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Abstract

Reverse transcription quantitative real-time PCR (RT-qPCR) is a key method for measurement of relative gene expression.
Analysis of RT-qPCR data requires many iterative computations for data normalization and analytical optimization. Currently
no computer program for RT-qPCR data analysis is suitable for analytical optimization and user-controllable customization
based on data quality, experimental design as well as specific research aims. Here I introduce an all-in-one computer
program, SASqPCR, for robust and rapid analysis of RT-qPCR data in SAS. This program has multiple macros for assessment
of PCR efficiencies, validation of reference genes, optimization of data normalizers, normalization of confounding variations
across samples, and statistical comparison of target gene expression in parallel samples. Users can simply change the macro
variables to test various analytical strategies, optimize results and customize the analytical processes. In addition, it is highly
automatic and functionally extendable. Thus users are the actual decision-makers controlling RT-qPCR data analyses.
SASqPCR and its tutorial are freely available at http://code.google.com/p/sasqpcr/downloads/list.
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Introduction

Quantitative reverse transcription real-time polymerase chain

reaction (RT-qPCR) is widely used in biomedical research and

diagnostic applications for measurement of relative gene expres-

sion. RT-qPCR quantification are easily obscured by non-specific

confounding factors resulted from sample-to-sample and run-to-

run experimental variations even following standardized experi-

mental methods and data collection criterion [1,2]. The most

important quality control for RT-qPCR quantification is to find an

accurate normalizer across samples [3,4]. Conventional data

normalization uses one or few reference genes that are determined

before experiments. These genes are commonly used as references

for different experiments. Practically, however, no gene has stable

expression under various experimental conditions. Emerging

evidence have showed that the expression stability of classical

reference genes varies greatly with experimental conditions

[5,6,7], supporting the necessity for data-specific validation of

reference genes. A practical strategy for robust data normalization

is to measure multiple ($10) reference genes as reference

candidates. Standard statistical algorithms have to be iteratively

implemented to determine what particular genes and how many

genes should be selected from the reference candidates to achieve

a better normalizer for a particular dataset [7,8]. Currently,

however, no efficient and flexible program is available for RT-

qPCR data analysis with incorporation of the standard statistical

algorithms for data-specific reference validation and analytical

optimization.

SASqPCR (Supporting Information file ‘‘SASqPCR.sas’’),

developed using SAS software, is an all-in-one computer program

allowing users to perform RT-qPCR data analysis in a more

flexible and convenient way. The program provides a dynamic

interface for user-controllable customization based on data quality,

experimental design as well as specific research aims. Users can

easily perform unlimited iterative computations for testing various

combinations of different analytical strategies or customized

analytical processes. This manuscript briefly describes the working

rationale of this program. A real example is provided to illustrate

the application of the program for easy, fast and automatic data

analysis. The key algorithms, equations and annotated codes for

the program have been additionally described in a SASqPCR

Tutorial document available at http://code.google.com/p/sasqpcr/

downloads/list; however, understanding of this knowledge as well as

extensive SAS programming knowledge is not required for general

users in application of SASqPCR.

Methods

The workflow of SASqPCR
The key RT-qPCR variable used for quantification of gene

expression is threshold cycle (Ct). Ct values are primarily

determined by the gene-specific cDNA concentrations contributed

by particular biomedical conditions but are also confounded by

variations in sample preparation. Confounding variations among

samples have to be minimized by data normalization using one or

multiple internal reference genes [7]. Thus data analysis of raw Ct

values includes evaluation of PCR efficiencies, validation of

reference genes across samples, normalization of raw Ct values

and comparison of gene expression in parallel samples. Some of

the computations may be iteratively performed for analytical
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optimization based on data quality, experimental design and

specific research aims.

SASqPCR contains 5 macros designed for different computa-

tional tasks including estimation of PCR efficiencies (%Efficiency),

evaluation of expression stability of candidate reference genes

(%Stability), determination of the optimal number of reference

genes for robust data normalization (%Optimization), calculation of

normalized expression ratios of target genes (%Normalization), and

statistical comparisons of target gene expression between parallel

samples (%Exp_R). These analytical tasks will be implemented

sequentially following a standard analytical workflow (Fig. 1). Each

macro has one or more macro variables (Table 1) allowing users to

optimize and customize their data analyses. Results from each

analytical step are automatically exported and saved in a user-

defined Excel file.

Estimation of PCR efficiency
Correction of PCR efficiencies is highly recommended in

quantification of gene expression using real-time PCR [4]. In

quantifiable PCR stage, the concentrations of PCR products

increases exponentially (2n) with PCR cycles (n). Practically,

however, different primer sets may not work equally well. The

difference in PCR efficiencies (E) will affect the cycle-dependent

concentration of PCR product (C), i.e., C~C0(1zE)n, where C0

is the initial concentration of the gene-specific cDNA. Mathemat-

ically PCR efficiency is the percentage of successful PCR

amplification of gene-specific cDNA in each cycle. It is estimated

using serially-diluted standard cDNA samples prepared under the

same experimental condition as unknown cDNA samples. The

macro %Efficiency is for calculation of PCR efficiency based on the

equation E~10{1=slope{1, where a linear regression model is fit

to the log-transformed relative concentrations of serially diluted

standard cDNA samples plotted against their corresponding Ct

values.

Expression stability of reference genes
Gene-specific cDNA concentrations are measured using Ct

values. However, the Ct is influenced by both specific biological

conditions and confounding variations that are non-specific and

non-reproducible in experiments. To offset the confounding

variations, stably-expressed internal reference genes are measured

simultaneously along with target genes for data normalization

across parallel samples. Internal reference genes are usually

selected from classical housekeeping genes that are mostly

recognized based on their biological functions and frequently

used as general-purpose reference genes in different experiments.

However, there is no absolute ‘‘housekeeping’’ gene with respect

to the stability of mRNA transcription, thus precluding the

suitability using the universal reference genes for various

experimental conditions. Therefore internal reference genes for

robust data normalization have to be validated for their expression

stability across samples for each experiment [5,7].

The macro %Stability evaluates expression stability of candidate

reference genes. The method is developed primarily based on the

algorithm of geNorm, the most widely-used program for validation

of reference genes [4,9,10]. The key variable indexing the relative

expression stability of reference genes is M value, calculated as the

mean standard deviation of the log-transformed expression ratios

across samples for a particular gene relative to other genes

remaining in the gene panel of reference candidates [7,9]. The

calculation is iteratively performed by stepwise exclusion of

Figure 1. The workflow of SASqPCR. Raw Ct data is imported as a
temporary SAS dataset. It is recommended, but not required, to check
data integrity and variable consistency using proper SAS procedures.
SASqPCR sequentially calculates PCR efficiency, expression stability of
candidate reference genes, optimal reference genes, normalized relative
expression of target genes, and makes statistical testing. Results are
automatically exported and saved. The exported results from each
analytical step may serve as a reference for assigning input macro
variables for the next step in the workflow. Users can also customize
their analyses by arbitrarily excluding particular genes and/or samples.
The interface of different computational components allows users to
get optimal results. The ‘‘user-defined operation’’ refers to any user-
developed programs to extend the analytical function of SASqPCR. Exp.,
expression; Ref., reference.
doi:10.1371/journal.pone.0029788.g001

Table 1. Macro variables of SASqPCR.

Macro Variable Type Annotation

%Efficiency (dilut, grad);

dilut Numerical Dilution factor of standard cDNA samples

grad Numerical Order of dilution series

%Stability (E_excluded, References, Count);

E_excluded Numerical Exclusion criterion based on PCR efficiencies

References Character List of individual reference genes

Count Numerical Number of reference genes

%Optimization (Control, Count);

Control Character Name of control cDNA samples

Count Numerical Number of reference genes

%Normalization (Control, Opt_Ref, N);

Control Character Name of control cDNA samples

Opt_Ref Character List of validated reference genes

N Numerical Number of optimized reference genes

%Exp_R (Target);

Target Character List of target genes

doi:10.1371/journal.pone.0029788.t001
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individual genes with the highest M value (i.e. the least stable gene)

from the panel until reaching the last three genes. The most stable

gene with the smallest M value is identified as a single gene in

SASqPCR rather than two genes tied for the best stability. In

addition, the expression stability of candidate genes is ranked

based on their reverse order of stepwise exclusion in iterative

calculation cycles rather than the absolute M values as using in the

geNorm program [7]. These modifications allow SASqPCR to be

more accurate in assessment of the relative expression stability of

candidate genes. As a parameter reflecting not only candidate

reference genes (across samples) but also cDNA samples (across

genes), the rank of expression stability or M values should not be

borrowed from one analysis or experiment to another. However,

current RT-qPCR users do not notice this important point.

Normalizer optimization
Inappropriate selection of internal reference genes for data

normalization may obscure the actual biological differences among

samples. Robust data normalization requires a data-tailored

normalizer [7]. To obtain such a normalizer, users need to

determine what particular genes and how many genes are sufficient

for robust data normalization. The optimal number of reference

genes is predicted by the pairwise variation (Vn/n+1), an index of the

relative stability of serial normalization factors (NF) using an

increasing number of reference genes [7,9].

The macro %Optimization calculates Vn/n+1 based on the geNorm

algorithm with slight modification. The Vn/n+1 across samples are

the variances of serial log-transformed NF ratios using N relative to

N+1 reference genes. Note that the order for stepwise inclusion of

individual reference genes is based on their ranked expression

stability rather than the magnitudes of their M values. The minimal

Vn/n+1 indicates the most stable NF achievable within a particular

set of cDNA samples and a particular panel of reference candidates,

thus corresponding to the optimal number of validated reference

genes [7]. Similar to the M value, the optimized set of reference

genes should not be adopted from one analysis to another due to its

relying on particular data.

Compared to other programs, SASqPCR calculates Vn/n+1

starting from V1/2 rather than the usual V3/4. This improvement

has practical significance for robust data normalization, since it

preserves the possibility that single or two properly validated

reference genes in some cases are sufficient to normalize target gene

expression rather than the necessity of multiple ($3) genes [7].

Data normalization
Relative expression of target genes is determined using the

macro %Normalization. The underlying algorithm is the ‘‘delta delta

Ct (DDCt)’’ method [4] by which target gene expression in treated

cDNA samples is first compared to control cDNA samples and

then normalized to the expression of reference gene(s). The

normalizer is calculated as the geometric mean of multiple

reference genes [9] or single gene validated in the previous

analytical steps. Reference gene(s) for normalizer calculation can

also be arbitrarily selected by users. The differential expression of

target genes in parallel samples is reported as the fold change to

reflect up- or down-regulated expression in response to particular

experimental conditions. After running of this macro, a temporary

SAS dataset (called ‘‘Exp_R’’) is generated that can be

manipulated for user-defined analytical goals, for example, cluster

analysis of expression profiles for multiple genes and samples.

Normalized expression ratios and statistical test
Normalized expression ratios (R) of target genes and their

standard errors (SE) are reported using the macro %Exp_R. The

calculation of R and SE follows standard algorithms [4,9]. This

macro also performs Student’s t-test as a default statistical method

for comparison of target gene expression between parallel

treatment types. Two-tailed P value is reported. For examining

multiple genes/treatment types, users may consider reporting P

values sequentially adjusted using Benjamini and Hochberg False

Discovery Rate to correct for multiple comparisons [11]. Even

though the t-test is the most widely used method for statistical

validation of significance in quantitative differences, selection of

the appropriate statistical method must be based on particular

experimental design and sample size. SASqPCR preserves the

capacity for implementation of other statistical methods, for

example ANOVA, permutation-based testing, Mann-Whitney-

Wilcoxon testing, etc for advanced users.

Test data
No specific data format is required for application of SASqPCR.

Ct values can be saved in an Excel file, a user favorite database file

or even as a plain text file. There is no limitation on the size of

the raw dataset. At least 5 variables are required for using the

program: gene, sample, type, serial and Ct (see SASqPCR

Tutorial for the details). Here a real RT-qPCR dataset is used

to illustrate how to use SASqPCR. The dataset contains 262

standard and 500 unknown individual real-time PCR reactions.

There are 19 candidate reference genes and 9 target genes

measured across 3 treatment types relevant to neurodegenerative

insults in a Drosophila model of Alzheimer’s disease [8,12]. The

dataset is sampled from the data using in a previous study [7]

where the methods and materials for RT-qPCR experiments have

been described. The Ct values of this example data are saved in an

Excel spreadsheet ‘‘Raw_Ct’’ in the file ‘‘PCR_data.xls’’ available

at http://code.google.com/p/sasqpcr/downloads/list.

Results

After starting SAS software (SAS Institute Inc., Cary, NC,

USA), input and submit the SAS codes shown in Table 2. Users

need to arbitrarily designate an Excel file (Code #1 in Table 2) to

‘‘myresult’’ for saving output results. If the designated Excel file

does not exist, the program will generate it with saved results into

multiple spreadsheets corresponding to the implementation of

different analytical steps. If the designated file already exists, the

program will automatically update it. Here all results generated

from the example data testing are saved in the Excel file

‘‘PCR_data.xls’’ with different spreadsheets as indicated below.

The PCR_data.xls is available at http://code.google.com/p/

sasqpcr/downloads/list.

The raw Ct data is imported as a temporary SAS dataset by

running Code #2 in Table 2. Users can review the new dataset in

the SAS library or check the data integrity and variable

consistency using proper SAS codes (not included). Load

SASqPCR by running Code #3 in Table 2, given that the

program is saved as ‘‘X:\qPCR\SASqPCR.sas’’. I recommend

that the 5 macros be performed sequentially and separately. Users

need to input numeric or character values for macro variables as

defined in Table 1.

First, estimate PCR efficiencies for all primer sets by running

Code #4 in Table 2. Here the standard cDNA samples have 5

step 10 fold dilution series. Output results are automatically saved

in a spreadsheet ‘‘Efficiency’’ in the pre-defined Excel file. The

results contain multiple parameters including PCR efficiency and

squared R for evaluating RT-qPCR quality. Users may exclude

particular genes from further analyses based on PCR efficiency, R

square or other user-justifiable criteria.

SASqPCR
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Second, assess the expression stability of candidate reference

genes by running Code #5 in Table 2. Users can arbitrarily

include or exclude particular genes from analyses by changing the

macro variables. Here those genes with PCR efficiency ,95% are

excluded. Total 19 candidate reference genes participate in the

assessment of their relative expression stability. Output results are

automatically saved in a spreadsheet ‘‘M_value’’ in the pre-defined

Excel file. The results contain M values of the candidate reference

genes and their ranked expression stability. Note that the rank

sometimes may not exactly match the sorting order of M values,

because the rank represents the reverse order of stepwise exclusion

of individual genes in each iterative calculation cycle. The priority

in selection of particular reference genes for data normalization is

based on their rank rather than their M values.

Third, evaluate pairwise Vn/n+1 to determine the optimal

number of reference genes by running Code #6 in Table 2. Here

the control cDNA samples are ‘‘C05’’. Total 19 candidate

reference genes participate in the calculation. Output results,

containing V1/2 to V18/19, are automatically saved in a

spreadsheet ‘‘Pairwise_V’’ in the pre-defined Excel file. Visuali-

zation of the result indicates that the V5/6 has the lowest value

among the 18 pairwise Vn/n+1 values (Fig. S1), suggesting that the

optimal number of reference genes is 5. Thus 5 reference genes are

selected for data normalization from the spreadsheet ‘‘M_value’’

starting from the top: i.e. ‘‘Exba’’ ‘‘Cyp1’’ ‘‘l(3)02640’’ ‘‘Appl’’ and

‘‘14-3-3e’’ (see ‘‘PCR_data.xls’’ for the detail).

Forth, calculate the normalized expression ratios of target genes

and make statistical comparisons among parallel samples by

running Code #7 and #8 in Table 2. Here the control cDNA

samples are ‘‘C05’’. The 5 validated reference genes are used for

data normalization. The results, saved in a spreadsheet ‘‘Ex-

p_ratio’’ in the pre-defined Excel file, include the normalized

expression ratios (R) of target genes between the control and

treatment samples, standard errors (SE_R), two-tailed P values by

Student’s t test, and the P values adjusted for multiple

comparisons. The results are visualized using independent

software after data analysis (Fig. S2).

It is convenient for users to test different analytical combinations

by excluding particular samples and/or genes and iteratively

performing the %Stability, %Optimization and %Normalization to

optimize results. Thus users can assign particular parameters for

each macro variable in each analytical step based on their

experimental design, data quality and analysis optimization.

Discussion

Analysis of RT-qPCR data requires many complex iterative

calculations particularly for data-specific validation and optimiza-

tion of data normalizers. It is thus important for general users to

have a simple computer program for both automatic data analyses

and user-controllable customization based on particular experi-

mental considerations. SASqPCR is developed particularly for

these analytical tasks. It incorporates all computational functions

important for RT-qPCR data analysis including assessment of

PCR efficiencies, validation of candidate reference genes,

normalizer optimization, normalization of confounding variations

across samples, and statistical testing of the association of target

gene expression with specific experimental conditions. Technically

SASqPCR improves the geNorm program in evaluation of the

expression stability of candidate reference genes. It also preserves

the possibility that an accurate normalizer sufficient for data

normalization may be a single, two or multiple properly validated

reference genes [7].

SASqPCR emphasizes flexibility and straightforwardness in

data analysis. First, the input data is raw Ct values of individual

genes and cDNA samples with no limitation to the data size or

format. Thus multiple combined datasets or PCR array data can

be analyzed. Users can manage and analyze their data in a

traditional way rather than relying on the proprietary instruments

or plate-based data formats. Users can also include more

experimental variables in their datasets and combine the

SASqPCR program with any other SAS procedures for their

particular analytic purposes. Second, SASqPCR provides a

dynamic interface for users to optimize results based on data

quality, experimental designs and research aims. By simply

changing the key macro variables, users can quickly make

numerous iterative computations and thus test various combina-

tions of different analytical strategies. Third, final results exported

by SASqPCR are basically numeric values that give users great

freedom to determine how to visualize their results for publications

or presentations. In addition, users can also check data quality,

view intermediate details of the analytical procedures, customize

the analytical processes and even extend analyses to use advanced

Table 2. The analytic procedure of the example RT-qPCR data using SASqPCR.

Code# SAS code for analysis of study example data*

1 Filename myresult ‘‘X:\qPCR\PCR_data.xls’’; run;

2 proc import out = work.raw_ct datafile = ‘‘X:\qPCR\PCR_data.xls’’
dbms = Excel replace; sheet = ‘‘Raw_Ct’’; run;

3 %Include ‘‘X:\qPCR\SASqPCR.sas’’; run;

4 %Efficiency(10, 5);

5 %stability(0.95, ‘‘14-3-3e’’ ‘‘Act5C’’ ‘‘Appl’’ ‘‘CG13220’’ ‘‘Cyp1’’ ‘‘Ef1a48D’’ ‘‘Elav’’
‘‘Exba’’ ‘‘Gapdh2’’ ‘‘GstD1’’ ‘‘Rap2l’’ ‘‘Robl’’ ‘‘RpL13A’’ ‘‘RpL32’’
‘‘Sdha’’ ‘‘Su(Tpl)’’ ‘‘aTub84B’’ ‘‘eIF-1A’’ ‘‘l(3)02640’’, 19);

6 %Optimization(‘‘C05’’, 19);

7 %Normalization(‘‘C05’’, ‘‘Exba’’ ‘‘Cyp1’’ ‘‘l(3)02640’’ ‘‘Appl’’ ‘‘14-3-3e’’, 5);

8 %Exp_R(‘‘Atg1’’ ‘‘Aß42’’ ‘‘CathD’’ ‘‘Hsp70’’ ‘‘InR’’ ‘‘Lamp1’’ ‘‘Rab5’’ ‘‘Tor’’ ‘‘Hu_tau’’);

*The folder ‘‘X:\qPCR’’ in code #1, #2 and #3 needs to be changed to the appropriate path and filename so that SAS software can successfully access it. Input names of
genes and samples must exactly match those in the original dataset. Please note that it is possible but not necessary to use the same Excel file to save the raw Ct data
and exported results.
doi:10.1371/journal.pone.0029788.t002
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statistical tools. Thus users are the final decision-makers directing

the specific types of analytical procedures for their data.

Supporting Information

Figure S1 Pairwise variation (Vn/n+1) of candidate
reference genes. The arrow points to the minimal value (V5/6)

among 18 pairwise Vn/n+1 values.

(TIF)

Figure S2 Normalized expression ratios of target genes.
Target genes: Atg1 (Autophagy-specific gene 1), CathD (Cathepsin

D), Hsp70 (Heat shock protein 70), InR (Insulin-like receptor), Lamp1

(Lysosome associated membrane protein 1), Rab5 (Rab-protein 5),

Tor (Target of rapamycin), transgene Hu_tau (human microtubule-

associated protein tau) and transgene Ab42 (human amyloid beta 1–

42 peptide). Treatment types: A05 (transgenic animals expressing

human Ab42), T05 (transgenic animals expressing human tau), and

C05 (Ab42/tau noncarriers). The transgenes (Hu_tau and Ab42)

have high expression ratios due to no expression in the control

(C05). For endogenous genes, Hsp70 expression increases about 6

times in response to the expression of Hu_tau but not Ab42

transgene. Other target genes have no obvious change in response

to the expression of either Hu_tau or Ab42 transgene.

(TIF)
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