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Abstract

Humans remove large amounts of biomass from natural ecosystems, and large bodied high trophic level animals are
especially sensitive and vulnerable to exploitation. The effects of removing top-predators on food webs are often difficult to
predict because of limited information on species interaction strengths. Here we used a three species predator-prey model
to explore relationships between energetic properties of trophodynamic linkages and interaction strengths to provide
heuristic rules that indicate observable energetic conditions that are most likely to lead to stable and strong top-down
control of prey by predator species. We found that strong top-down interaction strengths resulted from low levels of energy
flow from prey to predators. Strong interactions are more stable when they are a consequence of low per capita predation
and when predators are subsidized by recruitment. Diet composition also affects stability, but the relationship depends on
the form of the functional response. Our results imply that for generalist satiating predators, strong top-down control on
prey is most likely for prey items that occupy a small portion of the diet and when density dependent recruitment is
moderately high.
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Introduction

Ecological forecasting has emerged as a priority for ecologists

over the last decade [1], given growing recognition of human

impacts on ecosystems and the need for improved capability to

predict their outcomes. Targeted removal of apex predators is one

widespread anthropogenic impact affecting both terrestrial [2,3,4]

and aquatic ecosystems [5,6]. Predicting the nature and magnitude

of direct and indirect effects that follow from these removals is

limited by a paucity of detailed, site-specific information on

interaction strengths in natural food webs. Yet, recent syntheses

have revealed that top-down control of prey populations is both

pervasive and highly variable among and between ecosystems

[7,8]. Therefore, tools to improve our ability to identify conditions

under which direct effects of predator removals might be of

greatest concern are in high demand.

At least two approaches have seen widespread use in measuring

the effects of perturbations in predator populations in predator-

prey systems. Experimental manipulations are arguably the most

powerful and direct way to estimate this kind of interaction

strength [9,10,11,12]. Alternatively, time series and path analysis

can also identify interaction strength when long term data on

population densities are available [13,14]. Both of these methods

have been and will continue to be primary ways of estimation, but

logistic or data requirements may preclude their use in many

ecosystems. Large scale interaction strength experiments are

logistically difficult in many environments such as coastal ocean

ecosystems, and for species with large home ranges. Time series

approaches or path analyses require long time series of population

densities collected at a temporal frequency that is sufficient to

distinguish between direct and indirect effects. Thus, these

methods require monitoring data spanning many generations,

and are likely to reveal impacts only after they have occurred.

Because these methods may not be practical for many

ecosystems, applied ecologists often rely on other information to

identify potential strong interactions between species. For instance,

data on abundances, body sizes, consumption rates, and diet

composition are commonly collected and can be used to develop

energetic webs diagramming energy flow through trophic

configurations (e.g. [15]). These depictions are useful in identifying

important energy sources for individual species within a system, as

well as energy sources for a whole system. Ecologists have noted,

however, that strong energetic links are not generally indicative of

strong dynamic interaction strengths [9,16,17,18]. Thus, our

ability to predict interaction strengths from energetic information

remains limited.

This paper investigates the relationship between interaction

strength and energetics to develop heuristic ‘‘rules of thumb’’

describing energetic conditions that are most likely to give rise to

strong top-down interaction strengths. We approached this

modeling problem from the same perspective facing applied

ecologists who have a set of observations on biomasses of predator

and prey populations and the energetic flux between them. Our

work seeks to derive generalizations that might hold over many
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ecosystems, so we use simple abstract models (strategic, sensu [19])

rather than a detailed model constructed around a specific

ecosystem. To this end, we developed a generalized three-species

predator-prey model and used this model to explore the patterns

of interaction strength that emerged from alternative energetic

conditions.

Theoretical research coupling energetics with dynamic preda-

tor-prey models over the last decade has demonstrated a common

motif that provides stability in food webs consists of one strong

interaction coupled with multiple weak interactions [20,21]. Our

work extends previous research in this area in two important ways.

First, most theoretical work has defined interaction strength as a

purely per-capita effect [21], i.e. the per-capita effect of a change

in abundance of one species on another (but see [22] for an

exception). We maintain that it is equally important from a

management and conservation perspective to understand the net

effect of widespread depletion of predators on prey species.

Second, our goal is to use simple models to reveal generalized

patterns about energetic configurations - which might be identified

based on relatively common types of available data - that give rise

to stable and strong top-down regulation of prey. These

generalizations comprise heuristics that can guide more detailed

study and forecasts about effects of predator removals on prey

populations in an applied setting.

Methods

Our modeling perspective is fundamentally different from those

commonly employed in theoretical derivations of predator-prey

models. Most derivations specify underlying biological processes

for each population and then use those assumptions to define

steady state conditions. From an ecological forecasting perspective,

the path of information flow is reversed: the steady state conditions

are observed and some information about the nature of the

underlying processes is inferred so that predictions about the

effects of species removals can be made [23]. We explored what

information about interaction strength can be abstracted from

knowledge of predator–prey population biomasses and the energy

flux between them. Our ultimate goal was to identify processes

that lead to more stable predator-prey interactions, with the

underlying assumption that more stable configurations are more

likely to persist and thereby be more prevalent in nature.

Predicting strong top-down control first requires defining what

constitutes a strong interaction. Here, we refer to the effect of

removal of a predator on equilibrium prey response as

‘‘interaction strength,’’ which is analogous to ‘‘absolute prey

response’’ as defined by Berlow et al. [24]. Because experimental

manipulation studies routinely use this metric, it provides a way to

couple our analytical model with experimental data or hypothet-

ical scenarios of predator removal. Multiple aspects of our model

could be considered interaction strength metrics (e.g. consumption

rates, functional responses, and elements of the community

matrix). However, we focus on how various parts of our model

lead to strong effects of perturbations in predator populations, as

that is often most meaningful in an applied management setting.

Model Structure
We developed a simple predator-prey model based on

commonly used functions that relate predator and prey population

dynamics. Model parameters were then related to energetic

properties that might be observed, and we explored how those

properties constrain the underlying behavior of the system. Finally,

we examined the range of possible predator-prey dynamics that

may have produced observed steady state conditions.

In our model, we allow the predator population’s total biomass,

P, to be composed of three alternative energy sources. The first

two sources are the consumption of a preferred and alternative

prey. The third source is reproduction, whereby a predator’s

offspring ‘‘recruit’’ to the adult stage (following growth and trophic

ontogeny). Thus, predator biomass greatly exceeds that invested in

offspring, and offspring are trophically de-coupled from the

predator-prey dynamics occurring during the adult stage.

The biomass dynamics of predator and each prey species (B1

and B2) include these three energy fluxes

dB1

dt
~RB1(B1){F1(B1,B2,P)

dB2

dt
~RB2(B2){F2(B2,B1,P)

dP

dt
~RP(P)zG1(B1,B2,P)zG2(B1,B2,P){M(P)

ð1Þ

The functions RB1(B1) and RB2(B2)describe the net production

rate of each prey species in the absence of predation. The

functions F1(B1,B2,P)and F2(B2,B1,P) describe predator con-

sumption of prey biomass. Note that the model implicitly assumes

no direct interaction between the two prey species. For predators

the functions denoted G describe energy gained from consump-

tion: G1(B1,B2,P) describes the energy gained from consuming

prey species 1, while G2(B2,B1,P)describes predator’s energy gain

from consuming an alternative prey. RP(P) describes the

recruitment of predator offspring that have completed ontogeny

into the adult stage. Lastly, the function M(P) describes biomass

lost through mortality.

This abstract model can be used to identify how model

components relate to real-world, observable quantities. Namely,

the observed steady state quantities P* and B1* and B2* tell us

something about the values of the model functions because these

values are constrained to produce dB1/dt = dB2/dt = dP/dt = 0.

Also, the observed total consumption rate of each prey by

predators equals the value of the function F1(B1,B2,P) or

F2(B2,B1,P), so that the parameters for F1(B1,B2,P) and

F2(B2,B1,P) must be bounded to match the observed consumption

rates. We adopt this framework of inverse modeling in viewing

how alternative energetic conditions imply differences in the

underlying model parameters and functions, and how those in turn

affect the likelihood of top-down control. For instance, given an

observed consumption rate on prey species 1 (C1), there is an

equilibrium prey biomass, B1*, such that RB1(B1*) = C1. If B1* is

known, one can solve for the parameters of the function RB1(B1)

that satisfy this equality.

Specified Model
We adopt commonly-used representations for prey growth, prey

consumption, predator recruitment, and mortality to explore

alternative energetic configurations.
Prey growth. We used the logistic model to represent the

production function of prey species j, RBj(Bj):

RBj
(Bj)~rjBj(1{Bj=Kj) ð2Þ

Because this model is in biomass units, the parameters rj denote

the maximum ratio of production to biomass for prey species j. At

equilibrium RB1(B1) equals C1 and RB2(B2) equals C2 (observed

total consumption of prey species 2 by the predator), which leads

Predicting Top-Down Control
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to two possible prey equilibrium values for prey species j:

Bj �~
Kj rj+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

j {4rjCj=Kj

qh i

2rj

ð3Þ

Two points are salient about this relationship. The first is that

for a given rate of consumption on prey, there are two possible

underlying models: one of which produces strong top-down

control, the other produces weak top-down control (Fig. 1a). This

relationship is helpful because we can explore model behavior

under two alternative underlying models (hereafter, we refer to

these as strong- and weak-control), given identical steady state

energetics. Second, the magnitude of top-down control for strong

interactions (defined as the difference between Bj* and Kj) is

inversely related to the steady state consumption rate on prey

(Fig. 1b).

Consumption. We considered both Type I and Type II

functional responses to depict the consumption of prey by

predators. For the Type I functional response, the predation

function Fj for prey species j depends only on that species’ biomass

and predator biomass:

Fj Bj ,P
� �

~ajBjP ð4Þ

Because Fj(Bj,P) must necessarily equal Cj, and Bj* is calculated

from (3), the attack rate parameter, aj, is calculated directly from

observed predator biomass:

aj~Cj=½Bj
�P��: ð5Þ

We used the following form of the multi-species type II

functional response:

Fj(Bj ,Bi,P)~
CmaxajBjP

CmaxzajBjzaiBi

ð6Þ

where Cmax is the maximum possible, per-capita feeding rate of

predators, aj is the rate of effective search of predators on prey j.

The attack rate parameters can be solved from the observed Cj*,

P* and by estimating prey biomasses B1* and B2* from (3):

aj~
CjCmax

Bj
�(CmaxP�{C1{C2)

ð7Þ

Thus, the entire system of model parameters can be estimated

based on steady state properties.

Predator dynamics. Describing predator dynamics requires

specifying four functions. The energy assimilation rates are related

to the consumption rate on each species. We chose the simplest

representation of this process, whereby assimilated energy is a

linear function of consumption related through a constant species-

independent assimilation efficiency term ( m). Thus at equilibrium,

Gj(Bj,Bi,P) = mFj(Bj,Bi,P) = mCj. Predator recruitment was chosen

to be a density dependent Ricker function to ensure that predators

had a non-zero equilibrium biomass in the absence of either prey

species:

RP Pð Þ~aPexp {bPð Þ ð8Þ

We parameterized the Ricker function so that it would not

contribute to stability calculations described below. Specifically, by

setting b = 1/P*, we ensured that dRP(P)/dP = 0. Lastly, the

predator mortality function M(i) was chosen as a simple linear

function of predator biomass: M(P) = mP.

For any observed P*, C1 and C2, the values of the recruitment

and mortality function need to be calculated to ensure dP/dt = 0.

Either m or a needs to be specified; we chose to always specify m

and solve for a:

a~
mP�{m½C1zC2�
P� exp ({bP�)

ð9Þ

Selecting rate parameters. Yodzis and Innes [25] identified

biological constraints on the values of rate parameters used in

Figure 1. Relationship between predator consumption rate and
top-down interaction strength on prey. A typical prey production
function, showing two possible equilibrium prey biomasses for a given
total observed consumption rate of prey by predators. Model solutions
based on the point on the left correspond to strong top-down control,
while model solutions based on the point on the right correspond to
relatively weak top-down control. Increasing total consumption
weakens strong interactions and strengthens weak interactions.
doi:10.1371/journal.pone.0029723.g001

Predicting Top-Down Control
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these models based on predator: prey body size ratios and whether

they represented vertebrates or invertebrates and endotherms or

ectotherms. We based our model parameterizations by assuming

all species are vertebrate ectotherms, however we note that

assuming endothermic predators (higher per-capita consumption

rates and lower gross assimilation efficiency) does not affect the

model’s qualitative results (i.e. the exact points at which equilibria

switch from being stable to unstable varies depending on the

particular parameterization, but qualitatively the patterns hold

across a large range of predator-prey pairs). Yodzis and Innes [25]

scale all biological rate parameters relative to the maximum

production: biomass ratio of the basal resource and scale biomass

density units such that K of the basal resource equals 1. For

simplicity, we assume that r1 = r2 and K1 = K2. If we assume a

predator: prey biomass ratio of 0.05, then Cmax should not greatly

exceed 0.8 and m should not greatly exceed the maximum

production to biomass ratio of the predator population, the latter

based on allometric scaling (ca. 20.2). All parameter values used

in all scenarios are outlined in Table S1.

Stability of Energetic Scenarios
We used specific parameterization routines described below to

evaluate which energetic conditions were most likely to produce

stable, top-down control. Stability has commonly been used as a

proxy for the likelihood of the predator-prey system persisting in

nature [26]. We used two separate measures to quantify stability.

The first is the asymptotic rate at which the system moves from a

perturbation back to an equilibrium point (return rate). Negative

values imply that the equilibrium is unstable, while small positive

values imply slow recovery from a perturbation. While return rate

gives a measure of long term behavior after perturbation, reactivity

provides an analogous rate assessed immediately following

disturbance. Positive values of reactivity imply that some

perturbations initially amplify in magnitude. Thus, the most stable

systems are those with large (positive) return rates and negative

reactivities. Both reactivity and return rate are calculated from the

nine partial derivatives of the three dynamic equations in (1) with

respect to B1, B2 and P [27,28].

Description of Energetic Scenarios
We considered three alternative energetic conditions that might

have bearing on the stability of predator-prey systems. In all

scenarios we assume a strong top-down control of the predator on

prey species 1 (left-hand equilibrium in Figure 1a). The first

scenario evaluated predator per-capita consumption (Fig. 2a). In

this first scenario, we specified a constant steady state total

consumption rate, and then consider model stability under a suite

of alternative predator biomasses and per-capita consumption

rates (pc). Our second energetic scenario explored the composition

of prey consumption. Predators might be generalists or their diets

may be dominated by a single prey species (Fig. 2b). To evaluate

the impact of prey diet composition on stability, we specified the

fraction of predators’ diet that was composed of species 1 (pD),

predator biomass and held total predator consumption constant,

and adjusted C1 and C2 according to the value of pD. For our third

scenario, we considered the relative importance of consumption

and recruitment in the predators’ energy balance; some popula-

tions might receive little biomass (energy) from recruitment of

offspring (for example, species that undergo ontogenetic diet

shifts), while for other predators, this energy source may be

substantial (Fig. 2c). To explore these effects, C1, C2 and P* were

held constant, and we adjusted the proportion of energy input

derived from recruitment, denoted pr. For each pr, we calculated

total recruitment, and the predator mortality rate that would

therefore be needed to achieve steady state.

Results

Scenario 1: Per-capita consumption rates
We first considered the scenario when predators exert strong

control on prey species 1 but weak control on prey species 2 and

there is no satiation in the predator’s functional response.

Regardless of the assumed values of other parameters, reactivity

is always greatest for high per-capita consumption rates (Fig. 3).

Return rate showed a more complex relationship with per-capita

consumption rate, and this relationship depended on the assumed

value for the predator mortality rate (m). When m is set to the

upper bound of the biologically plausible range (ca. 0.2, based on

presumed predator: prey body size ratios), return rate initially

increases with per-capita consumption, eventually reaches a

threshold value, and then declines. Over the range of parameter

values where return rates increase, model equilibria exhibit no

oscillatory behavior and strengthening per-capita effects of

predators on prey allows systems to return to equilibrium more

quickly because prey populations become more sensitive to

Figure 2. Schematic of predator energetic configurations. The
size of the boxes surrounded by solid lines (B and P) represent their
relative biomass in different configurations. Arrows indicate the
direction and relative magnitude of energy flux. The scenarios are as
follows: per capita consumption (A), consumption of preferred prey
versus other prey (B), and contribution of recruitment, R (C).
doi:10.1371/journal.pone.0029723.g002
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changes in predator population sizes. Eventually this interaction

becomes too strong and the system begins to destabilize in the

form of oscillatory behavior (this is demarcated by the abrupt shift

in the slope of the plot of return rate vs. per-capita consumption,

Fig. 3a).

The destabilizing effects of high per-capita consumption are

stronger when predation is represented by a saturating functional

response (maximum consumption rate = 0.8, Fig. 3b). Reactivity

increases sharply with per-capita consumption rate over the entire

parameter space considered. Regardless of the values of the other

parameters, return rate declines with increasing per-capita

consumption rate producing negative (i.e. unstable) values over

much of the range. These relationships reflect the fact that the

well-known destabilizing effects of saturating functional responses

are greatest when predators are feeding near their asymptotic rate.

Scenario 2: Diet composition
In this scenario we asked whether the stability of the predator-

prey system is enhanced or diminished by changing the relative

importance of two alternative prey. Throughout this scenario, we

assume strong control on prey species 1, and denote the

proportion of total consumption comprised of this species as pD.

When the second prey species is under weak control, we find that

reactivity declines and return rate increases as the contribution of

prey species 1 to the diet is increased, regardless of whether

predation is modeled with or without satiation (Fig. 4a). This result

is largely due to the fact that changing the predator’s diet changes

the strength of top-down control on the two prey species. That is,

increasing pD increases consumption on prey species 1 while

decreasing consumption on prey species 2. Because of the different

marginal effects of consumption that occur when equilibrium

abundance is on the left or right hand side of the curve in

Figure 1a, these changes have different effects on the strength of

interaction of the two species. Because prey species 1 is presumed

to be strongly top-down controlled (left-side of function, Figure 1a),

increasing pD enhances consumption and therefore weakens the

interaction strength on this species (Figure 1b). At the same time,

increasing pD decreases consumption on prey 2, and because this

species is on the right-hand side of the function (Figure 1a,b) this

causes the interaction strength to be weakened as well. Thus, the

effect of increasing pD is to weaken the predator’s interaction

strength on both prey species which increases model stability as

measured by reactivity and return rate. In contrast, if the predator

exerts strong top-down control over both prey species, increasing

pD decreases the strength of top-down control for prey 1 and

simultaneously increases the strength of top-down control for prey

2 to maintain constant total consumption.

Another way to examine the effect of shifting predator diet on

stability is to presume fixed interaction strength of predators on

each prey species. This can be done by fixing the equilibrium

biomasses of prey species 1 and 2 at a specified value to produce a

strong or weak interaction and adjusting the maximum production

rate, r, to satisfy the equilibrium condition:

r1~
pDCtotal

B1
� 1{B1

�
=K2

� �

r2~
(1{pD)Ctotal

B2
� 1{B2

�
=K2

� �

With a non-saturating functional response, reactivity was always

negative (Fig. 4b) and all perturbations from equilibrium result in

the system initially moving back towards equilibrium. Return rates

generally increased with increasing pD, however when pD

approached 1 (pD.0.95), return rates declined rapidly. This result

occurs because extremely low attack rates on prey 2 decouple prey

29s dynamics from the predator. In general, both measures of

stability point to more stable outcomes in our model when a

dominant part of the predators’ diet is composed of prey items that

are strongly controlled by predation. The mechanism behind these

outcomes in our model is that increasing pD leads to increased

consumption of (and therefore higher attack rate on) prey species

1, the species that is most strongly controlled by predation. One

can therefore think of the scenarios when pD is large as one in

which predators have a high attack rate on a top-down controlled

prey species and a low attack rate on another prey species that is

largely regulated by density dependent resource limitation. Setting

pD to high values requires that r1 be quite large. As a result, small

reductions in predator biomass result in rapid increases in prey

biomass, which in turn fuels the recovery of the predator back to

equilibrium. In contrast, when pD is low, both the attack rate on

prey 1 and the maximum production rate are also low, such that

there is little response of prey species 1 to a small perturbation in

predator biomasses.

Figure 3. Effect of per-capita feeding rate on model stability.
Total equilibrium consumption on each prey is held constant, but per-
capita feeding rate (pc) and predator biomass is adjusted,
C1 = C2 = 0.05; m = 0.1, m = 0.2. The solid line indicates return rate and
the dashed line indicates reactivity. (A) Predator consumption is
modeled with a non-saturating functional response. (B) Predator
consumption is modeled with a saturating functional response,
Cmax = 0.8.
doi:10.1371/journal.pone.0029723.g003

Predicting Top-Down Control
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The impact of predator diet composition on model stability is

completely reversed when predation is constrained by handling

time or satiation (Figure 4c). Reactivity is initially negative for

small values of pD, but increases rapidly as the diet fraction

consisting of prey 1 increases. More notably, return rate is positive

for only small values of pD and becomes negative (unstable

equilibrium) at low to intermediate values of pD. The response of

the model dynamics to pD is driven largely by the instability in the

linkage between the predator and prey1. When consumption rates

on prey 1 are low, the stabilizing density-dependent effects in the

logistic function overwhelm the destabilizing effects of inverse

density dependence in the functional response. As diet composi-

tion shifts to include more preferred prey, this produces an

increase in total consumption of prey 1 (while maintaining a

constant total predation rate of predators relative to their

maximum rate), so that the destabilizing effects of predation

become stronger than the stabilizing effects.

Scenario 3: Contributions of consumption and
recruitment

Here we asked whether a system that is otherwise unstable

(positive reactivity and negative return rate) might be stabilized by

adjusting the relative importance of consumption and recruited

offspring. We considered the most unstable case examined thus

far: a saturating functional response, with high per-capita

consumption rates of prey and low predator biomass. Total

recruitment was adjusted to be a fraction pr of the total energy

input. We solved for the parameter a: a~
prm(C1zC2)

(1{pr)P� exp ({bP�)

and to satisfy equilibrium, m =aexp(2bP*)+ m(C1+C2)/P*. In

general, increasing the proportion of energy derived from

recruitment improves stability with respect to both reactivity and

return time (Fig. 5). Specifically, oscillatory model behavior

decreases as pr increases until density dependence in recruitment

becomes so high that it destabilizes the system. Changing pr only

affects one component of the stability calculations, the derivative of

the predator dynamic equation with respect to predator biomass.

When pr is set low, recruitment and mortality are low to satisfy

equilibrium conditions. Because we wanted to ensure that the

choice of P had no bearing on the model stability through its affect

on recruitment, parameters of the recruitment function were

chosen so that its slope with respect to predator biomass is 0 when

at equilibrium (it neither contributes to, nor undermines the model

Figure 4. Model stability vs. the proportion of predator diet
comprised of top-down controlled prey species. (A) Total
predator consumption is held constant, so that the equilibrium
consumption of predators on each prey species is variable. Predator
consumption is modeled with a saturating functional response. (B)
Same as A, but the parameters of each prey species production function
is adjusted so that interaction strengths are held constant. Satiation is
modeled as a non-saturating functional response. (C) Same as B, but
with a saturating functional response. Model parameters:
m = 0.2; m = 0.1; C1 + C2 = 0.2; Cmax (if used) = 0.8; P* = 1, lines are as
defined in Figure 1 A and B.
doi:10.1371/journal.pone.0029723.g004

Figure 5. Effect of the proportion of predators’ energy derived
from reproduction (pr) on model stability. Reactivity of an
unstable model cannot be made negative by increasing the proportion
of energy from recruitment, but the return rate can be increased. The
stabilizing effects of recruitment-derived energy erode when recruit-
ment dominates energy inputs to predators. Model parameters:
P* = 0.75; C1 = C2 = 0.1.
doi:10.1371/journal.pone.0029723.g005

Predicting Top-Down Control
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stability). In biological terms, this means that for very small

changes in P, there is little change in predator recruitment.

The stabilizing effects from increasing the relative contribution

of recruitment are not universal. If recruitment becomes too large

of a source of energy compared to consumption, the predator

dynamics become decoupled from the dynamics of the underlying

prey. This means a drop of prey species 1 biomass will produce

only modest reduction in predator biomass, which in turns ensures

a continuing high consumption pressure on prey species 1. In these

cases, the model can become destabilized by causing prey species 1

to either become extinct or move to a new equilibrium with a

reduced top-down control from predators (depending on the

nature of the perturbation). A relevant biological example is an

adult fish population where most of the biomass growth came from

new individuals recruiting from lower age classes, rather than from

somatic growth due to prey consumption in the adult stage. Small

changes in the strongly controlled prey populations will not be felt

by the predator population in this case, because its dynamics

would not be driven by consumption.

Discussion

Here we used a theoretical model to develop rules of thumb to

identify energetic conditions that might predispose strong top-

down control. Specifically, we used a simple and tractable model,

parameterized with biologically plausible rates, to evaluate

hypothetical energetic conditions to determine what they imply

about the stability of strong top-down predator control. Our model

suggests that at the population level the strongest possible

interactions occur when total energy flow from prey to predators

is relatively low. This somewhat counter-intuitive result is

understood by recognizing that when predators exert strong

control on prey, they can deplete prey to very low levels so that

total consumption of prey by predators is low. Moreover, these

energetic configurations tended to be stable compared to

configurations with higher rates of energy flow. However, the

model also revealed that this finding was dependent on the shape

of the functional response. High diet fractions were most stable for

non-saturating functional responses while low diet fractions were

most stable for saturating functional responses. Finally, our model

showed that high rates of energy flux from recruited offspring,

themselves dependent on different prey resources, can stabilize

otherwise very unstable predator-prey linkages. These heuristics

can guide decisions about future data collection that can then

refine hypotheses about key ecosystem players and interactions.

Recent work by Berlow et al. [22] predicted interaction

strengths based on biomass and body-size ratios of predators

and prey. They, like us, found that low prey biomass was

associated with the strongest population interaction strengths.

Notably, they also found that functional response type did not

affect their results, while the form of the functional response played

a key role in stability in our study. However, the functional

responses Berlow et al. considered were a range between Type II

and Type III responses, and did not include a linear functional

response that we considered here.

Overall, this modeling exercise demonstrated that many factors

act to confound simple generalized predictions about the stability

of particular predator-prey configurations. Attack rates and per

capita growth rates were especially important in dictating how

populations responded to perturbations. Depending on these

values, a wide range of per capita consumption rates and diet

compositions may give rise to stable top-down control by a

predator. Moreover, we frequently observed reactivity and return

rate behaving in opposite directions, i.e. reactivity tending towards

less stable but return rate tending towards more stable interactions.

For instance, predator and prey populations that are quite

decoupled are not reactive, but may take longer to return to

equilibrium after perturbation because attack rates and growth

rates are not high enough to fuel recovery. In situations with high

attack rates and growth rates, predator and prey populations are

more tightly coupled, leading to faster responses and quicker

return rates, but more reactive systems. Only intermediate levels of

energetic coupling tended to consistently provide low reactivity

and high return rates.

Simple models can build intuition about the relationships

between observed phenomena and the processes that lead to them.

By ignoring many of the details of biological reality and focusing

on three species, we explicitly described relationships between

energetic processes, top-down control, and equilibrium stability.

Further, processes captured in our model (e.g. consumption of

multiple prey and recruitment) were flexible enough to reasonably

describe important processes for many species and systems.

Biological realities often serve to reduce direct effects and dampen

oscillations, and diffuse effects are a common characteristic of

many systems [21,29,30]. Therefore, some of the equilibria

predicted by our models to be unstable may indeed be stable

when taken in the context of their larger food web. In this way, we

see the model predictions as an initial, rather than final, step in

exploring the possibility of top-down control in any given system.

Whether our heuristic model’s predictions can accurately

predict top-down control remains to be seen. Because no standard

exists for reporting interaction strengths, conducting a complete

meta-analysis is difficult – however, we can do a retrospective

analysis of well-studied systems and ask whether our model is

consistent with observed interaction strengths, given some

energetic information about the predator-prey pair. We describe

three particularly well-known predator-prey systems and how our

simple predictions apply to them: bass in temperate lakes, grey

wolves on Isle Royale National Park, and cod in the Atlantic.

A classic example of strong top-down control of predators on

prey is bass predation on small forage fish in temperate lakes [31].

Bass and most piscivorous fishes undergo ontogenetic diet shifts,

with young fish feeding on zooplankton and aquatic insect larvae

[32]. Adult fish feed on both small prey fish (e.g. minnows) as well

as benthic invertebrates. About 30 percent of bass diets are made

up of these forage fish, while the remainder are benthic

invertebrates [33]. It has been suggested that the subsidy of

invertebrates from benthic habitats is what allows, and even

encourages, bass to become heavy predators on the forage fish

resource; this result has also been described in other piscivores

[33,34].

As a second example, we consider wolf and moose in Isle Royale

National park. Data on their abundance dates back more than 40

years. Moose are the primary prey of wolves in this system

(approximately 90 percent of total diet by biomass [35]), and

therefore our model would again predict that this interaction

should be weak, or strong and relatively unstable. Abundance data

indicate that the time series may support long term oscillations

[36], suggesting that the effect of predators on prey is greater than

the intra-specific density dependent effects in the predator and

prey populations. These oscillating populations may provide an

example of a resilient but reactive equilibrium that persists through

time, and recently it has been suggested that disease in the

predator population plays a role in modulating the switches

between predator and prey dominated states [37].

Finally, we consider an example in which harvest of predators

(cod in the North Atlantic) released prey from predation and may

have ultimately caused an ecosystem state shift. Since cod stocks
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collapsed, two prey species of shrimp and crab have surged in

abundance [5,38]. Although pandalid shrimp contribute only 3 to

9 percent of cod diet, Worm and Myers found evidence for top-

down control of shrimp by cod. Our modeling framework would

suggest that this relatively small energy flux is more likely to give

rise to top-down control than a large energy flux. The small

proportion of total predator diet alone would lead us to believe this

interaction has the potential to be strong, stable, and nonreactive.

However, since all age classes of cod could consume these small

prey, predation would not be stabilized by recruitment in the

predator population. Given this lack of stabilizing forces from the

predator and relatively high reproductive rates of pandalid shrimp,

we would predict this interaction to be reactive, which may

provide an explanation for the dramatic nature of the ecosystem

shift.

These three examples, while providing some additional context

for predictions about top-down control, are certainly not

exhaustive. An extension of this work would be a formal review

of published instances of top-down control coupled with

explorations of energetic processes in each of the systems. The

methods described in this paper are a step in the direction of trying

to identify important predator-prey links in food webs. Predation is

not the only force at work structuring ecosystems, but bettering

our understanding and predictive abilities with regards to its

dynamic role will help to decrease the number of ‘‘surprises’’ [39]

that occur when harvest and recovery strategies produce

unexpected outcomes.
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