into Matlab (R2008a,

Mathworks, Natick, MA) installed with a PLS toolbox (version 4.1,

Eigenvector Research, Inc., Wenatchee, WA) for PLS-DA

analyses. The X matrix, consisting of the MS/NMR spectral

data, was autoscaled prior to all statistical analyses. Depending on

the group, each subject was assigned a ‘‘0’’ (i.e., patient) and ‘‘1,’’

(i.e., healthy control) to serve as the (one-dimensional) Y matrix.

Leave-one-out cross validation (CV) was chosen, and the number

of latent variables (LVs) was selected according to the minimum

root mean square error of CV procedure. Predictions were made

visually using a Y-predicted scatter plot with a cut-off value chosen

to minimize errors in class membership. The R statistical package

(version 2.8.0) was used to generate receiver operating character-

istics (ROC) curves, calculate and compare sensitivity, specificity

and area under the ROC curve (AUROC).

Results

The LC-MS spectrum for each serum sample consisted of more

than 5000 features of which nearly 1400 peaks were assigned to

metabolites using the Agilent database. Peaks from the spectra that

were missing in more than 10% of the samples from any group were

omitted from further analysis. The use of this filter and the Agilent

chemical library resulted in a total of approximately 200 indentified

metabolites most common to all the groups. Further, to identify

specific metabolites that best correlated with the differences in

biological status for the various comparisons, the library-identified

metabolites were analyzed using univariate analysis. The results

showed that 40 metabolites varied significantly (p,0.05) between

either EAC and healthy controls, EAC and high-risk patients (BE

and HGD patients), or high-risk patients and healthy controls.

Thirteen of these metabolites could be verified from the mass

spectra and retention times of the authentic commercial com-

pounds. Table S2 shows the list of the verified metabolites from LC-

MS along with their formulae, masses and retention times.

Similarly, as shown in Table S3, fifteen patient-class differentiating

metabolites with low p-values (p,0.05) obtained by integrating the

relevant NMR peaks were confirmed by matching the observed

chemical shifts and multiplicities with the previously reported data

[29,30,31].

The summary of the metabolite biomarker candidates from LC-

MS and NMR with their p-values and fold changes are shown in

Table 1. ANOVA was also performed, with results that closely

paralleled those from the t-test (Table S4). However, since we were

interested in identifying individual markers that distinguished each

of the three patient cohorts separately, we used the t-test data to

identify markers for model building. The sensitivity, specificity and

AUROC values from the PLS-DA models of each comparison are

listed in Table 2. Comparison of MS and NMR data using the t-test,

separately, showed no significant differences due to gender, age or

cancer stage (p.0.05) between EAC and controls (Table S5).

Comparing metabolic profiles between EAC patients and
healthy controls

As shown in Table 1, twelve metabolite marker candidates

detected by LC-MS differentiated EAC patients and healthy

controls, and their identities were confirmed with authentic

compounds. Figure S1 shows the box-and-whisker plots for the

peak intensities of the 12 differentiating biomarker candidates. As

seen in Table 1 and Figure S1, the levels of lactic acid, carnitine

and margaric acid were higher, and those of valine, leucine/

isoleucine (these structural isomers could not be separated with the

current LC method), methionine, tyrosine, tryptophan, 5-hydro-

xytryptophan, myristic acid, linolenic acid and linoleic acid were

lower in EAC patients compared to healthy controls.

The marker candidates from 1H NMR analysis have been

reported in our previous study [27]. Briefly, a set of 8 metabolites,

Table 2. Comparison of sensitivity, specificity and AUROC values from different PLS-DA models using differentiating metabolites
detected individually by NMR or MS and their combination.

Comparison Number of candidate markers Sensitivity Specificity AUROC

MS NMR

EAC vs Control 12 - 77% 86% 0.82

- 8 82% 88% 0.86

12 8 91% 91% 0.95

8a 4a 89% 90% 0.92

EAC vs High-risk 7 - 83% 80% 0.87

- 8 77% 77% 0.72

7 8 67% 97% 0.82

8a 4a 75% 70% 0.78

High-risk vs Control 1 - 74% 75% 0.76

- 4 68% 92% 0.80

1 4 65% 92% 0.80

aTrending markers that progressively change in their levels between EAC, high risk (BE and HGD) and healthy controls (see Figure 3).
doi:10.1371/journal.pone.0030181.t002

Esophageal Cancer Metabolite Biomarkers Discovery

PLoS ONE | www.plosone.org 4 January 2012 | Volume 7 | Issue 1 | e30181



including b-hydroxybutyrate, lysine, glutamine, citrate, creatinine,

lactate, glucose and an unknown molecule were statistically

significant (p,0.05), and higher levels of each of those metabolites

in the EAC specimens were observed (Table 1).

Figure 1 shows the comparison of performance of 3 metabolic

profiles between EAC patients and healthy controls. A PLS-DA

model using the twelve LC-MS derived metabolites (and leave-one-

out cross valuation) provided 77% sensitivity and 86% specificity

with an AUROC of 0.82. Similar analysis using the eight NMR

derived metabolites provided 82% sensitivity and 88% specificity

with an AUROC of 0.86. However, when the metabolite data were

analyzed combining the 12 LC-MS and the 8 NMR detected

metabolites, the model provided much superior performance with

both sensitivity and specificity of 91%, and an AUROC of 0.95.

To evaluate the BE and HGD samples, the same PLS-DA

model was applied, and the result is also shown in Figure 1 (at the

right). BE samples gave a mixed result, and no confident

conclusion could be made because of the small number of

samples. However, most of the HGD samples were predicted as

EAC in this case. The PLS-DA model based on NMR detected

metabolites, and the model based on combining LC-MS and

NMR detected metabolites both showed that 7 out of 9 HGD

patients were indicated as being similar to EAC samples.

Comparing metabolic profiles of EAC and high-risk
patients

The data for high-risk patients (BE and HGD patients) were

combined for the analysis because of their small sample numbers.

Figure 1. Performance comparison of metabolic profiles between EAC patients and healthy controls. (A) Left, result of the PLS-DA
model using 12 metabolite markers from LC-MS analyses; middle, ROC curve using the cross-validated predicted class values (AUROC = 0.82); right,
PLS-DA prediction for the BE and HGD samples from the LC-MS model comparing EAC and healthy controls. (B) Same as (A) except using 8 metabolite
markers from NMR analyses, (AUROC = 0.86); (C) Same as (A) except using the combination of LC-MS and NMR detected metabolite markers,
(AUROC = 0.95).
doi:10.1371/journal.pone.0030181.g001
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Univariate analysis of the data showed that 7 LC-MS and 8 NMR

detected metabolites varied significantly between EAC and the

high-risk patients, which along with the p-values and fold changes

are shown in Table 1.

PLS-DA models were then built using the LC-MS and NMR

derived metabolite signals, separately and in combination, to test

the classification accuracy for the two patient groups, and the

results are shown in Figure 2. The LC-MS derived metabolites

provided sensitivity and specificity of 83% and 80%, respectively,

with an AUROC of 0.87, and NMR derived metabolites provided

both sensitivity and specificity of 77% with an AUROC of 0.72.

When the data were analyzed combining the LC-MS and NMR

derived metabolites, a sensitivity and specificity of 67% and 97%

were obtained, respectively, with an AUROC of 0.82. Here,

although the performance of the model from the combined data

was slightly better than that from NMR data alone, the model

derived from the LC-MS detected metabolites showed the best

performance. When testing the controls using the same PLS-DA

models derived from the LC-MS detected, NMR detected and

combined metabolites, 22, 12 and 22 of 34 controls were above the

cut-off value, respectively, and were therefore classified as not

being similar to EAC patients.

Comparing metabolic profiles of healthy controls and
high-risk patients

Only one metabolite, pyroglutamic acid, detected by LC-MS,

and three NMR detected metabolites, proline, lactic acid and an

unknown metabolite, differed significantly (p,0.05) between high-

risk patients from healthy controls (Table 1). In addition, a peak

arising from N-acetylated protein in the NMR spectra showed a

significant difference between the two groups. While the levels of

pyroglutamic acid, proline and lactic acid were higher in the high-

risk group, the others were lower.

The LC-MS and NMR data for the high-risk individuals and

healthy controls were compared using PLS-DA analysis (Figure

S2). The lone distinguishing metabolite detected by LC-MS,

pyroglutamic acid, had a sensitivity and specificity of 74% and

75%, respectively, with an AUROC of 0.76. A PLS-DA model

based on the NMR detected metabolites provided a sensitivity and

specificity of 68% and 92%, respectively, with an AUROC of

Figure 2. Performance comparison of metabolic profiles between EAC patients and those with high-risk esophageal diseases (BE
and HGD). (A) Left, result of the PLS-DA model using 7 metabolite markers from LC-MS analyses; middle, ROC curve using the cross-validated
predicted class values (AUROC = 0.87); right, PLS-DA prediction for the healthy controls using the model developed using LC-MS metabolites
comparing EAC and high-risk patients. (B) Same as (A) except using the 8 metabolite markers from NMR analyses, (AUROC = 0.72). (C) Same as (A)
except using the combination of LC-MS and NMR detected metabolite markers, (AUROC = 0.82).
doi:10.1371/journal.pone.0030181.g002
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0.80. The combined analysis of the data from the two analytical

methods provided results similar to that for NMR alone. However,

all the models failed to give a clear prediction of the EAC patients

using only the high risk and healthy cohorts, indicating that (not

unexpectedly) EAC patient samples are needed to build a

successful detection model.

Trending markers
Levels of the metabolites between the three groups, EAC, BE &

HGD, and healthy controls were compared using box-and-whisker

plots. Interestingly, the average levels for 12 of the metabolites,

including lactic acid, valine, leucine/isoleucine, methionine,

tyrosine, tryptophan, myristic acid, linoleic acid, b-hydroxybuty-

rate, lysine, glutamine and citrate progressively changed with the

average levels for BE and HGD patients falling in between the

levels for healthy controls and EAC (Figure 3). While the levels for

lactic acid, 3-hydroxybutyrate, lysine, glutamine and citrate

increased, the levels for valine, leucine/isoleucine, methionine,

tyrosine, tryptophan, myristic acid and linoleic acid decreased

progressively.

Using these 12 markers, PLS-DA models were again built using

LC-MS and NMR separately and in combination, to test the

classification accuracy for each of the two group comparisons

(Figure 4). Figure 4A shows the PLS-DA model for EAC v. the

healthy controls and predicts values for the high-risk patients. The

model provided a sensitivity and specificity of 89% and 90%,

respectively, with an AUROC of 0.92, although the predictive test

for BE and HGD did not improve over that using the previous

PLS-DA model (Figure 1B and C). Figure 4B shows the PLS-DA

model comparing EAC and the high-risk patient group, resulting

in a sensitivity, specificity and AUROC of 76% 70% and 0.78,

respectively. In this case an improvement in the predictive testing

of the control subjects was obtained, with 30 out of 34 controls

appearing above the cut-off line (non-EAC like). However, these

12 markers could not be used to generate a clear classification

between healthy controls and at risk patients using PLS-DA,

therefore it is not possible to use such a model to predict EAC

(data not shown).

Discussion

This study is focused on identifying distinguishing metabolites

for the establishment of improved clinical biomarkers for EAC

detection, the development of a more robust classification model,

and insights into the altered metabolic pathways in EAC.

The differentiating metabolites derived from the individual LC-

MS and NMR analyses showed distinct differences in a number of

Figure 3. Box-and-whisker plots illustrating progressive changes of the metabolite levels in high-risk patients (BE and HGD) and
esophageal adenocarcinoma (EAC) patients relative to healthy controls. Horizontal line in the middle portion of the box, median; bottom
and top boundaries of boxes, lower and upper quartile; whiskers, 5th and 95th percentiles; open circles, outliers. The first eight markers were
detected by LC-MS, and the remaining four were detected by NMR.
doi:10.1371/journal.pone.0030181.g003
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metabolites between EAC and controls and achieved good

classification accuracy. However, the combination of metabolic

profiles from the two methods enabled access to an increased

number of distinguishing metabolites. The predictive power of the

model derived from the combination of MS and NMR methods

performed better in both sensitivity and specificity when compared

with the results from the individual analytical methods. The

complementary nature of the combined metabolic pool derived

from the two methods contributed to this improvement of the

model. In fact, all of the LC-MS detected metabolite marker

candidates except lactic acid are different from those detected by

NMR. It should, however, be stressed that while the improvement

in classification was very clear for distinguishing EAC and

controls, when the two analytical methods were combined the

improved performance for discriminating high risk (BE and HGD)

patients versus EAC was less noticeable and only in the high

specificity region (Figures 1 and 2). This effect is likely due to the

small number of high risk patients and possibly to variation of

metabolic alterations to a greater degree from one patient to

another, both of which can make model prediction more

challenging.

Comparison of the individual metabolites and the statistical

models developed using the differentiating metabolites in the three

groups showed that metabolic profiles of the BE and HGD

patients were different from both EAC patients and healthy

controls. Progressive changes in the levels of 12 metabolites

derived from LC-MS and NMR methods indicate the potential

utility for identifying BE and HGD patients who may develop

EAC (Figure 3). This is particularly important since BE and HGD

are major risk factors for the development of EAC. Identification

of metabolites in these patients, which are potentially predictive of

the development of EAC is particularly important for the

management of at risk patients.

Identification of the metabolic pathways associated with specific

metabolites displaying altered levels can improve the understand-

ing of the biology and pathology in the trajectory from normal to

esophageal disease and ultimately cancer. Previously, we showed a

simplified pathway map based on the metabolite markers

identified by NMR and compared the results with other type of

cancers [27]. Building upon this model, Figure 5 shows a more

detailed pathway map associated with metabolite markers

identified using both MS and NMR methods. Altered pathways

include changes in amino acid metabolism, biosynthesis and

degradation (glutamine, lysine, carnitine, valine, leucine/isoleu-

cine, methionine, tryptophan, 5-hydroxytrytophan, and tyrosine),

glycolysis (lactate and glucose), ketone bodies synthesis and

degradation (b-hydroxybutyate), tricarboxylic acid (TCA) cycle

(citrate) and fatty acid metabolism (linoleic acid, linolenic acid and

myristic acid).

Energy metabolism and the TCA cycle dominate the altered

biochemistry of EAC. Accumulation of lactate and glucose, which

is common in many cancers mirrors the demand for higher energy

in tumor malignancy [32]. The increase of carnitine in the EAC

patients indicates increased activity of carnitine, lysine and

glutamine biosynthesis connected with the TCA cycle via lactate

accumulation, again in response to the higher energy demand of

the tumor. Many serum amino acids, including valine, leucine/

isoleucine, tyrosine, methionine, tryptophan and 5-hydroxytryto-

phan, were down-regulated in EAC patients compared with

healthy controls, which indicates an increased demand for and

overutilization of amino acids in the tumor tissue, as further

evidenced by other reports on the cancer [25,26] as well as other

malignant tumors [33,34]. Fatty acid metabolism is also altered in

the cancer patient sera, as seen by the reduced levels of a number

of fatty acids, and which is also in accordance with findings in

serum from other cancers such as colorectal cancer [35].

We also noticed that valine and tyrosine were decreased in the

sera of patients in the current study, but increased in the tissue of

EAC patients [25]. The intriguing differential regulation of certain

metabolites in biofluids versus tissue samples for the same disease

Figure 4. PLS-DA models comparing two patient groups, their coresponding ROC curves, and the prediction of the models for the
other (third) patient group using the 12 trending markers of Figure 3. (A) Performance comparison of metabolic profiles between EAC
patients and healthy controls, AUROC = 0.92. (B) Performance comparison of metabolic profiles between EAC and BE/HGD patients, AUROC = 0.78.
doi:10.1371/journal.pone.0030181.g004
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has been reported in other disease metabolic profiling studies as

well. For example, while histidine increased in colorectal cancer

patient tissue [36], it was depleted in urine [37]. Thus, to examine

the intimate correlation of serum, urine and tissue metabolism as a

whole, similar methodologies should be utilized to identify the

metabolic alterations and pathways of the same study subjects in a

broader range of sample types [38]. It would also be of interest to

provide a more dynamic metabolic picture by determining

metabolic fluxes or other changes in the metabolic pathways that

may be altered in the presence of the disease [39,40,41].

In conclusion, we have shown that the metabolic profiling of serum

using a combination of LC-MS and 1H NMR, along with multivariate

statistical methods allows a detailed picture of metabolic changes in

EAC and patients with high cancer risk (BE and HGD), compared

with healthy controls. These patient groups can be distinguished from

one another with good accuracy. Performance of the combination the

two analytical methods is particularly striking for distinguishing EAC

and controls. As the two analytical largely detect different metabolites,

their combined use for global metabolic profiling is advantageous.

However, the improved performance for discriminating high risk (BE

and HGD) patients versus EAC is not large, and only noticeable for

the high specificity region of the ROC curve. This result is likely due to

the small number of patients and the relatively poor performance of

the NMR detected markers in the challenging task of distinguishing at

risk patient from those with EAC. Progressive changes in a number of

metabolites between the three groups are particularly noteworthy

since these metabolites, which vary gradually from controls to BE and

HGD and EAC, may be potentially useful biomarkers to detect

esophageal cancer early.

Supporting Information

Figure S1 Box-and-whisker plots illustrating differenc-
es between EAC patients, high-risk patients (BE and
HGD) and healthy controls for the 12 markers detected
from LC-MS. Y-axis of each plot indicates the signal intensities.

(TIF)

Figure S2 Comparison results for metabolic profiles
from healthy controls with high-risk, BE and HGD,
patients. (A) Left, result of the PLS-DA model for the one

metabolite from LC-MS; middle, ROC curve for the cross-

validated predicted class values (AUROC = 0.76); right, PLS-DA

prediction for the EAC samples using the same metabolite and

cutoff. (B) Left, result of the PLS-DA model comparing healthy

normals and high risk patients (BE & HDG) for the 4 markers

detected by NMR; middle, ROC curve for the cross-validated

predicted class values (AUROC = 0.80); right, PLS-DA prediction

for the EAC samples using the model developed using NMR

markers for high-risk indivduals and healthy controls. (C) Same as

(B) except using the combination of 5 markers from LC-MS and

NMR (AUROC = 0.80).

(TIF)

Figure 5. Altered metabolism pathways for the most relevant metabolic differences between patients with EAC and control
subjects. Blue boxes indicate metabolites that are up-regulated in EAC patient sera, while red boxes indicate metabolites that are down-regulated.
Metabolites in bold showed mean levels that changed progressively from control to high-risk esophagus diseases (BE and HGD) and ultimately EAC.
doi:10.1371/journal.pone.0030181.g005
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