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Abstract

Coevolving residues in a multiple sequence alignment provide evolutionary clues of biophysical interactions in 3D structure.
Despite a rich literature describing amino acid coevolution within or between proteins and nucleic acid coevolution within
RNA, to date there has been no direct evidence of coevolution between protein and RNA. The ribosome, a structurally
conserved macromolecular machine composed of over 50 interacting protein and RNA chains, provides a natural example
of RNA/protein interactions that likely coevolved. We provide the first direct evidence of RNA/protein coevolution by
characterizing the mutual information in residue triplets from a multiple sequence alignment of ribosomal protein L22 and
neighboring 23S RNA. We define residue triplets as three positions in the multiple sequence alignment, where one position
is from the 23S RNA and two positions are from the L22 protein. We show that residue triplets with high mutual information
are more likely than residue doublets to be proximal in 3D space. Some high mutual information residue triplets cluster in a
connected series across the L22 protein structure, similar to patterns seen in protein coevolution. We also describe RNA
nucleotides for which switching from one nucleotide to another (or between purines and pyrimidines) results in a change in
amino acid distribution for proximal amino acid positions. Multiple crystal structures for evolutionarily distinct ribosome
species can provide structural evidence for these differences. For one residue triplet, a pyrimidine in one species is a purine
in another, and RNA/protein hydrogen bonds are present in one species but not the other. The results provide the first
direct evidence of RNA/protein coevolution by using higher order mutual information, suggesting that biophysical
constraints on interacting RNA and protein chains are indeed a driving force in their evolution.
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Introduction

A primary cause of coevolution between residues is biophysical

interactions in the corresponding folded structure. Commonly a

sequence slowly changes over evolution while the native fold is

maintained, and coevolving positions have been observed in

residues proximal in the 3D structure [1,2,3,4,5,6,7,8], suggesting

a link between coevolving positions and structure. Coevolving

positions between residues far apart in protein structure [6,7] and

even in different genes [3] have also been observed, hinting at the

complexities of the evolutionary process. In addition, phylogenetic

influences and small sample size can decrease the signal to noise,

making it difficult to identify coevolving positions [5,9]. Never-

theless, coevolving positions appear to be enriched in areas that

are nearby in 3D space and characterizing coevolution is of

fundamental importance.

Mutual information (MI) is one of a handful of different

methods used to characterize coevolution and has been successful

in identifying coevolving pairs of positions in multiple sequence

alignments (MSAs) [5,7,9,10]. In an MSA, MI directly measures

the dependence of one position in the sequence on another.

Previous studies have used MI towards uses such as residue contact

prediction in proteins [5] and RNA structure prediction [10].

Multiple pairs of coevolving amino acids that form a connected

structure across a protein have been characterized and implicated

in functional roles such as interaction surfaces [7]. Folded proteins

and RNAs are dense, highly connected structures, and undoubt-

edly have higher-order biophysical interactions. Triplet structures

formed by hydrogen bonding patterns between three RNA

nucleotides [11] and between an amino acid and RNA base pair

side chains [12] have been previously described. There are likely

higher order patterns in coevolution.

Due to the biophysical interactions between RNA and protein

present in joint complexes, it is natural to hypothesize that protein

and RNA have coevolved in these complexes. However, to date no

study has been able to demonstrate RNA/protein coevolution in

the sequence record. Due to the wealth of sequence and structural

data, the ribosome (a large macromolecular complex made of

multiple RNA and protein chains [13,14,15,16] that catalyzes

protein synthesis in all living cells) is a natural test bed to examine

RNA/protein coevolution. Ribosome structure is remarkably

conserved over the four known bacteria and archeon species with

crystal structures [13,14,15,16], hinting at the importance of

structure in ribosome function. A detailed study of a ribosome
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crystal structure revealed a handful of RNA/protein interactions

that can be characterized by features such as hydrogen bonding,

with most interactions between protein side chains and the RNA

backbone [15]. Many of the residues catalogued in this study are

conserved over evolution however (for example, all of the

interactions between protein L22 and RNA involve conserved

residues), and therefore by definition do not coevolve. Non-

conserved residues may also interact, and MSAs of ribosome

chains provide a rich dataset to begin to characterize RNA/

protein coevolution, one that complements structural information

from crystal structures.

Here, we describe the coevolution between RNA and protein

in the ribosome by calculating the MI between triplets of

positions in an MSA. We define residue triplets as three

positions in the multiple sequence alignment, where one

position is from the 23S RNA and two positions are from the

L22 protein. Using higher order coevolution patterns reveals an

increased likelihood for residues proximal in 3D space to

coevolve, whereas coevolution between pairs of positions does

not show this pattern. Triplets of RNA with polar amino acids

show even higher coevolution at close 3D distance, probably

related to the increased likelihood of polar amino acids for being

on the surface of the protein and for interacting with RNA

because of RNA’s negative charge. Our dataset focuses on

residues from a protein in the large subunit, L22, and the RNA

within 10 Å of L22 and we calculate the MI between triplets of

positions.

Mutual information between three variables, MI(X, Y, Z), is

more complex than mutual information between two variables,

MI(X,Y). MI(X,Y) measures the dependence between two

variables. Two dependent variables have high MI(X,Y), and two

independent variables have MI(X,Y) of zero. M(X,Y,Z) measures

the interaction between three variables. MI between three

variables can be defined in the following way:

MI(X ,Y ,Z)~MI(X ,Y jZ){MI(X ,Y )

Thus MI(X,Y,Z) is the difference between the mutual information

between X and Y when Z is fixed and when Z is not fixed. MI

is symmetric, thus MI(X,Y) = MI(Y,X) and MI(X,Y,Z) = MI(Y,X,Z)

= MI(Z,Y,X) = MI(Z,X,Y) = MI(X,Z,Y) = MI(Y,Z,X). The upper

bound of MI is the (Shannon [17]) joint entropy (H(X,Y) for

MI(X,Y) and H(X,Y,Z) for MI(X,Y,Z). For our data set, the variables

are positions in an MSA. High mutual information between two

or three positions in the MSA indicates that these residues coevolved,

and low mutual information indicates that the positions evolved

independently. Entropy in a position in an MSA indicates the

uncertainty, in other words the variability in the amino acid residue.

Why study this system? The functions of ribosomal proteins are

poorly understood. Ribosomal proteins may play a role during

ribosome assembly, contribute to structural stability, and/or aid in

translation. Nascent chains translated by the ribosome encounter a

beta hairpin in L22 immediately after the formation of a new

peptide bond at the catalytic site, and L22 likely plays a regulatory

role in this process [18]. L22 makes contact with all six domains of

the largest RNA chain in the ribosome, the 23S, and is also

necessary for forming an early 23S folding intermediate [19]. Thus

L22 also plays a role in ribosome assembly. L22 was chosen for

this study because of its small size relative to other ribosome

proteins (therefore less computationally demanding) and function-

al importance. Focusing on these particular residues in the

ribosome provides a starting point for characterizing RNA/

protein coevolution.

Increased coevolution between RNA/protein triplets at close

3D space suggests the influence of RNA/protein biophysical

interactions in evolution, and we use our data in conjunction with

ribosome crystal structures to gain insight into this process. For

two RNA nucleotides, their respective high MI triplets cluster in a

series connected across the structure, similar to patterns seen in

protein coevolution [7,8]. We describe a typical residue distribu-

tion pattern for high MI, proximal triplets in which switching from

one nucleotide to another (or between purines and pyrimidines)

results in a distinct change in the pattern of nearby amino acids.

One type of pattern leading to high MI is an amino acid

distribution that is narrow for certain RNA values (i.e. for a given

RNA nucleotide in position Z, there are only a few amino acids in

positions X and Y), and otherwise wide. We highlight a specific

triplet, U519/R18/D22, in which a pyrimidine is most likely

accompanied by an Arg (R) and Asp (D) and a purine

accompanied by a more varied distribution of amino acids. A

structural alignment of the crystal structures of two species, one

with a pyrimidine and the other a purine at position U519, reveals

a hydrogen bonding pattern that is broken upon mutation. A goal

of this study is to connect coevolution and biophysical interactions

by looking for increased coevolution at close 3D distance, and this

is the first study to do so for RNA and protein.

Results

MI was calculated between one nucleotide and two amino acids

from bacterial MSAs for the L22 protein and the large subunit

RNA chain that binds to the L22 protein, the 23S (see Methods for

details). Conserved residues by definition do not coevolve, and we

exclude these residues with the use of an entropy cutoff of 0.3, a

commonly used threshold for pairwise MI [5]. In our manuscript,

entropy is considered to be the Shannon entropy [17] in the amino

acids in certain positions in the MSA. There are 75 nucleotides

within 10 Å of L22, and 39 of these are conserved. There are 113

residues in the L22 protein, and 8 of these are conserved. We also

exclude the three c-terminal amino acids from the analysis because

their position makes them unlikely to interact with RNA and their

high entropy results in noisy MI. Normalizing MI has been shown

to increase residue contact prediction, and an effective method to

normalize MI is to report the ratio of MI to the entropy (MI/H)

[20]. This normalized form of MI will be used throughout (see

Methods for details).

RNA/protein triplet coevolution is enhanced at close 3D
distance

A common metric for reporting MI data is to rank the highest

MI pairs of residues (and in our case, triplets) and classify them as

‘‘in contact’’ if their 3D coordinates are within a distance threshold

[5], and we report the top 100 RNA/protein pairs and triplets

from our dataset in Figure 1. Pairs are between positions

representing one amino acid in the L22 protein and one

nucleotide from an RNA neighbor within 10 Å of L22. Triplets

are between positions representing two amino acids in the L22

protein and one nucleotide from an RNA neighbor within 10 Å of

L22. For positive MI values, higher MI indicates greater

dependence between the positions in the MSA, and hence greater

coevolution between the positions. MI between two variables is

always non-negative. MI between three variables can be negative,

zero, or positive. In our dataset, the triplets with negative MI

values largely involve amino acids that evolve relatively indepen-

dently, and here we only characterize positive MI values to

simplify the analysis (see Discussion for details). Our distances are

Sequence Coevolution between RNA and Protein
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between backbone atoms, and we classify residues , = 12 Å as ‘‘in

contact’’ (see Methods for details).

High MI RNA/protein triplets are likely to be close in 3D space

(Figure 1, asterisks), whereas high MI RNA/protein doublets do

not show this pattern (Figure 1, squares). Likelihood of contact for

RNA/protein triplets is on the same order as what was previously

described for amino acids doublets [5]. Polar amino acids are

more likely to interact with RNA because they are more likely to

be on the surface of the protein and more likely to form

electrostatic interactions with the negatively charged RNA

nucleotides, and we see an increased likelihood for contact in

RNA/protein doublets (Figure 1, circles) and triplets (Figure 1,

triangles) with polar amino acids. The following residues were

included as polar in our analysis: Asp (D), Glu (E), His (H), Lys (K),

Asn (N), Gln (Q), Arg (R), Ser (S), Thr (T), and Tyr (Y). The

similarities between our dataset and those previously characterized

for proteins, and the increased fraction of high MI triplets in

contact when filtering for polar amino acids is suggestive of

biophysical interactions between the RNA and protein.

Low signal to noise is a known problem when looking for

coevolution in MSAs. In our dataset, there are far fewer triplets at

close distances than there are at far distance due to the relative

orientations of the nucleotides and amino acids (as well as the

general combinatorics of triplets). In addition to differences in

sample size at different distance bins, noise can occur because of

insufficient number of sequences. It has been shown that at least

125 protein sequences are needed to compensate for background

noise in MI [20]. Our MSA has ,400 sequences from different

bacterial species, although the number of species for each

individual triplet is less than 400 because we do not incorporate

gaps in our calculations (see Methods for more details). We

normalize MI values to the entropy, a method that has been

shown to increase the signal to noise [20]. In addition to statistical

noise, coevolution may arise for reasons other than biophysical

interactions (e.g. phylogenetic relationships or functional relation-

ships).

U519 and C487: Highest MI triplets form a connected
series in 3D structure

Figure 2 shows the residues in the top ten highest MI triplets for

U519 (Figure 2A) and C487 (Figure 2B), and these residues form a

connected series on the protein structure. 23S RNA chain from

E.coli standard numbering is used throughout. U519 and C487 are

both base paired to other residues in the 23S RNA chain, and thus

their interaction with L22 is via backbone atoms. L22 has two

domains; an extended region that is buried in the large subunit of

the ribosome, and a globular domain that is partly solvent

exposed. The globular domain has alpha helices and antiparallel

beta sheets, and both clusters are in this globular domain. The

U529 high MI cluster is at the extended region end of the globular

domain, and the C487 high MI cluster is at the solvent exposed

end of the globular domain. Many of the amino acids in these

clusters are at the edges of secondary structure elements, a

structural link that has been previously described in coevolving

amino acids [7]. Two classes of coevolving resides in amino acids

have been previously characterized, those that coevolve with only

a few residues and those that coevolve with a series of residues

[7,8], and we see both classes in our RNA/protein triplets. Triplets

with other RNA nucleotides in our dataset had high MI proximal

triplets, but their respective top ten highest MI triplets did not

cluster in 3D space.

High MI proximal triplets show shifts in amino acid
distributions upon changes in RNA

High MI, proximal triplets have different amino acid distribu-

tions with different RNA bases, and a triplet with RNA U519 is

shown as an example. U519 is adjacent to helix 1 and beta strand

2 in the L22 protein, and all four nucleotides are represented in

our MSA (adenine 5%, cytosine 10%, guanine 15%, and uracil

70%). In the majority of sequences, U519 maintains a base pair

irrespective of its value (i.e. if U519 mutates to an G its base pair

partner will mutate to a C, data not shown).

The most proximal high MI triplet with U519 is U519/R18/

D22 and the triplets from the MSA are shown in Figure 3. Each of

the four 20620 matrixes represent the amino acids values at a

particular RNA value, and thus give a visual representation of the

distributions used in the MI calculation (see Methods for details).

The U519/R18/D22 triplet is typical of other high MI proximal

triplets in that a change in the RNA shifts the distributions of

amino acids. In this triplet, a pyrimidine (RNA is C or U) results in

a tight distribution in which R18 is an Arg (R) and D22 is an Asp

(D). A purine (RNA is A or G), slightly smaller than pyrimidines,

results in a more diverse distribution in which R18 is most

commonly an Asn (N) or Arg (R) and D22 is more widely

distributed. See Figures S1 and S2 for examples of high MI triplets

from RNAs C487, G2009 and C2815.

High MI proximal triplets show hydrogen bonding
patterns in the crystal structure that are broken upon
mutation

The most proximal high MI triplet with U519, U519/R18/D22

described in Figure 3, shows a triplet hydrogen bonding pattern in

the e.coli crystal structure [13]. In E.coli, the values of U519/R18/

D22 are U, Arg (R) and Asp (D), respectively. The distance

between the three residues is 7.7 Å and MI/H 0.08 (see Methods

Figure 1. Likelihood of contact between triplets (orange *, red
o) and pairs (blue %, green =) of residue positions vs. the
coevolution rank. High MI triplets are likely to be in contact for
triplets of residue positions (similar to coevolution seen in protein
position pairs [5]), but doublets are not. For example, 40% of the top 5
highest ranking MI triplets are in contact, while only 20% of the top 5
highest ranking MI doublets are in contact. MI between RNA and polar
amino acids, more likely to lie on the surface on the protein and
therefore interact with RNA, enhances the trend (o triplets, = doublets).
High MI triplets between polar amino acids and RNA are most likely to
be in contact. In comparison, random coevolution between pairs of
amino acids is expected to have a contact frequency of 8% [5].
doi:10.1371/journal.pone.0030022.g001
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for details). The side chains of L22 R18 and L22 D22 and the

phosphate backbone of RNA U519 are within hydrogen bonding

distance (Figure 4A), and a stable structure for this triplet explains

the tight coupling seen in the distribution (Figure 3). The triplet

from the archeon haloarcula marismortui represents a shift from

pyrimidine to purine, with the values of U519/R18/D22 at G, Lys

(K) and Arg (R), respectively. A structural alignment of the crystal

structure from this species [15] with the crystal structure of E.coli

indicates a structural shift in which the hydrogen bonds are broken

and the residues farther apart (Figure 4B). The crystal structures

from these two species present a structural argument for the

distributions seen in the frequencies, although not all high MI

proximal triplets show hydrogen bonding patterns. Our data

indicates that RNA side chains can influence the biophysical

interactions with proximal amino acids in the following two ways:

directly (for example, a hydrogen bond between an amino acid and

RNA side chain) and indirectly (for example, by influencing the

packing and thus indirectly influencing neighboring interactions).

Discussion

MSAs represent a rich dataset for studying evolution and

elucidating the relationship between linear primary sequences and

folded structures continues to be of fundamental importance.

Correlations between positions in an MSA, coevolution, has been

studied in light of evidence suggesting enhanced coevolution for

residues that interact in 3D space [1,2,3,4,5,7,8,20], although non-

proximal residues also coevolve in an undoubtedly complex

evolutionary process. This link between sequence and structure

has resulted in numerous methods for characterizing coevolution

between pairs of positions in an MSA, including information

theoretic methods such as MI [5,7,20]. Previous studies have

characterized coevolution between pairs of positions for either

proteins or RNA, but to date there has been no study describing

RNA/protein coevolution. RNA/protein interactions are of

fundamental importance in biology, including the interactions in

the multi-chain macromolecular structure of the ribosome, and thus

it is natural to hypothesize that these sequences coevolved. Thus,

our result that one can see this coevolution in the MSAs is an

important discovery, yielding evidence to support this hypothesis.

To characterize and quantify RNA/protein coevolution we

calculated the MI between triplets of positions in an RNA/protein

MSA from chains in the ribosome and reveal increased MI at close

3D distances, suggesting the importance of biophysical interac-

tions. We turned to higher dimensional MI because MI between

doublets was not enhanced for residues close in 3D distance. This

could be because there is less noise in triplet MI calculation, or

because RNA forms stable higher dimensional structures with

proteins, or both. MI between triplets is mathematically more

complex than MI between doublets. An analogy can be made

Figure 2. The top ten highest MI triplets for U519 (2A, red) and C487 (2B, yellow) form a connected series across the protein
structure (standard E.coli numbering). Both U519 and C487 form base pairs with other 23S nucleotides, and thus all interactions are via
backbone atoms. Many of the amino acids in the high MI clusters are at the edges of secondary structure elements. Other nucleotides did not have
high MI triplets clustered in 3D space.
doi:10.1371/journal.pone.0030022.g002
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between MI of triplets and 3D distance between three points. 3D

distance between two points is unambiguous, whereas there are

many ways for three points to be 10 Å apart (e.g. two points close

together and one farther away, or three equidistant points).

Adding to the complexity is the fact that MI between triplets can

be negative, zero, or positive. MI between doublets is either zero

or positive. For positive MI, the higher the number the greater the

dependence between the variables. The equation for MI between

triplets can be written in a few different forms, including the

following

MI(X ,Y ,Z)~MI(X ,Y )zMI(X ,Z)zMI(Y ,Z){

½H(X )zH(Y )zH(Z){H(X ,Y ,Z)�

where X, Y, and Z are random variables and H is entropy. The

second term in the equation represents the amount of overlap

between the entropies of the three variables and is always non-

negative. Thus MI is positive when the overlap between the

entropies is small relative to the mutual information between pairs

of variables, and negative when the mutual information between

pairs of variables is small relative to the overlap between the three

entropies. In our dataset, most negative MI values probably

represent triplets in which the residues evolve relatively indepen-

dently (low doublet MIs), and for the purposes of this initial study

we focus on positive MI values.

We see high MI, proximal RNA/protein triplets as well as two

nucleotides with top ranking triplets that form a connected series

of residues in the 3D structure, consistent with two types of

coevolution previously described in proteins [7]. The likelihood of

high MI triplets for being in contact is on the order of what has

been previously described for protein doublets [5]. Often a change

in nucleotide results in a shift in amino acid distributions. We focus

a more in depth study of triplet U519/R18/D22 and show that a

shift from pyrimidine to purine results in a shift from a tight Arg

(R)/Asp (D) distribution to a more varied distribution of amino

acids (Figure 3). We provide a structural interpretation of the data

by looking at a structural alignment between two species, one with

a pyrimidine and one with a purine in the triplet (Figure 4). In the

structure in which the RNA is a pyrimidine, the residues form

hydrogen bonds. In the structure in which the RNA is a purine,

there is a slight structural shift and the residues are further apart

and do not hydrogen bond.

Characterizing sequence covariation is a predictive tool as well

as an important methodology to further fundamental understand-

ing of evolution and the relationship between primary and 3D

structure, and this is the first study to establish statistical evidence

for the coevolution between RNA and protein. There are no

simple rules governing RNA/protein interactions and a wide

variety of interactions have been observed [12,15,21]. Crystal

structures suggest that surface complementarity, electrostatic

interactions, and hydrogen bonding all play a role and databases

of known interactions have been established [12,21]. Conserved

and evolving residues both participate in these interactions. This

work details an information theoretic method to establish

coevolution between triplets of RNA and protein residues for a

functionally important protein in the ribosome. The coevolution

patterns seen, namely an increased likelihood for coevolving

residues to be proximal and the coevolution of a network of

residues across a structure, are similar to the two types of

coevolution seen for protein residue pairs [6]. In addition, we

characterize residue triplets for which mutations in an RNA

nucleotide results in a change in residue distribution for proximal

amino acids. Further characterizing RNA/protein coevolution in

more systems will increase our fundamental understand of this

important process.

Figure 3. Residue distributions for the most proximal high MI triplet with U519, U519/R18/D22, a typical high MI proximal triplet. A
pyrimidine (RNA is C or U) results in a tight distribution in which R18 is an Arg (R) and D22 is an Asp (D). A purine (RNA is A or G), slightly smaller than
pyrimidines, results in a more diverse distribution in which R18 is most commonly an Asn (N) or Arg (R) and D22 is more widely distributed.
doi:10.1371/journal.pone.0030022.g003
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Methods

Multiple Sequence Alignments
MSA for the 23S was taken from The Comparative RNA Web

Site [22] and contains over 6000 sequences. MSA for L22 was

created by taking sequences from the NCBI Microbial Genomes

Resource (http://www.ncbi.nlm.nih.gov/genomes/MICROBES/

microbial_taxtree.html), which had 998 species at time of

download, and using clustalw [23] to create an MSA. Of the

998 species in our L22 alignment, 393 overlap with species from

the 23S alignment. Because the 23S is approximately 3000

nucleotides long, we chose to use the hand curated alignment at

the expense of having less overlapping species with our L22

alignment (as opposed to creating a new alignment from 23S

species taken from the NCBI bacterial genome database).

Therefore the effective number of species is our MSA is 393.

The number of sequences used to calculate MI for each individual

pair or triplet may be less than 393 because we do not incorporate

gaps into our calculation.

Mutual Information
MI between three variables is calculated as

MI(X ,Y ,Z)~MI(X ,Y )zMI(X ,Z)zMI(Y ,Z){

½H(X )zH(Y )zH(Z){H(X ,Y ,Z)�

where, MI is mutual information, H is entropy, and X, Y and Z

are random variables. In our dataset, the random variables are

positions in an MSA. Mutual information between two variables is

calculated as

Figure 4. Structural evidence explains the residue distributions for triplet U519/R18/D22. In E.coli, the values of RNA U519/L22 R18/L22
D22 are U, Arg (R) and Asp (D), respectively. A hydrogen bond network in E.coli goes from the side chain of D22 to the side chain of R18 to the
phosphate atom of U519. (Figure 4A), and explains the tight coupling seen in the distribution (Figure 3). The triplet from the archeon haloarcula
marismortui represents a shift from pyrimidine to purine, with the values of U519/R18/D22 at G, Lys (K) and Arg (R), respectively. A structural
alignment of the crystal structure from both species reveals that the hydrogen bonds are broken when the RNA is a purine and the residues farther
apart (Figure 4B). This data suggests that the change in packing to accommodate a larger RNA side chain influences the packing between the L22
and 23S protein in such a way that this hydrogen bond network is broken.
doi:10.1371/journal.pone.0030022.g004
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MI(X ,Y )~
X

p(X ,Y ) � log(
p(X ,Y )

p(X ) � p(Y )
)

and entropy as

H(X )~
X

p(X ) � log(p(X ))

MI is normalized by the joint entropy H(X,Y,Z), and MI/H is

reported throughout.

3D Distance Between Three Residues
The distance between three residues is calculated as the square

of the sum of distances between each point and the center of mass

of the three points.

Supporting Information

Figure S1 The top ten highest MI triplets for 23S RNA
U519 (red) and C487 (yellow), G2009 (green), and C2815
(blue).
(TIF)

Figure S2 Residue distributions for the most proximal
high MI triplet with G2009 G2009/T39/K42.
(TIF)
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