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Abstract

Plasmodium chabaudi infection induces a rapid and intense splenic CD4+ T cell response that contributes to both disease
pathogenesis and the control of acute parasitemia. The subsequent development of clinical immunity to disease occurs
concomitantly with the persistence of low levels of chronic parasitemia. The suppressive activity of regulatory T (Treg) cells
has been implicated in both development of clinical immunity and parasite persistence. To evaluate whether IL-2 is required
to induce and to sustain the suppressive activity of Treg cells in malaria, we examined in detail the effects of anti-IL-2
treatment with JES6-1 monoclonal antibody (mAb) on the splenic CD4+ T cell response during acute and chronic P. chabaudi
AS infection in C57BL/6 mice. JES6-1 treatment on days 0, 2 and 4 of infection partially inhibits the expansion of the
CD4+CD25+Foxp3+ cell population during acute malaria. Despite the concomitant secretion of IL-2 and expression of high
affinity IL-2 receptor by large CD4+ T cells, JES6-1 treatment does not impair effector CD4+ T cell activation and IFN-c
production. However, at the chronic phase of the disease, an enhancement of cellular and humoral responses occurs in
JES6-1-treated mice, with increased production of TNF-a and parasite-specific IgG2a antibodies. Furthermore, JES6-1 mAb
completely blocked the in vitro proliferation of CD4+ T cells from non-treated chronic mice, while it further increased the
response of CD4+ T cells from JES6-1-treated chronic mice. We conclude that JES6-1 treatment impairs the expansion of Treg

cell population during early P. chabaudi malaria and enhances the Th1 cell response in the late phase of the disease.
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Introduction

The asexual blood stages of the Plasmodium ssp. are responsible

for the pathology and morbidity caused by malaria, an infectious

disease that remains a major devastating illness afflicting 350 to

500 million people annually and resulting in more than 1 million

deaths per year [1]. Among the cell populations involved in the

immune response to the blood stages of malaria, effector Th1 cells

are thought to play a key role in both disease protection and

pathogenesis [2,3,4]. Thus, an appropriate regulatory balance

between protective immune responses and immune mediated

pathology is required for a favorable outcome of infection [5]. The

suppressive activity of regulatory T (Treg) cells has been implicated

in the development of clinical immunity to disease known as

premunition, which occurs concomitantly with persistence of low

parasite burdens rather than sterilizing immunity [5]. However,

despite their relevance, the molecular pathways required to induce

and to sustain the suppressive activity of Treg cells in malaria are still

poorly characterized.

In the blood stage malaria caused by the rodent parasite,

Plasmodium chabaudi, the spleen CD4+ T cell population expands

quickly, secretes considerable amounts of interferon-c (IFN-c) and

helps B cells to produce high quantities of polyclonal immuno-

globulin (Ig) M and IgG2a [6,7,8]. Both IFN-c [9] and acute phase

antibodies [10] have been implicated in the initial control of the

parasite. Effector Th1 cells also contribute to pathogenesis in acute

P. chabaudi malaria because mice lacking IFN-c or deprived of this

cell population have attenuated symptoms [11]. As the disease

progresses, the majority of lymphocytes activated during early

infection are eliminated by apoptosis [12], giving the opportunity

to the development of a large pool of effector-memory CD4+

T cells that cooperate with B cells in the production of para-

site-specific high-affinity antibodies and have the capacity to

secrete IFN-c upon stimulation [13]. Similar to humans infected

with Plasmodium falciparum, the development clinical immunity to

P. chabaudi malaria occurs simultaneously with persistence of

low levels of chronic parasitemia [14], and Treg cells have also

been implicated in both processes [5]. The cooperation between
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high-affinity parasite-specific IgG and memory Th1 cells is

required for complete parasite clearance after 2–3 months of

infection and also for acquisition of full protective immunity against

reinfection [14,15].

In contrast to the many studies addressing the role of CD4+ T

cells in protection against P. chabaudi malaria, little is known about

the molecular mechanisms responsible for CD4+ T cell prolifer-

ation, differentiation and regulation. IL-2 has multiple and opposing

activities contributing to both the induction and the control of

immune responses [16,17]. Both activated and regulatory CD4+ T

cells express CD25, the a chain of the high-affinity IL-2 receptor

(IL-2R) that combines with the IL-2R b chain (CD122) and the

common c chain (cc or CD132). While activated CD4+ T cells can

produce their own IL-2, Treg cells depend on paracrine IL-2 for

their generation and maintenance and for the exertion of their

suppressive functions [18]. Thus, although IL-2 was first identified

as a potent T cell growth factor [19] that also displays pro-apoptotic

activity [20], the main non-redundant activity of IL-2 is to promote

T cell tolerance and homeostasis [21,22]. Moreover, IL-2 is

required for effector Th1 and Th2 cell differentiation, provides a

competitive advantage to T cells, resulting in optimal survival and

performance of memory cells, and inhibits the development of

inflammatory Th17 cells [16].

In the present study, we analyzed in detail the effects of anti-IL-

2 treatment with JES6-1 monoclonal antibody (JES6-1 mAb) on

the CD4+ T cell response to P. chabaudi. This mAb has been shown

to block the CD8+ T cell response to IL-2 in vitro via the low-

affinity IL-2R bc, apparently for biding to an IL-2 site that is

crucial for interaction with CD122 but less crucial for binding to

CD25 (high-affinity IL-2Rabc) [23]. Because IL-2 bound to JES6-

1 mAb has extended in vivo half-time and retains the ability to

interact with the high-affinity IL-2R, injection of a premixed 2:1

molar ratio of IL-2/JES6-1 mAb complexes has been used to

potentiate IL-2 signaling and induce expansion of the Treg cell

population [24]. Thus, analyzing the effects of JES6-1 treatment

on P. chabaudi malaria contributes to the efforts to understand the

molecular mechanisms responsible for activation and regulation of

the CD4+ T cell response to Plasmodium aiming to ameliorate the

outcome of the disease.

Results

Expression of IL-2R a (CD25) and b (CD122) chains in the
splenic CD4+ T cell response to P. chabaudi malaria

The infection of C57BL/6 mice with 106 parasitized red blood

cells (PRBC) resulted in a rapid increase in splenic CD4+ T cell

numbers, attaining maximum levels concomitant with the peak of

parasitemia on day 7 post-infection (p.i.) (Fig. 1A). The increase of

the CD4+ T cell population was accompanied by intense pro-

liferation and culminated in a prominent but short-lasting peak of

IFN-c production (Fig. 1B). As recently shown, the great majority

of proliferating and IFN-c-producing CD4+ cells in the spleen

during the early infection are class II MHC-restricted CD4+ T

cells and not NKT cells [13]. On day 10 p.i., in parallel with the

control of parasitemia, CD4+ T cell numbers per spleen abruptly

decreased to values lower than those of non-infected mice (Fig. 1A).

The normalization of this population occurred concomitantly with

a second wave of CD4+ T cell proliferation that peaked on day 20

p.i. and decreased thereafter (Fig. 1B).

Along with the proliferative response to infection, there was a

notable increase in CD122 expression, which gave evidence of two

different CD4+ T cell subsets (Fig. 1C). The CD25+CD122+ subset

reached its maximum on days 4 and 7 p.i. before decreasing. The

CD252CD122+ subset appeared later, being first observed on day 7

p.i. and still detectable on days 15 p.i. (data not shown) and 30 p.i.

when it corresponded to 13.6% and 8.1% of CD4+ T cells,

respectively. On day 7 p.i., both CD4+CD122+ cell populations had

a large size, whereas the majority of CD4+CD25+CD1222 cells

were smaller (Fig. 1D). CD4+CD25+CD122+ cells from 4-day

infected mice and CD4+CD252CD122+ cells from 15-day infected

mice were also large, whereas CD4+CD25+CD1222 cells from

30-day infected mice were smaller (data not shown). As expected,

CD4+CD25+CD122LO/- cells, a phenotype characteristic of Treg

cells, were also observed in non-infected mice. These results show

that splenic CD4+ T cells that respond to acute P. chabaudi malaria

express the IL-2R b chain, but only a subset co-express the a chain.

During chronic infection, the majority of activated CD4+ T cells

present only the IL-2R b chain.

Secretion of IL-2 and expression of activation markers by
splenic CD4+ T cells during P. chabaudi malaria

Concomitantly with the high expression of IL-2R, the

percentages of IL-2-secreting CD4+ T cells progressively increased

from day 3 to 7 p.i., decreasing to levels similar to those of non-

infected mice on day 15 p.i. (Fig. 2A). IL-2-secreting CD4+ T cells

were large in size and expressed high amounts of CD25 and

CD122 (Fig. 2B). The majority of large CD4+CD25+ cells in 7-

day infected mice produced IL-2 (Fig. 2C). Small CD4+CD25+

cells had a phenotype typical of Treg cells in both groups of mice.

When compared to CD4+CD252 cells, these cells expressed

significantly higher levels of mTGF-b, CTLA-4 and GITR,

slightly higher levels of CD122 and lower levels of CD45RB. In

contrast, large CD4+CD25+ cells had a phenotype characteristic of

activated cells, differing from small CD4+CD25+ cells by the

extremely high expression of CD122, CD45RB and CTLA-4.

These results show that IL-2 is produced during acute P. chabaudi

malaria by large CD4+ T cells that express high levels of IL-2R,

together with several other activation markers.

Effects of JES6-1 treatment on the early CD4+ T cell
response to P. chabaudi malaria

C57BL/6 mice treated with JES6-1 monoclonal antibodies

(mAb) on days 0, 2 and 4 p.i. with 106 PRBC were analyzed

according to expression of IL-2Ra and b chains and the activation

markers CD69 (early activation-induced C-type lectin) and CD44

(cell-cell contact adhesion molecule). The production of IL-17 was

also evaluated because anti-IL-2 treatment could shift the immune

response towards the Th17 profile, due to the negative control

exerted by IL-2 over development of inflammatory Th17 cells

[16]. Based on the percentages of CD4+ cells showing high

expression of CD122, CD25, CD69 and CD44 and large size,

JES6-1 mAb had negligible effects on CD4+ T cell activation with

only a minor inhibition of CD25 expression (Fig. 3A). The

cytokine pattern of CD4+ T cells responding to acute infection

remained unchanged where the production of IFN-c predomi-

nated over IL-17 secretion (Fig. 3B). Nevertheless, JES6-1 treat-

ment resulted in a significant increase in basal (non-stimulated)

IFN-c production by CD4+ T cells in both non-infected mice and

7-day infected mice. The CD4+ T cell numbers per spleen

(Fig. 3C) and the capacity to control parasitemia (data not shown)

were not affected by JES6-1 treatment. Therefore, we also

evaluated the in vitro effects of the JES6-1 mAb on PRBC-

stimulated CD4+ T cell proliferation. Cells obtained on day 4 p.i.

were analyzed because this is the peak of the in vitro proliferative

response to PRBC during acute infection [13]. As observed in vivo,

the JES6-1 mAb had no inhibitory effect on in vitro CD4+ T cell

proliferation (Fig. 3D). These results show that JES6-1 treatment
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does not significantly alter the CD4+ T cell activation, proliferation

and IFN-c production during acute P. chabaudi malaria.

Effects of JES6-1 treatment on the CD4+CD25+FoxP3+ cell
population during P. chabaudi malaria

The expression of FoxP3 was evaluated in splenic CD4+CD25+

cells from C57BL/6 mice on days 7 and 20 p.i. with 106 PRBC.

In non-infected mice, the great majority of CD4+CD25+ cells

expressed FoxP3, a phenotype characteristic of Treg cells (Fig. 4A).

On day 7 p.i., although the majority of large cells were comprised

in the CD4+CD25+FoxP32 subpopulation, there was an increase

of 69.3% in the large CD4+CD25+FoxP3+ subpopulation. When

considering cell number per spleen, there was a 3-fold increase in

the CD4+CD25+FoxP3+ cell population on day 7 p.i. followed by a

reduction of 40.7% by day 20 p.i. (Fig. 4B). JES6-1 treatment

partially reduced CD4+CD25+FoxP3+ cell numbers per spleen in

non-infected and 7-day infected mice. The involvement of IL-2

in the maintenance/expansion of the Treg cell population was

also evidenced by data showing a significant decrease in CD4+

CD25+FoxP3+ cell percentages in non-infected and 7-day infected

mice treated with JES6-1 mAb compared to non-treated controls.

Effects of JES6-1 treatment on CD4+ T cell phenotype and
proliferative response during chronic P. chabaudi malaria

Because IL-2 secreted during acute P. chabaudi malaria might

influence the late phase of the immune response either directly or

through its effects on Treg cells, we evaluated the effects of JES6-1

treatment on the CD4+ T cell phenotype and proliferative response

on days 20 and 30 p.i., respectively. These time points coincided

with the peak and the end of the second wave of CD4+ T cell

proliferation, respectively (Fig. 1B). Twenty days after the

beginning of JES6-1 treatment, there was no significant difference

in CD4+ T cell numbers per spleen between non-infected mice and

infected mice (data not shown). However, JES6-1 treatment resulted

in additive increases in percentages of CD4+CD62LLOCD45RBLO

(effector-memory) cells and CD4+CD69+ (activated) cells (Fig. 5A
and 5B). Mice treated with anti-bgalactosidase isotype control

(GL117 mAb) did not differ from non-treated mice (data not

shown). Non-stimulated (basal) and PRBC-stimulated CD4+ T cell

proliferation was also increased in JES6-1-treated mice, a pheno-

menon observed in non-infected and infected mice (Fig. 5C). The

CD8+ T cell proliferation in response to PRBC was also enhanced

in both groups of JES6-1-treated mice (3.760.1% and 13.061.6%

of CSFELO cells, p,0.05) compared to non-treated mice (1.96

0.1% and 4.860.4% of CSFELO cells). Moreover, JES6-1 mAb

completely blocked the PRBC-stimulated proliferation of CD4+ T

cells from non-treated mice, while it further increased the response

of CD4+ T cells from JES6-1-treated mice. These results show that

JES6-1 treatment enhances the CD4+ T cell response during the

chronic phase of P. chabaudi infection.

Effects of JES6-1 treatment on the development of
protective immunity to P. chabaudi malaria

Because CD4+ T cells developed in JES6-1-treated mice have

an improved capacity to proliferate when stimulated with PRBC,

we sought to verify the effects of in vivo JES6-1 treatment on the

Figure 1. Expression of IL-2R a and ß chains in splenic CD4+ T cells during P. chabaudi malaria. (A) Parasitemia curves and CD4+ T cell
numbers per spleen were evaluated in C57BL/6 mice infected with 106 PRBC (mean 6 SD, n = 4). (B) Basal (non-stimulated) proliferation and IFN-c
production in infected mice. Percentages of replicating (CSFELO) CD4+ T cells and CD4+IFN-c+ cells are shown (mean 6 SD, n = 4). (C) On days 4, 7 and
30 p.i., CD25 and CD122 expression was analyzed in gated CD4+ T cells. Numbers inside dot plots refer to means 6 SD (n = 3–4) of cell percentages in
each gate. (D) On day 7 p.i., CD252CD122+, CD25+CD122+, CD252CD1222 and CD25+CD1222 cells in gated CD4+ T cells of the same groups of mice
were analyzed according to cell size (FSC). Numbers inside histograms refer to means 6 SD (n = 3–4) of large cell percentages. In A–D, *p,0.05,
compared to non-infected mice (day 0). Dot plots and histograms show a representative mouse of each group. Data are representative of three
separate experiments.
doi:10.1371/journal.pone.0029894.g001
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production of proinflammatory cytokines and parasite-specific

IgG2a. In general, JES6-1 treatment increased the non-stimulated

(basal) and PRBC-stimulated TNF-a and IFN-c production in

both non-infected and 30-day infected mice (Fig. 6A). However,

there was no effect on PRBC-stimulated TNF-a secretion by

spleen cells from non-infected mice and PRBC-stimulated IFN-c
secretion by spleen cells from 30-day infected mice. On day 30 p.i.,

the serum titers of parasite-specific IgG2a were significantly higher

in JES6-1-treated mice compared to non-treated mice (Fig. 6B).

Interestingly, similar levels of PRBC-stimulated TNF-a and IFN-c
production and parasite-specific IgG2a were found in non-treated

30-day infected mice and in JES6-1-treated non-infected mice.

Both JES6-1-treated and non-treated infected mice efficiently

controlled a secondary challenge with 108 PRBC given on day 30

p.i. (data not shown). Additionally, mice injected with spleen cells

from 30-day infected mice showed lower parasitemia peaks

following infection when cells were taken from JES6-1-treated

mice (Fig. 6C). We concluded that JES6-1 treatment enhances the

Th1 cell response, leading to increased production of TNF-a and

parasite-specific IgG2a antibodies and optimizing the protective

immunity to P. chabaudi malaria.

Discussion

We have recently proposed that the splenic CD4+ T cell

response to blood stages of P. chabaudi malaria develops in two

consecutive phases where conventional CD4+ T cells are the main

protagonists [13]. The early phase of the response may establish a

bridge between innate and acquired immunity, as it rapidly

provides large amounts of proinflammatory cytokines and help B

cells to secrete polyclonal Ig. The late phase of the response

generates a large pool of effector-memory CD4+ T cells that

cooperate with B cells in the production of parasite-specific

high-affinity antibodies and have the capacity to secrete IFN-c
upon stimulation. In the present study, we examined in detail the

effects of JES6-1 treatment on the early and late phases of CD4+ T

cell response to P. chabaudi infection.

Initially, we observed that IL-2 is produced during acute

infection by activated CD4+ T cells expressing high levels of IL-2R

a and b chains, as well as the activation markers GITR, mTGF-b,

CTLA-4 and CD45RB. The consumption of IL-2 by activated

lymphocytes could explain the low levels of this cytokine detected

in culture supernatants from human and mouse with acute malaria

[8,25], an interference minimized in our analysis by using a bi-

functional anti-IL-2 mAb that binds to the cell surface and

competes with IL-2R for capturing the cytokine molecules soon

after their release into the extracellular milieu. Corroborating our

data, increased production of IL-2 was observed by intracellular

staining in blood CD4+ T cells from acute malaria patients [26].

Moreover, intracellular IL-2 production coincides with increase of

Treg cell population in the spleen during P. chabaudi malaria [27].

The concomitant production of IL-2 and expression of high

affinity IL-2R by activated CD4+ T cells during acute infection

implicates this cytokine as a participant in the immune response to

P. chabaudi malaria. The lack of effect of in vivo or in vitro JES6-1

treatment in the early CD4+ T cell activation, proliferation and

IFN-c production, and consequently in the ability to control acute

parasitemia, can be explained by the high expression of CD25

since IL-2 bound to JES6-1 mAb retains the ability to interact with

the high-affinity IL-2R [23]. However, it is also possible that the

major role of IL-2 during the early CD4+ T cell response to P.

chabaudi infection is to expand the Treg cell population, while the

effector CD4+ T cell response is independent of IL-2. These

possibility is supported by data showing that IL-2 is not required

for the initial cycling of T cells, as suggested by previous studies

showing that T cell proliferation is not abrogated by anti-IL-2 or

Figure 2. Secretion of IL-2 and expression of activation markers by splenic CD4+ T cells during P. chabaudi malaria. (A) IL-2 secretion
was analyzed in gated CD4+ T cells obtained from C57BL/6 mice on days 3, 5, 7 and 15 p.i. with 106 PRBC. Numbers inside dot plots refer to means 6
SD (n = 3–4) of cell percentages in the upper right gate. (B) Cell size (FSC) and expression of CD25 and CD122 were evaluated in gated CD4+IL-22 and
CD4+IL-2+ cells of the same groups of mice. (C) On day 7 p.i., CD122, mTGF-b, CD45RB, CTLA-4 and GITR expression was analyzed in gated CD4+CD25+

cells, subdivided into small and large cells. Numbers inside dot plots refer to means 6 SD (n = 3–4) of cell percentages in each gate. The mean
fluorescence intensity (MFI) of CD4+CD252 cells (controls) stained with mAb to mTGF-ß and GITR was comparable to respective isotopic controls
(data not shown). In A–C, there was a significant difference (*p,0.05) between experimental conditions and non-stimulated (NS) cells from non-
infected mice. Cells from non-infected mice stimulated with anti-CD3 mAb were used as positive controls. Dot plots and histograms show a
representative mouse of each group. Data are representative of three separate experiments.
doi:10.1371/journal.pone.0029894.g002
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anti-IL-2R mAb after strong stimulation through the T cell

receptor (TCR) [28,29]. Moreover, several studies using IL-2- or

IL-2R-deficient mice clearly indicate that T cell activation and

proliferation occur in vitro and in vivo independently of all cc-

dependent cytokines but are dependent on TCR and costimula-

tory signals [30,31,32,33].

In agreement with this notion, it has been previously shown that

T cell immunity to P. chabaudi [34], as well as to other infectious

pathogens [35], can be generated in the absence of IL-2. Thus, it is

reasonable that intense costimulation makes IL-2 dispensable for T

cell activation, a suitable possibility if we consider that IL-2R and

the CD28, ICOS and OX40 costimulatory receptors relay

intracellular signals through phosphoinositide 3-kinases (PI3K),

which culminate in a broad variety of cell biological effects,

including proliferation and cytokine synthesis [36]. Accordingly,

unpublished data from our laboratory revealed the high expression

of ICOS and OX40 during the early CD4+ T cell response to P.

chabaudi malaria (Castillo-Méndez et al., manuscript in preparation).

The abundance of costimulatory signals could also cooperate to

inactivate Treg cells [37] and consequently enlarge the spectrum

of CD4+ T cell specificities involved in the early response to

infection.

The idea that Treg cell inactivation contributes to the early

CD4+ T cell response to infection is indirectly supported by our

data showing a massive response to parasites in non-infected mice

a month after JES6-1 treatment, a condition where Treg cells may

have been inactivated by IL-2 deprivation. This increased CD4+ T

cell response to parasites in JES6-1-treated non-infected mice

occurs in terms of both PRBC-stimulated proliferation and IFN-c
production. The mechanism triggering robust CD4+ T cell

response to PRBC a month after JES6-1 treatment of non-

infected mice is currently been investigated by our research group.

Our working hypothesis is that depletion of Treg cell population

due to IL-2 inhibition results in a long-lasting deficiency in the

ability to regulate the immune system, leading to CD4+ T cell

hyperresponsiveness to PRBC. Although the number of Treg cells

per spleen was reestablished on day 20 p.i., the reduced expression

of regulatory molecules, such as CTLA-4 and PD-1, may impair

their suppressive activity.

The increase in Treg cell population has been previously

reported in P. chabaudi and Plasmodium yoelii infections [38,39], but

its implication in the control of immune responses to malaria is

still a matter of debate [5]. Our data extend these findings by

showing that IL-2 is partially required for expanding the CD4+

Figure 3. Effects of JES6-1 treatment on the early CD4+ T cell response to P. chabaudi malaria. (A) C57BL/6 mice were treated with JES6-1
mAb on days 0, 2 and 4 p.i. with 106 PRBC. On day 7 p.i., splenic CD4+ T cells were analyzed for CD122, CD25, CD69 and CD44 expression and cell size
(FSC). Data show gated CD4+ T cells expressing high levels of activation markers and large size (n = 3–4). (B) Non-stimulated (basal) and anti-CD3 mAb
stimulated IFN-c and IL-17 production was evaluated in CD4+ T cells from the same groups of mice. (C) Numbers of CD4+ T cells per spleen were
determined in the same groups of mice. (D) On day 4 p.i., PRBC-stimulated CD4+ T cell proliferation was analyzed in vitro in the presence or absence
of JES6-1 mAb. Histograms show CFSE fluorescence in gated CD4+ T cells. The means 6 SD (n = 3–4) of the percentages of replicating (CFSELO) cells
are shown. In A–D, significant differences compared experimental conditions *p,0.05 with cells from non-infected (NI) mice; **p,0.05 with cells
from non-treated (NT) mice; and #p,0.05 with non-stimulated cells. Data are representative of three separate experiments.
doi:10.1371/journal.pone.0029894.g003
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Figure 4. Effects of JES6-1 treatment on the splenic CD4+CD25+FoxP3+ cell population during P. chabaudi malaria. (A) C57BL/6 mice
were infected with 106 PRBC. On day 7 p.i., CD4+ T cells were analyzed for CD25 and FoxP3 expression and cell size (FSC). Dot plots represent gated
CD4+ T cells. Dot plots and histograms show a representative mouse from each group. Numbers inside dot plots refer to means 6 SD (n = 4) of cell
percentages in each gate. Histograms show gated CD4+CD25+FoxP3+ and CD4+CD25+FoxP32 cells in relation to CD4+CD252FoxP32 cells. Numbers
inside histograms refer to means 6 SD (n = 4) of large cell percentages. (B) On days 0, 2 and 4 p.i., C57BL/6 mice were treated with JES6-1 mAb. Data
represent the means 6 SD (n = 4) of CD4+CD25+FoxP3+ cell percentages and numbers per spleen on days 7 and 20 of infection. In A–B, significant
differences compared experimental conditions *p,0.05 with cells from non-infected (NI) mice; **p,0.05 with cells from non-treated (NT) mice; and
#p,0.05 with CD25+FoxP3+ cells. Data are representative of two separate experiments.
doi:10.1371/journal.pone.0029894.g004

Figure 5. Effects of JES6-1 treatment on splenic CD4+ T cell phenotype and proliferative response to PRBC during chronic P.
chabaudi malaria. (A) C57BL/6 mice were treated with JES6-1 mAb on days 0, 2 and 4 p.i. with 106 PRBC. On day 20 p.i., CD62L and CD45RB
expression was evaluated in gated CD4+ T cells. Numbers inside dot plots refer to means 6 SD (n = 3–4) of cell percentages in each gate. (B) CD69
expression was analyzed in gated CD4+ T cells from the same groups of mice. (C) In vitro proliferative response of PRBC-stimulated CD4+ cells cultured
in the presence or absence of JES6-1 mAb. CD4+ T cells were obtained from 30-day infected mice treated in vivo or not with JES6-1 mAb on days 0, 2
and 4 of infection. Histograms show CFSE fluorescence in gated CD4+ T cells. The means 6 SD (n = 3–4) of the percentages of replicating (CFSELO)
cells are shown. In A–C, significant differences compared experimental conditions *p,0.05 with cells from non-infected (NI) mice; **p,0.05 with non-
treated (NT) mice or cells; and # p,0.05 with non-treated (NT) cells from JES6-1-treated mice. Data are representative of two separate experiments.
doi:10.1371/journal.pone.0029894.g005
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CD25+FoxP3+ cell population during P. chabaudi malaria. The fact

that some increase in CD4+CD25+FoxP3+ cell numbers per spleen

still occurred in acutely infected JES6-1-treated mice could also be

related to the abundance of costimulatory signals, which have been

implicated in Treg cell development and peripheral homeostasis

[40]. It is worth noting that, in our analysis, the impaired increase in

CD4+CD25+FoxP3+ cell numbers due to JES6-1 treatment does not

significantly affect the early CD4+ T cell response to parasites, as the

only difference observed after JES6-1 treatment in acutely infected

mice is a slight augmentation of IFN-c production.

The effects of JES6-1 treatment in vitro drastically change during

the infection in which inhibition of CD4+ T cell response to

parasites is observed at the chronic phase of the disease, but not at

the acute phase as discussed above. The results showing the ability

of JES6-1 mAb to block in vitro CD4+ T cell proliferation at the

chronic infection demonstrate the effectiveness of this treatment to

completely inhibit IL-2 signaling. This shift could be a conse-

quence of the reduction of PI3K-mediated costimulatory signals

leading to IL-2 dependency. This process could involve IL-2

induced expression of regulatory molecules, such as PD-1 and

CTLA-4, in CD4+ T cells [41,42]. This would increase the

threshold for TCR signaling and, as a consequence, restrain the

spectrum of CD4+ T cell specificities involved in the response and

provide an IL-2 driven competitive advantage to parasite-specific

CD4+ T cells [43]. IL-2 dependency may also allow the control of

self (cross) reactive clones by Treg cells, which are thought to

operate by scavenging this cytokine [18,44].

The expansion of Treg cell population during the early CD4+ T

cell response to infection may be essential for the development of a

cohort of Treg cells shaped to modulate the pool of effector-

memory and memory CD4+ T cells generated during the late

phase of the response, by skewing their specificity repertoire

towards the recognition of parasite-specific peptides and avoiding

the expansion of self (cross) reactive clones. The Treg cell

population was still increased on day 20 p.i. indicating that

proliferating Treg cells were not eliminated after acute infection.

Treg cell inactivation during the acute infection may explain the

enhancement of cellular and humoral responses in JES6-1-treated

mice during the chronic infection, which results in the improved

capacity of spleen cells to transfer protection to naı̈ve mice. Spleen

cells from JES6-1-treated mice conferred a substantial protection

(,40% reduction in parasitemia) if we consider the high parasite

inoculum used in mouse challenge, and we can envisage that

concomitant treatment with additional immunotherapies such as

anti-IL-10 mAb could further improve parasite control.

Another possible explanation for the increase of immune

response in JES6-1-treated chronic mice is related to the fact

that, in some particular conditions, IL-2/JES6-1 mAb complexes

can potentiate IL-2 signaling and amplify the effector T cell

function [24]. Although this phenomenon is observed following

administration of premixed 2:1 molar ratio of IL-2/JES6-1 mAb

complexes, the possibility that similar conditions occur in vivo

cannot be discarded. It should be noted, however, that in our

experiments JES6-1 treatment results in substantial CD4+ T cell

activation in non-infected mice, whereas IL-2/JES6-1 treatment

leads to expansion of the Treg cell population and, in consequence,

to reduction of CD4+ and CD8+ T cell responses to Plasmodium

berghei infection [24] and to increase in parasitemia during P.

chabaudi infection [27]. These opposite effects indicate that JES6-1

mAb is responsible for very different outcomes when administered

alone or coupled with two molecules of IL-2, an artificial condition

that may cause the approximation of two IL-2Ra chains and result

in cell signaling independent of the b chain.

This work reinforces the idea that the CD4+ T cell response to

P. chabaudi malaria develops in two distinct phases wherein JES6-1

treatment impairs the expansion of Treg cell population at the early

phase and enhances the Th1 cell response at the late phase. This

study may help to understand the molecular mechanisms involved

in the immune response to Plasmodium and contribute to efforts

aiming to manipulate this response to ameliorate the outcome of

the disease.

Materials and Methods

Mice, parasites and infection
Six to eight-week-old C57BL/6 female mice were bred under

pathogen-free conditions at the Isogenic Mice Facility, ICB-USP,

São Paulo, Brazil. Plasmodium chabaudi AS was maintained as

previously described [9]. Mice were infected intraperitoneally and

parasitemias were determined by microscopic examination of

Giemsa stained blood smears.

Ethics Statements
All procedures were in accordance with national regulations of

ethical guidelines for mice experimentation and welfare of the

conselho nacional de saúde and colégio brasileiro em experi-

Figure 6. Effects of JES6-1 treatment on the regulation of acquired immune responses to P. chabaudi malaria. (A) C57BL/6 mice were
treated with JES6-1 mAb on days 0, 2 and 4 p.i. with 106 PRBC. On day 30 p.i., TNF-a and IFN-c production was evaluated in spleen cell supernatants
(mean 6 SD, n = 4). (B) Serum titers of parasite-specific IgG2a were determined in the same groups of mice. (C) Parasitemia curves were evaluated in
C57BL/6 mice injected with spleen cells from JES6-1-treated mice and non-treated (NT) mice on day 30 p.i. and challenged with 108 PRBC (mean 6

SD, n = 4). In A–B, significant differences compared experimental conditions *p,0.05 with non-infected (NI) mice; and **p,0.05 with non-treated (NT)
mice. In C, significant differences compared to experimental conditions *p,0.05 with mice transferred with cells from non-treated (NT) mice. Data are
representative of two separate experiments.
doi:10.1371/journal.pone.0029894.g006
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mentação animal (cobea), brazil, the protocols being approved by

the health animal comitte (comissão de ética no uso de animais -

ceua - icb/usp) of the instituto de ciências biomédicas of the

universidade de são paulo, são paulo, brazil, qith permit number

0019/2005 and 0036/2007.

Anti-IL-2 mAb treatment
Mice were treated intraperitoneally with rat anti-IL-2 (JES6-

1A12) mAb (1 mg/mouse/day) on days 0, 2 and 4 of infection.

Spleen cells were cultured in vitro with 0.2 mg/ml anti-IL-2 mAb.

Spleen cell suspensions
Spleen cells were cultured in RPMI 1640 supplemented with

penicillin (100 U/ml), streptomycin (100 mg/ml), 2-mercaptoeth-

anol (50 mM), L-glutamine (2 mM), sodium pyruvate (1 mM) and

3% heat-inactivated fetal calf serum (FCS). All supplements were

purchased from Life Technologies. Cell numbers were determined

with a Neubauer chamber.

Spleen cell phenotyping
Spleen cells (16106) were stained with FITC-, PE-, PerCP- or

APC-labeled mAb to CD4 (H129.19), CD25 (PC61), CD45RB

(16A), CD62L (MEL-14), CD122 (TMb1), CD69 (H1-2F3), CD44

(IM7) and CTLA-4 (UC-4F10-11) from BD Pharmingen.

Biotinylated mAb to mTGF-b (G766B) from Promega was

detected with FITC-labeled streptavidin (BD Pharmingen).

Unlabeled mAb to GITR (108619) from RD System was detected

with FITC-labeled polyclonal anti-rat Ig from BD Pharmingen.

Cells were analyzed by flow cytometry using a FACScalibur with

CELLQUEST software (Becton Dickinson). The percentages of

large cells were determined by analyzing forward light scatter

(FSC), using gates defined in histograms of non-activated

splenocytes.

Intracellular staining of Foxp3
Spleen cells (16106) were stained with anti-CD4 mAb and fixed

with Cytofix/Cytoperm (BD Bioscience) for 30 min at room

temperature. Cells were permeabilized with 1% formaldehyde for

30 min, centrifuged and washed twice in PBS containing 5% FCS

and 0.1% NaN3. After incubation for 2 h with FITC conjugated

anti-mouse/rat Foxp3 mAb, cells were washed and analyzed by

flow cytometry.

IL-2 secretion assay
The IL-2 PE cytokine secretion assay was performed according

to the manufacturer’s recommendations (BD Biosciences). This

assay uses a bi-functional mAb capable of binding CD45 on one

arm and IL-2 on the other arm. Spleen cells (26106) were

incubated with the bi-functional mAb for 45 min at 37uC in 5%

CO2. The presence of IL-2 bound to bi-functional mAb was

detected with PE-labeled anti-IL-2 mAb. As a positive control,

spleen cells (26106) from non-infected mice were cultured in vitro

for 3 h with anti-CD3 mAb (BD Pharmingen). The analyses were

performed by flow cytometry.

Proliferation assay
The proliferative CD4+ cell response was measured as

previously described [45]. Briefly, 66106 cells/ml in PBS with

0.1% BSA were incubated with 5,6-carboxy fluorescein succini-

midyl ester (CFSE; Molecular Probes) at a final concentration of

5 mM for 20 min at 37uC. Cells (16106) were cultured in 96-well

plates (Costar) with PRBC (36106) or medium alone for 72 h at

37uC in 5% CO2. After incubation, cells were stained with PE-

labeled mAb to CD4 and analyzed by flow cytometry.

Multicytokine assessment
IFN-c and TNF-a were quantified simultaneously by a

cytometric bead array (CBA; BD Pharmingen) of supernatants

obtained from the same cultures used in the proliferation assay.

This technique uses flow cytometry to measure soluble analytes in

a particle-based immunoassay and was carried out according to

the manufacturer’s instructions (BD Pharmingen). The lower limit

of detection for all cytokines in this assay was 20 pg/ml.

Intracellular staining for IFN-c and IL-17
For intracellular IFN-c and IL-17, spleen cells (16106) were

cultured with GolgiStop overnight at 37uC in 5% CO2 according

to the manufacturer’s instructions (BD Pharmingen). After

washing, cells were surface stained with FITC- or Cy-Chrome-

labeled mAb to CD4 and CD8. Cells were then fixed with

Cytofix/Cytoperm buffer and incubated with PE-labeled mAb to

IFN-c and IL-17 diluted in Perm/Wash buffer. The analysis was

performed by flow cytometry.

Parasite-specific ELISA
Anti-P. chabaudi antibodies were quantified by ELISA as

previously described [46]. In brief, 96-well flat-bottom microtiter

plates (Costar) were coated overnight (4uC) with a total parasite

extract (8 mg/ml). Plates were saturated with 1% BSA (bovine

serum albumin) for 1 h. After washing, wells were incubated with

100 ml mouse serum (diluted from 1:50 to 1:6400) for 90 min at

room temperature. Assays were developed with goat anti-mouse

IgM or IgG2a peroxidase conjugated antibodies (Southern

Biotechnology Associates) for 1 h, followed by 100 ml/well of

TMB (tetra-methyl-benzidine) (Zymed) for 15 min, and the

absorbance was quantified with a Spectra Max 190 spectropho-

tometer (Molecular Devices) at 650 nm. The antibody level in

each serum sample was expressed as the reciprocal of the endpoint

titer, which was defined in serial dilutions as the lowest dilution

with a background optical density (O. D.).

Statistical analysis
Statistical analysis was generally performed with t-test and

Mann Whitney test using Graph Pad Prism 4 software. Differences

between two groups were considered significant when the p value

was ,0.05 (5%).
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