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Abstract

Background: Glucose increases the expression of glycolytic enzymes and other hypoxia-response genes in pancreatic beta-
cells. Here, we tested whether this effect results from the activation of Hypoxia-Inducible-factors (HIF) 1 and 2 in a hypoxia-
dependent manner.

Methodology/Principal Findings: Isolated rat islets and insulin-secreting INS-1E cells were stimulated with nutrients at
various pO2 values or treated with the HIF activator CoCl2. HIF-target gene mRNA levels and HIF subunit protein levels were
measured by real-time RT-PCR, Western Blot and immunohistochemistry. The formation of pimonidazole-protein adducts
was used as an indicator of hypoxia. In INS-1E and islet beta-cells, glucose concentration-dependently stimulated formation
of pimonidazole-protein adducts, HIF1 and HIF2 nuclear expression and HIF-target gene mRNA levels to a lesser extent than
CoCl2 or a four-fold reduction in pO2. Islets also showed signs of HIF activation in diabetic Leprdb/db but not non-diabetic
Leprdb/+ mice. In vitro, these glucose effects were reproduced by nutrient secretagogues that bypass glycolysis, and were
inhibited by a three-fold increase in pO2 or by inhibitors of Ca2+ influx and insulin secretion. In INS-1E cells, small interfering
RNA-mediated knockdown of Hif1a and Hif2a, alone or in combination, indicated that the stimulation of glycolytic enzyme
mRNA levels depended on both HIF isoforms while the vasodilating peptide adrenomedullin was a HIF2-specific target
gene.

Conclusions/Significance: Glucose-induced O2 consumption creates an intracellular hypoxia that activates HIF1 and HIF2 in
rat beta-cells, and this glucose effect contributes, together with the activation of other transcription factors, to the glucose
stimulation of expression of some glycolytic enzymes and other hypoxia response genes.
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Introduction

Hypoxia-Inducible-Factors (HIFs) are basic helix-loop-helix-

PAS domain transcription factors composed of a regulated a
subunit (HIF1a or HIF2a) and a constitutively expressed HIF1b
subunit (Aryl-hydrocarbon-Receptor Nuclear Translocator

(ARNT)) [1,2]. Under normoxic conditions, Prolyl-Hydroxy-

lase-Domain proteins (PHD1-3) hydroxylate HIFa subunits on

proline residues in an O2-, Fe2+- and a-ketoglutarate-dependent

manner. This hydroxylation promotes HIFa binding to von

Hippel-Lindau protein, followed by their polyubiquitylation and

proteasomal degradation. Under hypoxic conditions (O2 partial

pressure (pO2),2.3–38 mmHg) or after inhibition of PHDs with

CoCl2, HIFa subunits are no longer degraded and translocate

with ARNT to the nucleus where they activate the transcription

of HIF-target genes including glucose transporter 1 (Glut1),
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glycolytic enzymes, monocarboxylate transporter 4 (Mct4), the

vasodilating peptide adrenomedullin (Adm), vascular endothelial

growth factors (Vegfs), and erythropoietin (Epo). This response

favours cell survival by triggering a switch from aerobic

mitochondrial to anaerobic glycolytic ATP production at the

cellular level, an increase in blood flow and capillary growth at

the organ level, and an increase in O2 transport capacity at the

organism level [1–3].

The glucose stimulation of insulin secretion (GSIS) by

pancreatic beta-cells critically depends on the acceleration of

glycolysis and mitochondrial Krebs cycle, with consequent

increases in NAD(P)H and ATP production as well as export of

Krebs cycle intermediates, including a-ketoglutarate, to the

cytosol [4]. Subsequent plasma membrane depolarization and

Ca2+ influx through voltage-dependent-Ca2+-channels trigger

insulin granule exocytosis [5]. In addition, glucose stimulates

various ATP-consuming processes such as gene transcription,

protein synthesis, and Ca2+ pumping [6]. In beta-cells, glucose-

induced acceleration of ATP production is coupled to an

increase in mitochondrial O2 consumption [7–9]. In vivo, the

concomitant increase in islet blood flow prevents the fall in

intra-islet pO2 [10,11]. In isolated islets maintained in vitro or

transplanted in vivo, however, the glucose stimulation of beta-

cell O2 consumption leads to a reduction in intra-islet pO2 [12–

14], of which approximately one third depends on the

stimulation of Ca2+ influx [15]. However, as a drop in pO2

and an increase in a-ketoglutarate exert opposite effects on

PHD-mediated HIFa hydroxylation [2], it remains unclear

whether glucose eventually activates HIFs in beta-cells and, if

so, to what extent such activation contributes to the glucose

regulation of islet gene expression. In this context, it has

recently been shown that glucose activates HIF1 in MIN6 cells

and mouse islets only if cultured under slightly hypoxic

conditions [16].

Others and we have previously shown that islet expression of

hexokinase (Hk) 1, lactate dehydrogenase A (Ldha), Mct1 and 4

and Hypoxia up-regulated 1 (Hyou1) is increased in hyperglyce-

mic rats [17–20]. We more recently reported that the glucose

stimulation of cultured rat islets increases their mRNA levels of

most glycolytic enzymes (except glucokinase (GK)), of other HIF-

target genes like Adm, and of genes that are induced by hypoxia

independently from HIF activation, like Hyou1 [21]. We now

demonstrate that glucose activates HIF1 and HIF2 in rat beta

cells and that both HIF isoforms play distinct roles in the glucose

stimulation of expression of glycolytic enzymes and Adm. We also

provide some evidence that HIFs are activated in islets from

diabetic mice, suggesting that hyperglycaemia could induce beta-

cell hypoxia in vivo.

Table 1. Real-time RT-PCR measurements of glucose-induced changes in HIF subunits and HIF-target gene mRNA levels in
cultured rat islets.

Gene symbol Ct in G2 Islet Gene/Tbp mRNA ratios (relative to G2)

G2 G5 G10 G30

Tbp 28.0 160.10 0.7760.07 0.6760.02a 0.8060.04

HIF subunits

Hif1a 23.5 160.07 0.8460.03a 0.5660.02b 0.4060.02b

Hif2a 26.9 160.18 0.8360.10 1.5560.07 1.7160.34

Arnt (Hif1b 26.7 160.02 0.8260.12 0.5960.06a 0.6860.11

Glycolytic enzymes

Aldoa 21.8 160.03 1.2560.05b 0.9760.07 1.4360.06b

Tpi1 25.6 160.07 1.1260.07 1.2860.15 2.8660.26b

Gapdh 22.6 160.06 1.2160.11 1.7060.14a 4.2360.27b

Eno1 24.5 160.05 1.2160.26 1.3160.16 3.4760.44b

Pkm2 25.1 160.08 0.8260.03 0.7860.08 1.2760.15c

Ldha 28.6 160.15 1.3060.12 1.5960.08 4.4460.30b

Other HIF-target genes

Mct4 34.0 160.12 1.2260.11 1.5460.20a 1.9560.07b

Pdk1 29.0 160.04 1.1160.03 1.0360.04 3.2160.05b

Car12 34.7 160.27 1.0560.46 0.6760.46 33.260.97b

Adm 31.6 160.16 1.2860.33 0.4860.19 6.1860.48b

After 1 week preculture in serum-free RPMI medium containing 5 g/l BSA and 10 mmol/l glucose (G10), rat islets were cultured 18 h in the presence of 2, 5, 10 or
30 mmol/l glucose (insulin secretion during culture was (mean 6 SEM ng.islet21.h21) 0.0660.01 in G2, 0.0960.01 in G5, 0.9460.22 in G10 and 3.1760.47 in G30).
Glucose-induced changes in the mRNA levels of selected genes were measured by real time RT-PCR. Tbp mRNA levels and Gene/Tbp mRNA ratios were expressed
relative to the level in G2. Data are means 6 SEM for 4 experiments. The threshold cycle measured in G2 (real time PCR performed with islet cDNA equivalent to 2 ng
total RNA) are shown as rough indicators of gene mRNA levels.
ap,0.05,
bp,0.01 vs. islets cultured in G2;
cp,0.01 vs. islets cultured in G10 (one-way ANOVA+test of Newman-Keuls).
Adm: Adrenomedullin; Aldoa: Aldolase A; Arnt (Hif1b): Aryl hydrocarbon receptor nuclear translocator (Hypoxia-inducible factor 1, beta subunit); Car12: Carbonic
anhydrase 12; Eno1: Enolase 1, (alpha); Gapdh: Glyceraldehyde-3-phosphate dehydrogenase; Hif1a: Hypoxia-inducible factor 1, alpha subunit; Hif2a: Hypoxia-Inducible
Factor 2, alpha subunit; Ldha: Lactate dehydrogenase A; Mct4 (Slc16a3): Monocarboxylate transporter 4 (solute carrier family 16, member 3); Pdk1: Pyruvate
dehydrogenase kinase, isozyme 1; Pkm2: Pyruvate kinase, muscle; Tbp: TATA box binding protein; Tpi1: Triosephosphate isomerase 1.
doi:10.1371/journal.pone.0029807.t001
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Results

Effects of glucose on HIF-target gene mRNA levels in
cultured rat islets and INS-1E cells

To characterize the role of HIF in the glucose stimulation of

islet gene expression, we first tested the effect of a 18 h culture in

the presence of 2, 5, 10 or 30 mmol/l glucose (G2, G5, G10, or

G30) on the mRNA levels of known HIF-target genes and

compared it with the effect of HIF activation by CoCl2, hypoxia or

knockout of vhlh, the gene coding the von Hippel-Lindau protein

[22].

Due to limited O2 diffusion, large islets frequently suffer from

central necrosis under normoxic culture conditions [14,23].

Therefore, islets with central necrosis (usually with a diameter

.150 mm) were systematically discarded during preculture, and

the islet density per cm2 and the medium depth were kept constant

between groups. Under these conditions, glucose significantly

increased the mRNA levels of many (but not all) HIF-target genes

Table 2. Real-time RT-PCR measurements of glucose-induced changes in HIF subunits and HIF-target gene mRNA levels in INS-1E
cells.

Gene symbol Ct in G2 Gene/Tbp mRNA ratios (relative to G2)

G2 G5 G10 G30

Tbp 26.4 160.06 1.0660.04 1.0260.04 1.2060.05a

HIF subunits

Hif1a 25.5 160.07 0.7460.03b 0.5060.04b 0.5160.02b

Hif2a 24.4 160.07 1.2360.07b 1.2560.04b 0.7260.04b

Arnt (Hif1b) 24.9 160.07 0.9660.07 1.0760.13 0.7160.03

Glycolytic enzymes

Aldoa 22.3 160.16 1.2260.08 1.6160.14a 1.4760.10a

Tpi1 24.5 160.06 0.8760.03 1.5360.08b 1.7160.04b

Gapdh 20.6 160.07 1.0160.04 1.3560.08b 2.0660.07b

Eno1 21.5 160.12 1.0860.10 1.5260.19 2.3060.14b

Ldha ND ND ND ND ND

Other HIF-target genes

Pdk1 29.7 160.09 1.0160.19 1.1960.11 3.9260.03b

Adm 30.7 160.19 2.7260.31b 5.2460.41b 4.8560.40b

INS1-E cells were cultured 18 h in the presence of 2, 5, 10 or 30 mmol/l glucose and the mRNA levels of selected genes were measured by real time RT-PCR (insulin
secretion during culture was (mean 6 SE ng/h, n = 7) 2462 in G2, 4067 in G5, 69615 in G10 and 57613 in G30). Tbp mRNA levels and Gene/Tbp mRNA ratios were
expressed relative to the level in G2. Data are means 6 SE for 3 to 13 experiments. The cycle threshold (Ct) measured in G2 (real time PCR performed with islet cDNA
equivalent to 2 ng total RNA) are shown as rough indicators of gene mRNA levels.
aP,0.05,
bP,0.01 vs. cells cultured in G2 (one-way ANOVA+test of Newman-Keuls).
ND, not detected.
doi:10.1371/journal.pone.0029807.t002

Table 3. Effects of CoCl2 and hypoxia on the mRNA levels of Hif1a, Hif2a and several HIF-target genes.

Gene symbol Gene/Tbp mRNA ratios

(relative to G5) (relative to G10)

G5 G5+CoCl2 G10 G10-O2 5%

Hif1a/Tbp 160.08 0.4560.08a 160.04 0.9760.04

Hif2a/Tbp 160.32 3.4860.32a 160.15 1.7360.15a

Gapdh/Tbp 160.04 6.8860.04a 160.05 1.3360.05a

Tpi1/Tbp 160.33 7.0060.33a 160.29 4.1560.29a

Ldha/Tbp 160.42 18.860.42a 160.18 20.660.18a

Mct4/Tbp 160.18 8.6260.18a 160.19 8.4960.19a

Pdk1/Tbp 160.15 2.7860.15a 160.27 2.2760.27b

Adm/Tbp 160.10 44.260.1a 160.25 34.460.25a

After preculture, islets were further cultured 18 h in G5 without and with 100 mmol/l CoCl2 or in G10 in an atmosphere containing 20 or 5% O2. Gene/Tbp mRNA ratios
were expressed relative to the ratio in G5 or G10. Data are means 6 SEM for 3 experiments.
ap,0.01 and
bp,0.05 vs. control islets cultured in G5 or G10 (unpaired student t-test).
doi:10.1371/journal.pone.0029807.t003
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that were up-regulated by more than 2-fold in vhlh-knockout islets

[22], including Glut1, most glycolytic enzymes, Mct4, pyruvate

dehydrogenase kinase 1 (Pdk1), Adm and carbonic anhydrase 12

(Car12) (Table 1 and Table S1). This effect was larger for genes

expressed at low levels under control conditions (Ldha, Adm and

Car12) than for the highly expressed genes Gapdh and aldolase A

(Aldoa). Glucose also increased the mRNA levels of Gapdh, triose

phosphate isomerase 1 (Tpi1) and Adm (but not Ldha that remained

below detection limit) in INS-1E cells cultured for 18 h at 70%

confluence, indicating that the glucose stimulation of HIF-target

gene expression was not restricted to devascularized islets (Table 2).

In contrast, glucose failed to affect the islet expression of HIF-

target genes that were not or only slightly increased in vhlh-KO

islets, like hexokinase 1 and 2 (Hk1 and Hk2), and vascular

endothelial growth factors (Vegf). (Table S1).

As expected, the mRNA levels of Gapdh, Tpi, Ldha, Mct4, Pdk1

and Adm were significantly increased in CoCl2-treated rat islets or

in islets exposed overnight to hypoxia (pO2 ,38 mmHg) (Table 3),

a condition under which all islets developed central necrosis. In

contrast, CoCl2 and hypoxia did not affect the mRNA levels of

genes that are markedly induced by glucose in rat islets but are not

HIF-target genes, like thioredoxin interacting protein (Txnip) and

aldolase B (Aldob) (data not shown).

Effects of glucose on the expression of HIF subunits in
cultured rat islets and INS-1E cells

To characterize the role of HIF in the glucose stimulation of

islet gene expression, we next compared the effects of glucose,

CoCl2 and hypoxia on the expression of components of the HIF

signalling pathway. As shown in Table 1 and Table S1, the mRNA

coding the main HIF subunits, HIF-regulating and HIF-

interacting proteins were detected in rat islets, some of them

being significantly affected by glucose. Most noticeably, glucose

(between G2 and G30) decreased Hif1a mRNA levels by 60% and

Arnt mRNA levels by 40% while increasing Hif2a mRNA levels 2-

fold. Glucose similarly affected Hif subunits mRNA levels in INS-

1E cells, except that Hif2a mRNA levels increased at lower glucose

concentrations than in rat islets and tended to decrease between

G10 and G30 (Table 2). Interestingly, CoCl2 but not hypoxia also

decreased Hif1a mRNA levels, while both treatments increased

Hif2a mRNA levels in rat islets (Table 3).

Because HIF activation mainly results from the stabilization of

its alpha subunits and their nuclear translocation with ARNT, we

next tested the effect of glucose, hypoxia and CoCl2 on HIF1a and

ARNT protein levels in cultured rat islets by immunohistochem-

istry. After culture in G5, HIF1a was only detected in the nuclei of

a few insulin-negative cells while ARNT was detected in the

cytosol and nuclei of most islet cells (Figure 1 and Figure S1). After

culture in G30, HIF1a staining increased in insulin-positive but

not insulin-negative islet cells, while ARNT staining was

unaffected. The increase in HIF1a staining was heterogeneous

between beta-cells (Figure 1). In comparison, hypoxia and CoCl2
markedly increased HIF1a staining in most islet cells outside the

central necrotic area. Exposure to CoCl2 also tended to increase

the intensity of ARNT staining in islet cell nuclei (Figure S1).

Glucose also increased HIF nuclear levels in INS-1E cells

(Figure 2). Thus, compared with G2, culture in G30 induced a 4-

fold increase in HIF1a and HIF2a nuclear levels and a 2-fold

increase in ARNT. Glucose also decreased cytosolic ARNT levels

by ,50%. These glucose effects were, however, of smaller

amplitude than those of CoCl2 (Figure 2B). These results indicate

that, upon glucose stimulation, HIF1a and HIF2a translocate with

their dimerization partner ARNT to beta-cell nuclei.

Effects of Hif1a and Hif2a knockdown on the expression
of glycolytic enzymes and Adm in INS-1E cells

The relationship between HIF1/HIF2 expression and the up-

regulation of their target genes was tested in INS-1E cells using

small interfering RNAs (siRNAs) against Hif1a and Hif2a. We first

checked the effects of selected siRNAs on the mRNA levels of Hif

subunits during culture in the presence of G2 and CoCl2
(Figure 3A–C) or in the presence of increasing glucose concen-

trations (Figure 4B–C). As in rat islets, CoCl2 significantly

decreased Hif1a and increased Hif2a mRNA levels in INS-1E

cells treated with a siRNA against luciferase (siLuc) (Figure 3 B and

C). As expected, Hif1a and Hif2a siRNAs selectively reduced by

,75% the mRNA levels of the targeted Hifa subunit without

affecting the other alpha subunit, while their combination

Figure 1. Effects of glucose, hypoxia and CoCl2 on HIF1a protein levels in cultured rat islets. After 1 week preculture in G10, rat islets
were cultured 18 h in medium containing 5 or 30 mmol/l glucose (G5, G30), G5+200 mmol/l CoCl2 or G5 in the presence of 5% O2 (pO2,38 mmHg)
instead of 20% O2 (pO2,151 mmHg) in the incubator (G5 hypoxia). HIF1a and insulin were detected by immunohistochemistry in 5 mm-thick islet
sections. Results are representative for 2 to 3 experiments.
doi:10.1371/journal.pone.0029807.g001

Nutrient Activation of HIFs in Rat Beta-Cells
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markedly reduced both Hif1a and Hif2a mRNA levels. Interest-

ingly, Arnt mRNA levels were not affected by either siRNA.

We next tested the effects of Hifa knockdown on CoCl2-

mediated induction of Adm, Tpi and Gapdh mRNA expression

(Figure 3D–F). As expected, CoCl2 treatment significantly

increased the mRNA levels of the three HIF-target genes in

INS-1E cells treated with siLuc. Under these conditions, Adm

mRNA levels were unaffected by siHif1a but were inhibited by

,90% by siHif2a. In comparison, the CoCl2-mediated stimulation

of Tpi1 and Gapdh mRNA expression was unaffected by siHif2a
alone, partly reduced by siHif1a alone, and markedly reduced by

their combination.

We finally tested the effects of Hif knockdown on the glucose

stimulation of HIF-target gene expression (Figure 4D–F). Of note,

siHif1a significantly reduced GSIS by INS-1E cells while siHif2a
tended to increase basal insulin release in G2 and G5 (Figure 4A).

Again, siHif2a, but not siHif1a, significantly reduced the glucose

induction of Adm mRNA expression in INS-1E cells. In

comparison, both siHif1a and siHif2a, alone or in combination,

only partly reduced the glucose stimulation of Tpi1 and Gapdh

mRNA expression. These results indicate that HIF1a and HIF2a
are both involved but play distinct roles in CoCl2- and glucose-

mediated HIF-target gene expression in INS-1E cells.

Role of the acceleration of mitochondrial metabolism in
glucose-induced HIF-target gene expression

The non-metabolised glucose analogue 3-O-methyl-D-glucopy-

ranose did not reproduce the effect of glucose on insulin secretion,

Gapdh and Adm mRNA levels (Figure 5A). These results indicate

that the stimulation of HIF-target gene expression by glucose does

not result from a putative osmotic stress but rather depends on its

metabolism and activation of downstream events. In agreement,

succinic acid monomethyl ester and a-ketoisocaproate, two

nutrient secretagogues that bypass glycolysis and directly stimulate

mitochondrial metabolism in cultured rat islets, significantly

augmented GSIS and the glucose stimulation of Gapdh and Adm

mRNA expression (Figure 5B). Similar results were obtained with

a combination of 5 mmol/l leucine and 5 mmol/l glutamine (data

not shown). These results are compatible with the hypothesis that

the acceleration of mitochondrial metabolism and islet O2

consumption with consequent reduction in intra-islet pO2 plays

a role in the glucose stimulation of HIF-target gene expression.

We therefore used pimonidazole to detect hypoxia in isolated

islets cultured in the presence of increasing glucose concentrations.

Under hypoxic conditions, reductively-activated pimonidazole

forms protein adducts by reacting with cysteine residues

independently from the pyridine nucleotide redox state [24]. As

shown in figure 6A–C, glucose concentration-dependently in-

creased pimonidazole-protein adducts in cultured islets, but to a

much lesser extent than hypoxia. This increase was not restricted

to the islet centre and was heterogeneous between islet cells. In

comparison, hypoxia triggered central necrosis and strongly

increased pimonidazole-protein adducts in surviving cells at the

islet periphery.

As the glucose-stimulation of HIF-target gene expression likely

results from hypoxia-mediated HIF activation, we next tested the

effect of a 3-fold increase in pO2 on the glucose stimulation of

HIF-target gene expression. As shown in figure 6D, glucose

stimulated insulin secretion and Gapdh mRNA expression to a

similar extent under control and hyperoxic conditions. In contrast,

glucose increased Tpi1, Ldha, Adm and Car12 mRNA levels to a

significantly lesser extent under hyperoxic conditions, supporting

the role of the increase in islet O2 consumption in these glucose

effects. Of note, the glucose stimulation of pimonidazole-adduct

Figure 2. Effects of glucose and CoCl2 on HIF1a, HIF2a and
ARNT protein levels in INS-1E cells. INS1-E cells (70% confluence)
were cultured 18 h in G2, G5, G10, G30 or G5+200 mmol/l CoCl2. HIF1a,
HIF2a, ARNT (HIF1b) and actin protein levels were measured by Western
Blot in nuclear (-N) or cytosolic (-C) extracts. Results are representative
blots (A) or means 6 SEM of normalized band intensities for 6 to 8
experiments (B). *, p,0.05 vs. INS1-E cells cultured in G2 (one-way
ANOVA+Newman–Keuls test).
doi:10.1371/journal.pone.0029807.g002

Nutrient Activation of HIFs in Rat Beta-Cells
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formation was also suppressed by culture in the presence of 90%

O2 (Figure S2). Also in INS-1E cells, culture under hyperoxic

conditions markedly reduced the glucose stimulation of pimoni-

dazole-protein adduct formation, HIF1a and HIF2a nuclear

accumulation, and Adm and Tpi1 mRNA expression (Figure 7). It

did not, however, significantly affect GSIS and the stimulation of

Gapdh mRNA expression. These results indicate that, depending

on the HIF-target gene studied, the glucose stimulation of mRNA

expression is independent (Gapdh) or partly results from hypoxia

(Tpi, Adm), not only in isolated islets, but also in INS-1E cells.

Role of Ca2+ influx in the glucose stimulation of HIF-
target gene mRNA expression

It has previously been shown that approximately one third of

the glucose stimulation of islet O2 consumption is Ca2+-dependent

[15]. The L-type Ca2+ channel blocker nimodipine, which almost

fully inhibited insulin secretion during culture in G30, only slightly

reduced the mRNA levels of Gapdh but markedly reduced Aldoa

and Adm mRNA levels in G30 (Figure 8). Interestingly, the latter

inhibition was not prevented by addition of exogenous insulin to

the medium, indicating that Ca2+ influx contributes to the

stimulation of HIF-target gene expression independently from

changes in insulin concentration. In contrast, nimodipine exerted

opposite effects on Txnip and Aldob mRNA levels (data not shown).

Similar results were obtained with diazoxide, a KATP channel

opener that inhibits glucose-induced Ca2+ influx and insulin

secretion [25] (data not shown). Also in INS-1E cells, nimodipine

significantly reduced the glucose stimulation of Adm and Aldoa

mRNA expression without affecting that of Gapdh (Figure S3).

Hypoxia-mediated HIF activation in islets from diabetic
mice?

To test whether in vivo hyperglycaemia also induces hypoxia and

activates HIF in pancreatic islets, we first measured HIF1a protein

levels in islets from diabetic Leprdb/db and non-diabetic Leprdb/+

mice. Interestingly, a few HIF1a-positive nuclei were detected in

some islets from diabetic mice, whereas none were observed in

sections from non-diabetic mice (Figure 9A–H). That the lack of

HIF1a staining did not result from a problem in tissue fixation/

processing was confirmed by the observation, on the same section,

of a large number of HIF1a-positive epithelial nuclei in the villi of

the intestinal mucosa (Figure 9U–V). For technical reasons, we

could not determine whether the few HIF1a-positive islet cells

detected in Leprdb/db mice are beta-cells or not.

We next measured pimonidazole-protein adducts in the same

model of diabetes. Interestingly, islets from both diabetic and non-

diabetic mice were more heavily stained than the surrounding

exocrine acini (Figure 9I–T), suggesting that they experience low

intensity hypoxia irrespective of the glucose tolerance status. This

staining seemed, however, less intense than that observed in the

villi of the duodenal mucosa (Figure 9W–X). Although the

intensity of pimonidazole staining looked similar or even slightly

lower in islets from diabetic vs. non-diabetic mice, there were clear

differences regarding its heterogeneity between cells. Thus,

Figure 3. Effects of HIF1a and HIF2a knockdown on the stimulation of HIF-target gene expression by CoCl2. INS-1E cells (70%
confluence) were transfected for 24 h with siRNA duplexes directed against Luciferase, Hif1a and Hif2a mRNA (siLuc, siHif1a and siHif2a). Then, the
transfection medium was replaced with RPMI medium containing 10% foetal calf serum and G2 alone or with 200 mmol/l CoCl2. After 18 h culture,
the medium was collected for insulin concentration determination and cells were processed for measurement of gene mRNA levels. Gene to Tbp
mRNA ratios were expressed relative to the ratio in INS1-E cells treated with siLuc and cultured in G2. Data are means 6 SEM for 3 experiments.
*, p,0.05 for the effect of CoCl2 and #, p,0.05 for the effect of siRNA treatment (two-way ANOVA+test of Bonferroni).
doi:10.1371/journal.pone.0029807.g003
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pimonidazole staining was almost uniform throughout the islets of

non-diabetic mice (Figure 9I–L), whereas it was heterogeneous in

islets from diabetic mice, with a few cells displaying a higher

intensity (Figure 9M–T). Unfortunately, we could not determine

whether these islet cells with higher pimonidazole staining are

beta-cells or not.

We finally measured the islet mRNA levels of Hifa subunits and

of several HIF-target genes in Leprdb/db and Leprdb/+ mice. As shown

in Table 4, the mRNA levels of Hif1a were not different in islets

from Leprdb/db and Leprdb/+ mice, but those of Hif2a and of all HIF-

target genes tested (except for Ldha tested in a previous study [26]),

were significantly up-regulated in the islets of Leprdb/db mice,

further supporting the hypothesis that HIF1 and HIF2 are

activated in islets from diabetic mice.

Discussion

This study demonstrates that, even in small islets and cell

monolayer, glucose and other nutrient secretagogues that bypass

glycolysis activate HIF1 and HIF2 in rat beta-cells following the

induction of a state of moderate hypoxia. This effect, which was

not simply due to limited O2 diffusion in culture but also depended

on the glucose stimulation of O2 consumption in beta-cells,

contributed to the stimulation of expression of glycolytic enzymes

and other hypoxia-response genes. In a recent study very similar to

ours but carried out in MIN6 cells and mouse islets, glucose

stimulation rapidly (within one hour) triggered beta-cell hypoxia

only if the pO2 was reduced from 20 to 10% [16]. Despite this

difference, both studies converge in showing that in vitro glucose

stimulation of beta-cell O2 consumption can induce intracellular

hypoxia and activate HIF. Depending on its intensity, this

response could either play an important role in beta-cell

adaptation to increased insulin demand under physiological

conditions (physiological hypoxia) or be involved in the detrimen-

tal effect of chronic hyperglycemia.

Earlier studies have convincingly shown that glucose rapidly

increases O2 consumption in islets from rats [8,15,27], mice [12],

non-human primates and humans [9]. Although we did not repeat

these measurements of islet O2 consumption or intra-islet pO2, we

have shown that glucose increases the formation of pimonidazole-

protein adducts in islets and INS-1E cells in parallel with changes

in HIF-target gene expression and HIF nuclear accumulation.

Moreover, these effects were inhibited under hyperoxic conditions.

Pimonidazole-protein adducts were not more abundant in the

center than at the islet periphery, indicating that our results do not

simply result from central necrosis. In addition, this staining was

heterogeneous between individual cells, as would be expected from

the metabolic heterogeneity of beta-cells [28].

The increase by glucose of HIF1a nuclear levels in rat beta-cells

is in good agreement with the fact that glucose induces moderate

hypoxia and with current and previous observations that hypoxia

activates HIF1 in INS-1E cells and cultured islets [14,23,29]. It is

also compatible with the recent report that Hif1a gene inactivation

corrected the stimulation of HIF-target gene expression following

vhlh inactivation in mouse beta-cells [30]. In contrast, the increase

of HIF2a nuclear levels in INS-1E cells by glucose, CoCl2 and

hypoxia is surprising because HIF2a was detected neither in

hypoxic embryonic pancreatic explants [31] nor in vhlh-knockout

mouse islets [30]. However, the role of HIF2a in INS-1E cells is

strongly supported by the observation that Hif2a expression is

Figure 4. Effects of Hif1a and HIF2a knockdown on the glucose stimulation of HIF-target gene expression. INS-1E cells (70%
confluence) were transfected for 24 h with siRNA duplexes directed against Luciferase, Hif1a and Hif2a mRNA (siLuc, siHif1a and siHif2a). Then, the
transfection medium was replaced with RPMI medium containing 10% foetal calf serum and increasing glucose concentrations. After 18 h culture,
the medium was collected for insulin concentration determination (A) and cells were processed for measurement of gene mRNA levels (B–F). Gene to
Tbp mRNA ratios were expressed relative to the ratio in INS1-E cells treated with siLuc and cultured in G2. Data are means 6 SEM for 3 experiments.
*, p,0.05 for the effect of glucose vs. G2 and #, p,0.05 for the effect of siRNA treatment at the same glucose concentration (two-way ANOVA+test of
Bonferroni). For Adm/Tbp mRNA ratio, the reduction by siHif2a in G30 was significant only after removal of siHif1a data that were highly variable.
doi:10.1371/journal.pone.0029807.g004
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absolutely required for the stimulation of Adm mRNA expression.

Of note, glucose, CoCl2 and hypoxia also affected Hifa mRNA

levels in rat beta-cells through unknown mechanisms, but the

relative contribution of these changes to the global increase in HIF

activity and HIF-target gene expression has not been investigated.

In any case, these changes in Hifa mRNA levels should only

modulate the increase in HIFa protein levels that mainly result

from their stabilization under hypoxic conditions [1].

It is well established that glucose stimulates the expression of

various glycolytic enzymes in cultured insulin-secreting cells and

rodent islets, including GK, GAPDH and liver pyruvate kinase

[32,33]. It has been shown that the stimulation of expression of

liver pyruvate kinase results from a reduction in AMPK activity

[34] and from activation of the transcription factors ChREBP and

c-MYC [35,36]. In contrast, the stimulation of GK expression has

been ascribed to SREBP1c activation [37]. However, the

transcription factors involved in the glucose-induced expression

of other glycolytic enzymes in beta-cells are poorly characterized.

In other tissues, HIF1a is preferentially involved in the regulation

of glycolytic enzymes while HIF2a stimulates the expression of

genes related to angiogenesis [38]. In INS-1E cells, knockdown of

Hif1a and Hif2a had a stronger effect on the glucose stimulation of

Tpi1 and Gapdh than knockdown of either isoform alone. This

suggests that both HIF1 and HIF2 modulate the expression of

glycolytic enzymes, at least in rat beta-cells. However, neither

hyperoxia, nor Hif1a/Hif2a knockdown or inhibition of Ca2+

influx with nimodipine were able to fully inhibit the glucose

induction of glycolytic enzymes (except for the complete inhibition

of Ldha mRNA by hyperoxia in whole rat islets), confirming that

other transcription factors, e.g. Myc [39], are also involved. This

remark is particularly important in the case of Gapdh mRNA, the

glucose induction of which was unaffected by hyperoxia and

nimodipine treatment. On the other hand, hyperoxia, Hif2a but

not Hif1a) knockdown and nimodipine almost fully inhibited the

expression of Adm, thereby demonstrating the specific role of HIF2

in Adm expression by glucose-induced decrease in islet pO2. Thus,

both HIF isoforms are not redundant and play distinct roles in

beta-cell gene expression.

Possible relevance for the physiology and
pathophysiology of beta-cells

High expression of GK and downstream glycolytic enzymes is

critical for GSIS [40,41]. In agreement, global down-regulation of

glycolytic enzymes in Hif1a or Arnt knockout beta-cells markedly

Figure 5. Effects of 3-O-methyl-D-glucopyranose, succinate and a-ketoisocaproate on Gapdh and Adm expression in cultured rat
islets. After preculture, rat islets were further cultured 18 h; A, in the presence of G10 (open columns), G30 (filled columns), or G10+20 mmol/l 3-O-
methyl-D-glucopyranose (3-OMG) (hatched columns); B, in the presence of increasing glucose concentrations without (open circle) or with (closed
circles) 10 mmol/l succinic acid monomethylester (SAM) or 5 mmol/l a-ketoisocaproate (KIC). Gene to Tbp mRNA ratios were expressed relative to the
ratio in G10 (A) or G2 (B). Data are means 6 SEM for 3 to 6 experiments. The effects of glucose, KIC and SAM on insulin secretion and gene mRNA
levels were significant by one-way ANOVA (A) or two-way ANOVA (B)(P,0.005). #, p,0.05 for the effect of SAM or KIC at that particular glucose
concentration (two-way ANOVA+test of Bonferroni).
doi:10.1371/journal.pone.0029807.g005
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reduced GSIS and in vivo glucose tolerance in some [42,43] but not

all studies [22,30]. In siRNA-treated INS-1E cells, knockdown of

Hif1a markedly inhibited GSIS during culture while the inhibition

of Hif2a tended to increase basal insulin release, suggesting that

the absence of each isoform differently affects beta cell function. In

this context, it is important to note that the moderate activation of

HIF by glucose stimulation under physiological conditions, i.e. in

vivo where the islet pO2 may be lower than in in vitro culture

systems, could play an important role in the maintenance of the

beta-cell phenotype or in their adaptation to changes in insulin

demand. Such ‘‘physiological hypoxia’’ is compatible with the fact

that HIF is activated at glucose concentrations at which

mitochondrial ATP production is not reduced [44]. In support

of this hypothesis, it was recently shown that, in the rat, the

proportion of islets showing pimonidazole-protein adduct staining

in vivo is modulated by changes in insulin demand [45]. In contrast

with that study, however, we did not observe major differences in

pimonidazole staining between islets from the same mouse

pancreatic section.

On the other hand, almost complete repression of low-Km HK

(I–III), LDH and MCT (isoforms 1, 2 and 4) is also critical to

prevent inappropriate stimulation of insulin secretion at low

glucose and during exercise [41,46]. The lack of LDH and high

expression of malate/aspartate and glycerol-phosphate shuttle

enzymes also contribute to optimal GSIS by preventing pyruvate

diversion from its mitochondrial metabolism while coupling re-

oxidation of cytosolic NADH with increased mitochondrial ATP

production [47]. Following vhlh inactivation in beta-cells, sustained

activation of HIF-target gene expression under normoxic

conditions tended to increase insulin secretion at low glucose

while reducing the maximal GSIS with consequent development

of glucose intolerance [22,30,48]. Moreover, expression of a

constitutively active form of HIF1a significantly decreased GSIS,

O2 consumption and pimonidazole staining in MIN6 cells [16].

Hypoxia should therefore be considered as a possible contributing

factor when interpreting the in vitro effects of high glucose

concentrations on beta-cell gene expression, function and survival,

even in beta-cell lines. Our recent attempt to prevent beta-cell

glucotoxicity by culturing islets for 1 week in the presence of 60%

O2 led to the opposite effect, i.e. a ,10-fold increase in islet cell

apoptosis in G10 and a ,50-fold increase in G30 (Figure S4).

Other strategies will have to be developed to check the role of

hypoxia in beta-cell glucotoxicity.

Possible relevance for the pathophysiology of type 2
diabetes

Together with alterations of islet microvasculature and fibrosis

that impair vessel integrity and O2 supply [20], the high metabolic

demand imposed by hyperglycaemia may promote beta-cell

hypoxia and HIF activation in vivo. So far, the available evidence

suggests, but do not prove, that some beta-cells may indeed suffer

from hypoxia in type 2 diabetes. Thus, HIF-target gene expression

(this study and [18–20]) and pimonidazole-protein adducts [16]

were increased in islets isolated from various rodent models of

Figure 6. Role of hypoxia in glucose-induced HIF-target gene
mRNA expression in cultured rat islets. A–C, after preculture, rat
islets were cultured 18 h in G2, G5, G10, G30 or in G5 in the presence of
5% O2 (pO2,38 mmHg) instead of 20% O2 (pO2,151 mmHg) in the
incubator. Pimonidazole was added to the culture medium for the last
2 h and pimonidazole protein-adducts were detected by western blot
(A–B) or immunohistochemistry (C). For each lane, the area under the
curve (AUC) was calculated and normalized for changes in ACTIN band
intensity. Results are representative blots (A) or means 6 SEM of
normalized AUC for 3–5 experiments (B). *, p,0.05 for the effect of
hypoxia (t-test) or glucose vs. G2 (one-way ANOVA+Newman–Keuls

test). Immunohistochemistry images are representative for 3 experi-
ments (C). D, one week precultured islets were cultured 18 h in G2, G5,
G10 or G30 in the presence of 20% O2 (pO2,151 mmHg, open circles)
or 60% O2 (pO2,453 mmHg, close circles). Gene to Tbp mRNA ratios are
expressed relative to the ratio in islets or INS-1E cells cultured in G2 and
20% O2. Results are means 6 SEM for 3–5 experiments (D). *, p,0.05 for
the effect of glucose vs. G2 and #, p,0.05 for the effect of 60% O2 at the
same glucose concentration (two-way ANOVA+test of Bonferroni).
doi:10.1371/journal.pone.0029807.g006
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diabetes, with a few islet cells (the identity of which could not be

clarified) displaying higher levels of pimonidazole-protein adducts

when measured by immunohistochemistry. Moreover, HIF1a-

positive islet nuclei, although rare, were clearly detected on

pancreatic sections of diabetic but not normoglycaemic mice. If

these cells were unambiguously identified as hypoxic beta-cells,

one could suggest that in vivo hypoxia, HIF activation and HIF-

target gene expression in only a fraction of beta-cells could

contribute to the slow deterioration of beta-cell function and

survival in type 2 diabetes. Such in vivo hypoxia could result from

increased beta-cell O2 consumption at high glucose, to a decrease

in islet perfusion following changes in islet microvasculature by

chronic hyperglycemia, or to both processes.

In conclusion, glucose-induced O2 consumption creates an

intracellular hypoxia that activates HIF1 and HIF2 in rat beta-

cells, and this glucose effect contributes, together with the

activation of other transcription factors, to the glucose stimulation

of expression of some glycolytic enzymes and other hypoxia

response genes.

Materials and Methods

Reagents
Succinic acid monomethyl ester, a-ketoisocaproate, diazoxide,

nimodipine and 3-O-methyl-D-glucopyranose were purchased

from Sigma (St. Louis, MO, USA). DharmaFECT1 and

siGENOME SMARTpool small interfering RNA (siRNA) du-

plexes targeting Hif1a and Hif2a were from Dharmacon (Thermo

Scientific, Lafayette, CO, USA). SilencerH Firefly Luciferase (Luc)

and Negative Control siRNA were from Ambion (Applied

Biosystems, Foster City, CA, USA). Other reagents were from

Merck (Darmstadt, Germany).

Antibodies
Rabbit polyclonal anti-Actin antibody (A2066) was from Sigma.

Mouse monoclonal anti-HIF1a (ab1) and anti-HIF2a (ab8365)

antibodies used for western blotting were from Abcam (Cam-

bridge, UK). Mouse anti-HIF1b antibody (clone 29, 611079) was

from BD Biosciences (San Jose, CA, USA) and rabbit anti-HIF1b/

ARNT antibody (3718) was from Cell Signaling Technology

(Danvers, MA, USA). The rabbit anti-HIF1a antiserum used for

immunohistochemistry has been described earlier [49].

Islet isolation and culture
Pancreatic islets were isolated from ,200 g male Wistar rats as

described [50]. They were precultured for 1 week in serum-free

RPMI 1640 medium (Invitrogen, Carlsbad, CA, USA) containing

Figure 7. Role of hypoxia in the glucose stimulation of HIF-
target gene mRNA levels in INS-1E cells. INS-1E cells (70% of
confluence) were cultured 18 h in G2, G5, G10 or G30 in the presence of
20% O2 (pO2,151 mmHg, open circles) or 60% O2 (pO2,453 mmHg,
close circles). Pimonidazole was added to the culture medium for the
last 2 h and pimonidazole protein-adducts were detected by western
blot (A). For each lane, the area under the curve (AUC) was calculated
and normalized for changes in ACTIN band intensity. HIF1a and HIF2a
protein levels were measured in nuclear extracts and normalized for
changes in ACTIN (A–B). Gene to Tbp mRNA ratios are expressed
relative to the ratio in INS-1E cells cultured in G2 and 20% O2 (C). Results
are representative blots (A) or means 6 SEM of normalized AUC for 3–5
experiments (B–C). *, p,0.05 for the effect of glucose vs. G2 and #,
p,0.05 for the effect of 60% O2 at the same glucose concentration
(two-way ANOVA+test of Bonferroni).
doi:10.1371/journal.pone.0029807.g007
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10 mmol/l glucose, 5 g/l BSA (fraction V, Roche, Basel,

Switzerland), 100 IU/ml penicillin and 100 mg/ml streptomycin

(Invitrogen). Islets that developed central necrosis were discarded

during preculture. After preculture, islets were cultured 18 h in the

G2, G5, G10, and G30 and various test substances at different

incubator pO2 (38, 151, 456 and 680 mmHg). After culture, the

medium was collected for insulin concentration determination

(RIA using rat insulin as a standard) and the islets were processed

for further analysis.

In vivo studies
Leprdb/db and Leprdb/+ mice on a C57BL/KSJ background were

from Janvier (Le Genest-Saint-Isle, France) or from the animal

facility of the Garvan Institute. They were used from 10 to 26

weeks of age. Blood glucose was measured with a glucometer

(Accu-Check Sensor, Roche, Mannheim, Germany). After cervical

dislocation, the duodenal loop, the pancreas and the spleen were

removed as a block and fixed in less than 3 minutes. All

experiments were approved by the local ethics committee for

animal experimentation (Université catholique de Louvain,

Faculté de Médecine, Comité d’éthique facultaire pour l’expéri-

mentation animale, projet UCL/MD/2009/009: ‘‘Mécanismes

moléculaires de la plasticité du phénotype des cellules B

pancréatiques en conditions physiopathologiques’’ accepted for 4

years). ‘‘Principles of laboratory animal care’’ (NIH publication

no. 85–23, revised 1985) were followed.

Cell culture and RNA interference
INS-1E cells (passage 70–94) were cultured in standard RPMI

medium supplemented with 10% heat-inactivated fetal calf serum,

10 mmol/l HEPES, 1 mmol/l sodium pyruvate, 2 mmol/l

glutamine, 100 U/ml penicillin, 100 mg/ml streptomycin, and

50 mmol/l b-mercaptoethanol. To downregulate gene expression,

INS-1E cells were transfected for 24 h using DharmaFECT1 and

30 nmol/l siRNA in antibiotic-free medium, according to the

manufacturer’s instructions. Cells (,70%confluence) were then

cultured for 18 h in fresh medium containing different glucose

concentration and various test substances as indicated.

Real time RT-PCR
Islet and INS-1E total RNA extraction, reverse transcription,

real-time PCR and melting curve analysis of PCR products were

performed as described previously [50]. Relative changes in Gene

to Tbp mRNA ratio between test and control conditions were

computed using the 22DDCt method. Primer sequences and

reaction conditions are detailed in Tables S2 and S3.

Nuclear extraction and western blotting for HIF1a, HIF2a
and ARNT

INS-1E cells were rinsed with ice-cold PBS, scraped in

hypotonic buffer (20 mmol/l HEPES, 5.7 mmol/l NaF,

1 mmol/l EDTA, pH 7.5) and incubated on ice for 15 min. After

addition of 0.5% Nonidet P-40, the nuclei were pelleted (8006g

Figure 8. Role of Ca2+ influx and insulin secretion in glucose-induced HIF-target gene expression in rat islets. After preculture, islets
were cultured 18 h in G10, G30, G30 +1 mmol/l nimodipine (Nimo) or the latter condition plus increasing concentrations of exogenous human insulin
(Actrapid), as indicated. The absolute rate of insulin secretion (ng.islet21.h21) in the first three conditions were: 1.0260.25 in G10; 2.7860.93 in G30
and 0.0960.02 in G30+Nimo (n = 3). Gene to Tbp mRNA levels were expressed relative to the level in G10. Data are means 6 SEM for 3 to 4
experiments. *, p,0.05 for the effect of glucose, #, p,0.05 for the effect of nimodipine, 1, p,0.05 for the effect of insulin (one-way ANOVA+test of
Newman-Keuls).
doi:10.1371/journal.pone.0029807.g008
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for 4 min at 4uC), resuspended in 50 ml Complete Lysis Buffer

AM1 (Active Motif, Rixensart, Belgium) supplemented with

1 mmol/l dithiothreitol and 1% protease inhibitor cocktail (Roche

Diagnostics, Mannheim, Germany), incubated for 15 min on ice

with regular shaking, and centrifuged at 17506g for 10 min at

4uC. Cytosolic proteins in the supernatant were precipitated with

trichloroacetic acid, triple extracted with ether, and solubilised in

Laemmli buffer. Nuclear and cytosolic extracts were then

separated by 7.5% SDS-PAGE and transferred to nitrocellulose

membrane (Bio-Rad Laboratories, Hercules, CA, USA). The

membranes were incubated with a mouse monoclonal primary

antibody followed by a horse-radish-peroxidase-conjugated anti-

mouse antibody (Santa-Cruz, CA, USA) and the signal was

revealed by enhanced chemiluminescence (SuperSignalH West-

Femto or West-Dura kits, Thermo Scientific). Band intensities

were quantified by scanning densitometry (Gel-Doc2000, Bio-

Rad), analyzed with Quantity OneTM (Bio-Rad) and normalized

to Red Ponceau staining or ACTIN band intensity.

Immunodetection of HIF1a and ARNT
Tissues were fixed in 4% formaldehyde and embedded in

paraffin. For HIF1a and insulin detection, 5 mm-thick sections

were treated as described previously [31]. For ARNT detection,

the sections were incubated with rabbit anti-ARNT antibody

diluted 1:50 overnight at 4uC, washed in Tris-buffered saline and

incubated for 1 h with Alexa Red 594-conjugated goat anti-rabbit

IgG (Molecular Probes) diluted 1:100. After washing in Tris-

buffered saline and addition of Vectashield-mounting medium

containing DAPI (Vector Laboratories, Burlingame, CA), sections

were visualized on an Axioskop 40 microscope (Zeiss, Oberko-

Figure 9. HIF1a protein expression and pimonidazole-protein adduct formation in the pancreas and intestine of diabetic mice.
Diabetic Leprdb/db mice (db/db) and non-diabetic Leprdb/+ mice (db/+) were killed and their pancreas, spleen and duodenal loop were dissected and
fixed in paraformaldehyde solution (4%) overnight at 4uC. A–D, HIF1a expression in 10 week-old male db/db mice (n = 2; blood glucose = 25.4 and
24.1 mmol/l; body weight = 45 and 44 g) and non-diabetic db/+ mice (n = 2; blood glucose = 6.3 and 7.9 mmol/l, n = 2; body weight = 23 and 26 g). E–
H, corresponding images with merged HIF1a (red) and Hoechst 33342 (blue) nuclear staining. White arrows, HIF1a-positive islet cell nuclei (purple on
merged images). Bar scale = 50 mm. Results are representative for two animals of each kind. I–T, pimonidazole protein-adducts in 26 week-old male
and female db/db mice (M–T) (n = 3; blood glucose = 25.360.9 mmol/l; body weight = 5463 g) and non-diabetic db/+ mice (I–L) (n = 3; blood
glucose = 6.660.3 mmol/l; body weight = 2860.9 g) injected with pimonidazole (60 mg/kg) 24 h before death (brown 3,39-diaminobenzidine
precipitate). Black arrows, cells with higher pimonidazole-protein adduct intensity. Bar scale = 50 mm. Results are representative for two animals of
each kind. U–X, immunodetection of HIF1a and pimonidazole-protein adducts in the duodenal mucosa of db/+ or db/db mice.
doi:10.1371/journal.pone.0029807.g009
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chen, Germany) equipped with an Infinity-x camera (Deltapix,

Lumenera Corporation, Ottawa, Ontario, Canada).

Immunodetection of pimonidazole-protein adducts
Pimonidazole (HypoxyprobeTM Inc., Burlington, MA, USA)

was added to RPMI medium at a final concentration of

200 mmol/l 2 h before the end of culture or was injected

intraperitoneally (60 mg/kg body weight, 34 mmol/l in NaCl

9 g/l sterile solution) 24 h before killing the mice. Tissues were

fixed in 4% formaldehyde and embedded in paraffin before

detection of pimonidazole-protein adducts on 5 mm-thick sections.

Briefly, deparaffinized sections were treated with H2O2 (0.3% vol/

vol) to inactivate endogenous peroxidase and incubated with either

Hypoxyprobe 1 monoclonal antibody (clone 4.3.11.3) diluted

1:100 followed by anti-mouse EnVision+TM peroxidase complex

for 1 h (Dako, Carpintera, USA) for rat islets, or Hypoxyprobe 1

polyclonal rabbit antibody diluted 1:200 followed by anti-rabbit

EnVision+TM peroxidase complex for mouse pancreas. In both

cases, the signal was revealed by 3,39-diaminobenzidine. Pimoni-

dazole-protein adducts in cultured islets were also measured by

Western Blot and the signal intensity was normalized to that of

ACTIN (Ab dilution 1:2000).

Statistical analysis
Results are means 6 SEM for the indicated number of

experiments. Statistical significance of differences between groups

was assessed by one-way ANOVA and a test of Newman-Keuls or

by two-way ANOVA and a test of Bonferroni. Differences were

considered significant when p,0.05.

Supporting Information

Figure S1 Effects of glucose, hypoxia and CoCl2 on
ARNT (HIF1b) protein levels in cultured rat islets. The

islets were cultured exactly as described in legend to figure 1.

ARNT and insulin were detected by immunohistochemistry in

5 mm-thick islet sections. Nuclei were stained with 0.75 mg/ml

49,6-diamidino-2-phenylindole (DAPI). Results are representative

for 2 to 3 experiments.

(TIF)

Figure S2 Role of hypoxia in glucose-induced HIF-target
gene mRNA expression in cultured rat islets. One week

precultured islets were cultured 18 h in G2, G5, G10 or G30 in

the presence of 20% O2 (pO2,151 mmHg, open circles) or 90%

O2 (pO2,680 mmHg, close circles). Pimonidazole was added to

the culture medium for the last 2 h and pimonidazole protein-

adducts were detected by western blot. For each lane, the area

under the curve (AUC) was calculated and normalized for changes

in ACTIN band intensity. Results are representative blots and

means 6 SEM of normalized AUC for 3 experiments. *, p,0.05

for the effect of glucose vs. G2 and #, p,0.05 for the effect of 90%

O2 (two-way ANOVA+test of Bonferroni).

(TIF)

Figure S3 Role of Ca2+ influx and insulin secretion in
glucose-induced HIF-target gene expression in INS-1E
cells. INS-1E cells (70% of confluence) were cultured 18 h in

various glucose concentrations in the presence (closed circles) or

absence (open circles) of 1 mmol/l nimodipine. Gene to Tbp

mRNA levels were expressed relative to the level in G2. Data are

means 6 SEM for 3 to 4 experiments. *, p,0.05 for the effect of

glucose, #, p,0.05 for the effect of nimodipine, 1, p,0.05 for the

effect of insulin (two-way ANOVA+test of Bonferroni).

(TIF)

Figure S4 Effects of a one-week culture under hyperoxic
conditions on islet cell DNA fragmentation. Rat islets were

cultured for 1 week in the presence of G10 or G30 under

normoxic or hyperoxic conditions, as detailed in legend to

figure 6D. At the end of culture, islet DNA fragmentation was

assessed with the Cell Death ELISA kit from Roche, as described

in reference 21. Results are mean and individual data for 2

independent cultures.

(TIF)

Table S1 Rat islet mRNA expression of genes involved
in HIF signaling pathway and their regulation by
glucose. After 1 week preculture in serum-free RPMI medium

containing 5 g/l BSA and 10 mmol/l glucose (G10), rat islets were

cultured 18 h in the presence of 2, 5, 10 or 30 mmol/l glucose. The

glucose regulation of gene mRNA levels was measured using

Affymetrix rat 230.2 microarrays (for details, see [21]). Probe-sets

corresponding to various components of the HIF signaling pathway

were selected based on the literature [1],[51] and classified in three

groups: Transcription factors, HIF-regulating and interacting

proteins, and HIF-target genes. *, # denotes genes whose expression

was up-regulated at least 1.5-fold (*) or more than 2-fold (#) in vhlh-

KO vs. WT mouse islets [22]. Data are means 6 SE hybridization

value (Arbitrary units) for 4 experiments. a P,0.05, b P,0.01 vs. islets

cultured in G2 (one-way ANOVA+test of Newman-Keuls). The

following probe sets were considered «Absent» on the microarrays

(for analysis criteria, see [21]): Adra1b (1368574_at); # Abcb1

(1370465_at); * Abcg2 (1380577_at); Col5a1 (1369955_at); Cp

(1368419_at; 1368420_at); * Ctgf (1367631_at); Cxcl12 (1387655_at;

1388583_at); Cyp2s1 (1390282_at); Edn1 (1369519_at); * Egln1

(1375262_at); Eng (1372579_at); Epo (1387308_at); Hif1a
(1368149_at); * Hk1 (1386929_at); * Hk2 (1369006_at; 1383519_at);

Igf2 (1371206_a_at; 1398322_at); Igfbp3 (1386881_at); Itgb2

(1383131_at); * Krt14 (1371895_at); Lep (1387748_at); Lox

(1368171_at; 1368172_a_at); * Lrp1 (1388416_at); Mmp14

(1378225_at); Mmp2 (1369825_at); Nos2 (1387667_at); Nos3

(1371166_at); # Pfkfb3 (1369794_a_at; 1397082_at); Pgk1

Table 4. Changes in the mRNA levels of Hif1a, Hif2a and
several HIF-target genes in islets isolated from diabetic mice.

Gene symbol Gene/Cyclophilin mRNA ratios

(relative to Leprdb/+)

Leprdb/+ Leprdb/db

Hif1a 160.14 1.2660.10

Hif2a 160.15 3.3160.53a

Tpi1 160.06 2.1960.20a

Gapdh 160.05 2.6960.47a

Eno1 160.13 3.9160.45a

Adm 160.12 3.2460.58a

Hyou1 160.06 3.5260.47a

Gene/Cyclophilin mRNA ratio were measured by real-time PCR using islet cDNA
from 10-week-old diabetic Leprdb/db mice and their non-diabetic Leprdb/+

littermates (fed whole blood glucose levels ,20 mmol/l and ,6 mmol/l
respectively)(primer sequences are shown in Table S3). The metabolic
characteristics of the mice and the mRNA levels of other b-cell genes (including
Hk1 and Ldha) in these series of experiments have been reported earlier [26].
Data are means 6 SE for 5–9 mice and are expressed relative to the mRNA ratio
in control Leprdb/+ mice.
ap,0.01 vs. control by Student t-test.
doi:10.1371/journal.pone.0029807.t004
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(1368906_at); Plaur (1387269_s_at); Prok1 (1387650_at); # Serpine1

(1368519_at; 1392264_s_at); Slc2a3 (1372326_at; 1387707_at); Tert

(1388222_at); Tf (1370228_at; 1391323_at); Tgfb3 (1367859_at); #
Tgm2 (1387776_at).

(DOC)

Table S2 Sequences of oligonucleotide primers and
reaction conditions for real-time PCR amplification of
rat cDNA, and characteristics of PCR products. Tm:

Amplicon melting temperature; a: Islet sample cDNA quantity per

tube (ng total RNA equivalent).

(DOC)

Table S3 Sequences of oligonucleotide primers for real-
time PCR amplification of mouse cDNA.
(DOC)
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