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Abstract

Reverse transcription quantitative real-time PCR (RT-gPCR) is a key method for measurement of relative gene expression.
Analysis of RT-gPCR data requires many iterative computations for data normalization and analytical optimization. Currently
no computer program for RT-gPCR data analysis is suitable for analytical optimization and user-controllable customization
based on data quality, experimental design as well as specific research aims. Here | introduce an all-in-one computer
program, SASQPCR, for robust and rapid analysis of RT-qPCR data in SAS. This program has multiple macros for assessment
of PCR efficiencies, validation of reference genes, optimization of data normalizers, normalization of confounding variations
across samples, and statistical comparison of target gene expression in parallel samples. Users can simply change the macro
variables to test various analytical strategies, optimize results and customize the analytical processes. In addition, it is highly
automatic and functionally extendable. Thus users are the actual decision-makers controlling RT-gPCR data analyses.
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Introduction

Quantitative reverse transcription real-time polymerase chain
reaction (RT-qPCR) is widely used in biomedical research and
diagnostic applications for measurement of relative gene expres-
sion. RT-qPCR quantification are easily obscured by non-specific
confounding factors resulted from sample-to-sample and run-to-
run experimental variations even following standardized experi-
mental methods and data collection criterion [1,2]. The most
important quality control for RT-qPCR quantification is to find an
accurate normalizer across samples [3,4]. Conventional data
normalization uses one or few reference genes that are determined
before experiments. These genes are commonly used as references
for different experiments. Practically, however, no gene has stable
expression under various experimental conditions. Emerging
evidence have showed that the expression stability of classical
reference genes varies greatly with experimental conditions
[5,6,7], supporting the necessity for data-specific validation of
reference genes. A practical strategy for robust data normalization
is to measure multiple (=10) reference genes as reference
candidates. Standard statistical algorithms have to be iteratively
implemented to determine what particular genes and how many
genes should be selected from the reference candidates to achieve
a better normalizer for a particular dataset [7,8]. Currently,
however, no efficient and flexible program is available for RT-
gPCR data analysis with incorporation of the standard statistical
algorithms for data-specific reference validation and analytical
optimization.

SASqPCR  (Supporting Information file “SASqPCR.sas”),
developed using SAS software, is an all-in-one computer program
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allowing users to perform RT-qPCR data analysis in a more
flexible and convenient way. The program provides a dynamic
interface for user-controllable customization based on data quality,
experimental design as well as specific research aims. Users can
easily perform unlimited iterative computations for testing various
combinations of different analytical strategies or customized
analytical processes. This manuscript briefly describes the working
rationale of this program. A real example is provided to illustrate
the application of the program for easy, fast and automatic data
analysis. The key algorithms, equations and annotated codes for
the program have been additionally described in a SASqPCR
Tutorial document available at http://code.google.com/p/sasqpcr/
downloads/list; however, understanding of this knowledge as well as
extensive SAS programming knowledge is not required for general
users in application of SASqPCR.

Methods

The workflow of SASqPCR

The key RT-qPCR variable used for quantification of gene
expression is threshold cycle (Ct). Ct values are primarily
determined by the gene-specific cDNA concentrations contributed
by particular biomedical conditions but are also confounded by
variations in sample preparation. Confounding variations among
samples have to be minimized by data normalization using one or
multiple internal reference genes [7]. Thus data analysis of raw Cit
values includes evaluation of PCR efficiencies, validation of
reference genes across samples, normalization of raw Ct values
and comparison of gene expression in parallel samples. Some of
the computations may be iteratively performed for analytical
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optimization based on data quality, experimental design and
specific research aims.

SASqPCR contains 5 macros designed for different computa-
tional tasks including estimation of PCR efficiencies (%oEfficiency),
evaluation of expression stability of candidate reference genes
(%Stability), determination of the optimal number of reference
genes for robust data normalization (% Optimization), calculation of
normalized expression ratios of target genes (%eNormalization), and
statistical comparisons of target gene expression between parallel
samples (%Fxp_R). These analytical tasks will be implemented
sequentially following a standard analytical workflow (Fig. 1). Each
macro has one or more macro variables (Table 1) allowing users to
optimize and customize their data analyses. Results from each
analytical step are automatically exported and saved in a user-
defined Excel file.

Estimation of PCR efficiency

Correction of PCR efficiencies is highly recommended in
quantification of gene expression using real-time PCR [4]. In
quantifiable PCR stage, the concentrations of PCR products
increases exponentially (2") with PCR cycles (n). Practically,
however, different primer sets may not work equally well. The
difference in PCR efficiencies (E) will affect the cycle-dependent
concentration of PCR product (C), i.e., C= Cy(1 + E)", where C

Data import
Check data integrity ‘ and variable consistency

PCR efficiency —

', Define exclusion criterion

_).

> | Exp. stability

Define control samples
and participant genes

— | Optimal ref. genes

l,Designate optimal ref. genes

|Norma|ized exp. ratios

for analytical optimization
Automatically export & save results

',User—defined operation

Excluding particular genes/samples

Statistical testing

Figure 1. The workflow of SASqPCR. Raw Ct data is imported as a
temporary SAS dataset. It is recommended, but not required, to check
data integrity and variable consistency using proper SAS procedures.
SASQPCR sequentially calculates PCR efficiency, expression stability of
candidate reference genes, optimal reference genes, normalized relative
expression of target genes, and makes statistical testing. Results are
automatically exported and saved. The exported results from each
analytical step may serve as a reference for assigning input macro
variables for the next step in the workflow. Users can also customize
their analyses by arbitrarily excluding particular genes and/or samples.
The interface of different computational components allows users to
get optimal results. The “user-defined operation” refers to any user-
developed programs to extend the analytical function of SASqPCR. Exp.,
expression; Ref., reference.

doi:10.1371/journal.pone.0029788.g001
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Table 1. Macro variables of SASqPCR.

Macro Variable Type Annotation

%Efficiency (dilut, grad);
dilut Numerical  Dilution factor of standard cDNA samples
grad Numerical ~ Order of dilution series

%Stability (E_excluded, References, Count);

E_excluded Numerical  Exclusion criterion based on PCR efficiencies
References Character  List of individual reference genes
Count Numerical Number of reference genes

%O0ptimization (Control, Count);

Control Character  Name of control cDNA samples

Count Numerical ~ Number of reference genes

%Normalization (Control, Opt_Ref, N);

Control Character ~ Name of control cDNA samples

Opt_Ref Character  List of validated reference genes

N Numerical  Number of optimized reference genes
%Exp_R (Target);

Target Character  List of target genes

doi:10.1371/journal.pone.0029788.t001

is the initial concentration of the gene-specific cDNA. Mathemat-
ically PCR efficiency is the percentage of successful PCR
amplification of gene-specific cDNA in each cycle. It is estimated
using serially-diluted standard cDNA samples prepared under the
same experimental condition as unknown cDNA samples. The
macro %Efficiency is for calculation of PCR efficiency based on the
equation E=1071/%r¢ _1 \here a linear regression model is fit
to the log-transformed relative concentrations of serially diluted
standard cDNA samples plotted against their corresponding Ct
values.

Expression stability of reference genes

Gene-specific cDNA concentrations are measured using Ct
values. However, the Ct is influenced by both specific biological
conditions and confounding variations that are non-specific and
non-reproducible in experiments. To offset the confounding
variations, stably-expressed internal reference genes are measured
simultaneously along with target genes for data normalization
across parallel samples. Internal reference genes are usually
selected from classical housckeeping genes that are mostly
recognized based on their biological functions and frequently
used as general-purpose reference genes in different experiments.
However, there is no absolute “housekeeping” gene with respect
to the stability of mRNA transcription, thus precluding the
suitability using the wuniversal reference genes for various
experimental conditions. Therefore internal reference genes for
robust data normalization have to be validated for their expression
stability across samples for each experiment [5,7].

The macro %Stability evaluates expression stability of candidate
reference genes. The method is developed primarily based on the
algorithm of geNorm, the most widely-used program for validation
of reference genes [4,9,10]. The key variable indexing the relative
expression stability of reference genes is M value, calculated as the
mean standard deviation of the log-transformed expression ratios
across samples for a particular gene relative to other genes
remaining in the gene panel of reference candidates [7,9]. The
calculation is iteratively performed by stepwise exclusion of

January 2012 | Volume 7 | Issue 1 | e29788



individual genes with the highest M value (i.e. the least stable gene)
from the panel until reaching the last three genes. The most stable
gene with the smallest M value is identified as a single gene in
SASqPCR rather than two genes tied for the best stability. In
addition, the expression stability of candidate genes is ranked
based on their reverse order of stepwise exclusion in iterative
calculation cycles rather than the absolute M values as using in the
geNorm program [7]. These modifications allow SASqPCR to be
more accurate in assessment of the relative expression stability of
candidate genes. As a parameter reflecting not only candidate
reference genes (across samples) but also cDNA samples (across
genes), the rank of expression stability or M values should not be
borrowed from one analysis or experiment to another. However,
current RT-qPCR users do not notice this important point.

Normalizer optimization

Inappropriate selection of internal reference genes for data
normalization may obscure the actual biological differences among
samples. Robust data normalization requires a data-tailored
normalizer [7]. To obtain such a normalizer, users need to
determine what particular genes and how many genes are sufficient
for robust data normalization. The optimal number of reference
genes is predicted by the pairwise variation (V,,/,+1), an index of the
relative stability of serial normalization factors (NF) using an
increasing number of reference genes [7,9].

The macro %Optimization calculates V,, /.1 based on the geNorm
algorithm with slight modification. The V,,/,,4; across samples are
the variances of serial log-transformed NF ratios using N relative to
N+1 reference genes. Note that the order for stepwise inclusion of
individual reference genes is based on their ranked expression
stability rather than the magnitudes of their M values. The minimal
Vi /n+1 indicates the most stable NF achievable within a particular
set of cDNA samples and a particular panel of reference candidates,
thus corresponding to the optimal number of validated reference
genes [7]. Similar to the M value, the optimized set of reference
genes should not be adopted from one analysis to another due to its
relying on particular data.

Compared to other programs, SASqPCR calculates V, 11
starting from V9 rather than the usual V3,4. This improvement
has practical significance for robust data normalization, since it
preserves the possibility that single or two properly validated
reference genes in some cases are sufficient to normalize target gene
expression rather than the necessity of multiple (=3) genes [7].

Data normalization

Relative expression of target genes is determined using the
macro %Normalization. The underlying algorithm is the “delta delta
Ct (AACt)” method [4] by which target gene expression in treated
cDNA samples is first compared to control cDNA samples and
then normalized to the expression of reference gene(s). The
normalizer is calculated as the geometric mean of multiple
reference genes [9] or single gene validated in the previous
analytical steps. Reference gene(s) for normalizer calculation can
also be arbitrarily selected by users. The differential expression of
target genes in parallel samples is reported as the fold change to
reflect up- or down-regulated expression in response to particular
experimental conditions. After running of this macro, a temporary
SAS dataset (called “Exp_R”) is generated that can be
manipulated for user-defined analytical goals, for example, cluster
analysis of expression profiles for multiple genes and samples.

Normalized expression ratios and statistical test

Normalized expression ratios (R) of target genes and their
standard errors (SE) are reported using the macro %£Exp_R. The
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calculation of R and SE follows standard algorithms [4,9]. This
macro also performs Student’s t-test as a default statistical method
for comparison of target gene expression between parallel
treatment types. Two-tailed P value is reported. For examining
multiple genes/treatment types, users may consider reporting P
values sequentially adjusted using Benjamini and Hochberg False
Discovery Rate to correct for multiple comparisons [11]. Even
though the t-test is the most widely used method for statistical
validation of significance in quantitative differences, selection of
the appropriate statistical method must be based on particular
experimental design and sample size. SASqPCR preserves the
capacity for implementation of other statistical methods, for
example ANOVA, permutation-based testing, Mann-Whitney-
Wilcoxon testing, etc for advanced users.

Test data

No specific data format is required for application of SASqPCR.
Ct values can be saved in an Excel file, a user favorite database file
or even as a plain text file. There is no limitation on the size of
the raw dataset. At least 5 variables are required for using the
program: gene, sample, type, serial and Ct (see SASqPCR
Tutorial for the details). Here a real RT-qPCR dataset is used
to illustrate how to use SASqPCR. The dataset contains 262
standard and 500 unknown individual real-time PCR reactions.
There are 19 candidate reference genes and 9 target genes
measured across 3 treatment types relevant to neurodegenerative
insults in a Drosophila model of Alzheimer’s disease [8,12]. The
dataset is sampled from the data using in a previous study [7]
where the methods and materials for RT-qPCR experiments have
been described. The Ct values of this example data are saved in an
Excel spreadsheet “Raw_Ct” in the file “PCR_data.xls” available
at http://code.google.com/p/sasqpcr/downloads/list.

Results

After starting SAS software (SAS Institute Inc., Cary, NC,
USA), input and submit the SAS codes shown in Table 2. Users
need to arbitrarily designate an Excel file (Code #1 in Table 2) to
“myresult” for saving output results. If the designated Excel file
does not exist, the program will generate it with saved results into
multiple spreadsheets corresponding to the implementation of
different analytical steps. If the designated file already exists, the
program will automatically update it. Here all results generated
from the example data testing are saved in the Excel file
“PCR_data.xls” with different spreadsheets as indicated below.
The PCR_data.xls is available at http://code.google.com/p/
sasqpcr/downloads/list.

The raw Ct data is imported as a temporary SAS dataset by
running Code #2 in Table 2. Users can review the new dataset in
the SAS library or check the data integrity and variable
consistency using proper SAS codes (not included). Load
SASqPCR by running Code #3 in Table 2, given that the
program is saved as “X:\qPCR\SASqPCR.sas”. I recommend
that the 5 macros be performed sequentially and separately. Users
need to input numeric or character values for macro variables as
defined in Table 1.

First, estimate PCR efficiencies for all primer sets by running
Code #4 in Table 2. Here the standard cDNA samples have 5
step 10 fold dilution series. Output results are automatically saved
in a spreadsheet “Efficiency” in the pre-defined Excel file. The
results contain multiple parameters including PCR efficiency and
squared R for evaluating RT-qPCR quality. Users may exclude
particular genes from further analyses based on PCR efficiency, R
square or other user-justifiable criteria.
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Second, assess the expression stability of candidate reference
genes by running Code #5 in Table 2. Users can arbitrarily
include or exclude particular genes from analyses by changing the
macro variables. Here those genes with PCR efficiency <95% are
excluded. Total 19 candidate reference genes participate in the
assessment of their relative expression stability. Output results are
automatically saved in a spreadsheet “M_value” in the pre-defined
Excel file. The results contain M values of the candidate reference
genes and their ranked expression stability. Note that the rank
sometimes may not exactly match the sorting order of M values,
because the rank represents the reverse order of stepwise exclusion
of individual genes in each iterative calculation cycle. The priority
in selection of particular reference genes for data normalization is
based on their rank rather than their M values.

Third, evaluate pairwise V,,,.; to determine the optimal
number of reference genes by running Code #6 in Table 2. Here
the control ¢cDNA samples are “C05”. Total 19 candidate
reference genes participate in the calculation. Output results,
containing V,,9 to Vjg/19, are automatically saved in a
spreadsheet “Pairwise_V” in the pre-defined Excel file. Visuali-
zation of the result indicates that the V5,6 has the lowest value
among the 18 pairwise V, /4 values (Fig. S1), suggesting that the
optimal number of reference genes is 5. Thus 5 reference genes are
selected for data normalization from the spreadsheet “M_value”
starting from the top: i.e. “Exba” “Cypl” “1(3)02640” “Appl> and
“14-3-3¢” (see “PCR_data.xls” for the detail).

Forth, calculate the normalized expression ratios of target genes
and make statistical comparisons among parallel samples by
running Code #7 and #8 in Table 2. Here the control cDNA
samples are “C05”. The 5 validated reference genes are used for
data normalization. The results, saved in a spreadsheet “Ex-
p_ratio” in the pre-defined Excel file, include the normalized
expression ratios (R) of target genes between the control and
treatment samples, standard errors (SE_R), two-tailed P values by
Student’s t test, and the P values adjusted for multiple
comparisons. The results are visualized using independent
software after data analysis (Fig. S2).

It is convenient for users to test different analytical combinations
by excluding particular samples and/or genes and iteratively
performing the %Stability, %Optimization and %eNormalization to
optimize results. Thus users can assign particular parameters for
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Table 2. The analytic procedure of the example RT-qPCR data using SASqPCR.
Code# SAS code for analysis of study example data”
1 Filename myresult “X:\qPCR\PCR_data.xls"; run;
2 proc import out=work.raw_ct datafile = “X:\qPCR\PCR_data.xls”
dbms =Excel replace; sheet ="Raw_Ct"; run;
3 %Include “X:\qPCR\SASQPCR.sas"; run;
4 %Efficiency(10, 5);
5 %stability(0.95, “14-3-3e” “Act5C” “Appl” “CG13220” “Cyp1” “Ef1a48D"” “Elav”
“Exba” “Gapdh2” “GstD1” “Rap2l” “Robl” “RpL13A” “RpL32”
“Sdha” “Su(Tpl)” “aTub84B” “elF-1A" “I(3)02640", 19);
6 %Optimization(“C05", 19);
7 %Normalization("C05", “Exba” “Cyp1” “I(3)02640" “Appl” “14-3-3e”, 5);
8 %Exp_R(“Atg1” “AB42" “CathD” “Hsp70” “InR” “Lamp1” “Rab5” “Tor” “Hu_tau”);
*The folder “X:\qPCR" in code #1, #2 and #3 needs to be changed to the appropriate path and filename so that SAS software can successfully access it. Input names of
genes and samples must exactly match those in the original dataset. Please note that it is possible but not necessary to use the same Excel file to save the raw Ct data
and exported results.
doi:10.1371/journal.pone.0029788.t002

each macro variable in each analytical step based on their
experimental design, data quality and analysis optimization.

Discussion

Analysis of RT-qPCR data requires many complex iterative
calculations particularly for data-specific validation and optimiza-
tion of data normalizers. It is thus important for general users to
have a simple computer program for both automatic data analyses
and user-controllable customization based on particular experi-
mental considerations. SASqPCR is developed particularly for
these analytical tasks. It incorporates all computational functions
important for RT-qPCR data analysis including assessment of
PCR efficiencies, validation of candidate reference genes,
normalizer optimization, normalization of confounding variations
across samples, and statistical testing of the association of target
gene expression with specific experimental conditions. Technically
SASqPCR improves the geNorm program in evaluation of the
expression stability of candidate reference genes. It also preserves
the possibility that an accurate normalizer sufficient for data
normalization may be a single, two or multiple properly validated
reference genes [7].

SASqPCR emphasizes flexibility and straightforwardness in
data analysis. First, the input data is raw Ct values of individual
genes and cDNA samples with no limitation to the data size or
format. Thus multiple combined datasets or PCR array data can
be analyzed. Users can manage and analyze their data in a
traditional way rather than relying on the proprietary instruments
or plate-based data formats. Users can also include more
experimental variables in their datasets and combine the
SASqPCR program with any other SAS procedures for their
particular analytic purposes. Second, SASqPCR provides a
dynamic interface for users to optimize results based on data
quality, experimental designs and research aims. By simply
changing the key macro variables, users can quickly make
numerous iterative computations and thus test various combina-
tions of different analytical strategies. Third, final results exported
by SASqPCR are basically numeric values that give users great
freedom to determine how to visualize their results for publications
or presentations. In addition, users can also check data quality,
view intermediate details of the analytical procedures, customize
the analytical processes and even extend analyses to use advanced
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statistical tools. Thus users are the final decision-makers directing
the specific types of analytical procedures for their data.

Supporting Information

Figure S1 Pairwise variation (V,/,+1) of candidate
reference genes. The arrow points to the minimal value (V5,¢)
among 18 pairwise V,,/,1) values.

(TIF)

Figure S2 Normalized expression ratios of target genes.
Target genes: Atgl (Autophagy-specific gene 1), CathD (Cathepsin
D), Hsp70 (Heat shock protein 70), InR (Insulin-like receptor), Lamp!
(Lysosome associated membrane protein 1), Rab5 (Rab-protein 5),
Tor (Target of rapamycin), transgene Hu_tau (human microtubule-
associated protein tau) and transgene 442 (human amyloid beta 1—
42 peptide). Treatment types: A0S (transgenic animals expressing
human AB42), T05 (transgenic animals expressing human tau), and
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