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Abstract

Crimean-Congo hemorrhagic fever virus (CCHFV) is a widely distributed tick-borne member of the Nairovirus genus
(Bunyaviridae) with a high mortality rate in humans. CCHFV induces a severe disease in infected patients that includes,
among other symptoms, massive liver necrosis and failure. The interaction between liver cells and CCHFV is therefore
important for understanding the pathogenesis of this disease. Here, we described the in vitro CCHFV-infection and -
replication in the hepatocyte cell line, Huh7, and the induced cellular and molecular response modulation. We found that
CCHFV was able to infect and replicate to high titres and to induce a cytopathic effect (CPE). We also observed by flow
cytometry and real time quantitative RT-PCR evidence of apoptosis, with the participation of the mitochondrial pathway. On
the other hand, we showed that the replication of CCHFV in hepatocytes was able to interfere with the death receptor
pathway of apoptosis. Furthermore, we found in CCHFV-infected cells the over-expression of PUMA, Noxa and CHOP
suggesting the crosstalk between the ER-stress and mitochondrial apoptosis. By ELISA, we observed an increase of IL-8 in
response to viral replication; however apoptosis was shown to be independent from IL-8 secretion. When we compared the
induced cellular response between CCHFV and DUGV, a mild or non-pathogenic Nairovirus for humans, we found that the
most striking difference was the absence of CPE and apoptosis. Despite the XBP1 splicing and PERK gene expression
induced by DUGV, no ER-stress and apoptosis crosstalk was observed. Overall, these results suggest that CCHFV is able to
induce ER-stress, activate inflammatory mediators and modulate both mitochondrial and death receptor pathways of
apoptosis in hepatocyte cells, which may, in part, explain the role of the liver in the pathogenesis of CCHFV.
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Introduction

Crimean–Congo hemorrhagic fever (CCHF) is a severe tick-

born, often fatal, zoonosis caused by Crimean-Congo hemor-

rhagic fever virus (CCHFV), which is a member of the Nairovirus

genus within the family Bunyaviridae [1]. This family of enveloped

viruses is composed of a tripartite, single-stranded RNA negative

genome [1]. Its epidemiology reflects the geographical distribu-

tion of its vectors (mainly ticks of the Hyalomma genus) in more

than 30 countries throughout Africa, south-east Europe, the

Middle East and Asia [2–8]. The geographic range of CCHFV is

extensive and it is the second most widespread of all medically

important arboviruses after Dengue virus [9]. The mortality rate

can be up to 50% in humans and, among other clinical features,

severe hemorrhagic manifestations and multiple organ failure are

some of the most common symptoms [2,10]. Damage to

endothelial cells and vascular leakage seen in patients may

either be a direct result of the virus infection or an immune

response-mediated effect [11]. In infected humans, elevated

serum levels of acute inflammatory markers such as IL-6, TNF-

a, sICAM-1, sVCAM-1, and VEGF-A were correlated to CCHF

severity in clinical studies [12,13] and high levels of IL-8, one of

the major mediators of the inflammatory response and a major

chemotaxis inducer, were detected in a fatal case of CCHF in

Greece [14].

Most of the existing knowledge concerning CCHF pathology

originates from autopsies and clinical findings. A retrospective

study pointed out the mononuclear phagocytes, endothelial cells

and hepatocytes as the main targets of infection [15]. However,

the molecular mechanism behind the pathogenesis of CCHF is

poorly known. Recently, improvements have been done in the

understanding of CCHFV effect on target cells: the replication in

antigen presenting cells was demonstrated and the cell response,

including the soluble mediators production, was elucidated

[16,17]. Connolly-Andersen et al. described CCHFV’s replication

and activation of endothelial cells [18]. What is more, two animal

models were established to study the CCHFV disease. IFN

receptor knockout mice and mice deficient in the STAT-1

signalling were both highly susceptible to CCHFV infection

causing rapid onset symptoms, including significant liver damage

and death [19,20], confirming the susceptibility of the virus to

interferon host response, that was suggested in in vitro studies

[21,22]. The liver appears to be an important target organ for

many hemorrhagic fever viruses [23–30] including CCHFV.

CCHFV is known to feature extensive infection of hepatocytes,

with an increase in circulating liver enzymes, swelling and

necrosis, however little is known about the involvement of the

liver in the outcome of the disease [31].

To better understand the role of the liver in the pathogenesis of

CCHFV, we studied the ability of CCHFV to in vitro infect and
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replicate the human hepatocyte Huh7 cell line. We observed the

cellular cytopathic effect (CPE) and characterised the molecular

mechanisms of the apoptosis induced by CCHFV infection, as well

as the cytokine secretion profile of Huh7 cell line. We also

analysed the ER-stress profile induced by the CCHFV in this cell

line. Then, we used Dugbe virus (DUGV) a mild human pathogen

[32] among the closest genetically related Nairoviruses to CCHFV

[33], as a model to compare cellular and molecular responses. Our

data indicated that these two viruses triggered different responses

in this hepatocyte cell line, suggesting that these differences might

be relevant for CCHFV pathogenesis understanding.

Materials and Methods

Virus preparation and titration
All work with CCHFV was carried out in a BSL-4 and in a

BSL-2 for DUGV. CCHFV strain IbAr 10200 and DUGV isolate

IbH 11480 (both obtained from Institut Pasteur) were passaged as

described elsewhere [16]. Absence of Mycoplasma was confirmed

using the Mycoalert kit (Lonza, Verviers, Belgium). To produce

replication deficient CCHFV, virus stock aliquots were inactivated

by UV-light (UV Mineral light lamp, UVG-54, 254 nm, Upland,

CA, USA), at a distance of 1 cm on ice for 20 min. The absence of

infectivity of the inactivated CCHFV was controlled by infecting

46105 Vero cells with 250 ml of a pure viral suspension in

quadruplicate in a 12 well-plate. No FFU were observed.

Viruses titration was performed as described elsewhere [16].

Cells and in vitro virus infection
Huh7 hepatocarcinoma cell line (CelluloNet, Cat Nu120, Lyon,

France) was cultured in DMEM (Invitrogen), supplemented with

10% FCS, 56104 IU Penicillin and 50 mg Streptomycin, 10 mM

L-Glutamine, and 0.1 mM of non essential aminoacids (all from

Invitrogen). Cells were cultivated at 37u, 5% CO2. Absence of

Mycoplasma was confirmed using the Mycoalert kit (Lonza). Huh7

cells were infected either in a 8-well permanox slide (Nunc,

Rochester, NY, USA) or in a 6-well plate (BD) at 7.56104 and

1.256106 cells/well respectively. The cells were then infected with

CCHFV or DUGV at a MOI of 0.1 and 1, inactivated CCHFV

and supernatant from non infected Vero E6 cells (Mock) at 37uC,

5% CO2 for 45 min. This moment was considered as time 0, and

the course of time started from this point. It should be noted that

after the 45 min adsorption period, residual or desorbed virus was

eliminated by abundant washing of the cell monolayer. The cells

were incubated at 37uC, 5% CO2. Cells and supernatants were

harvested at 3, 6, 18, 24, 48, 72, 120 and 168 h post infection (p.i.).

Cells were harvested in 1 mL of RLT (Qiagen, Courtaboeuf,

France) and were stored at 220uC until use. Supernatants were

centrifuged at 400 g for 5 min, aliquoted and stored at 280uC
until use.

Indirect Immunofluorescence assay
In 8-well permanox slides, CCHFV-infected Huh7 cells were

fixed with 3.7% PAF in PBS solution, washed thrice in PBS

solution, permeabilised with 0.5% Triton X-100 in PBS solution,

and then incubated with primary and secondary specific

antibodies as described elsewhere [16]. The cells were examined

using an Axio Observer Z.1 (Zeiss, France) and analysed using

MetaMorph v7.6 software (Wellcome Trust, UK).

Quantification of DUGV and CCHFV RNA
Briefly, total RNAs from DUGV- or CCHFV-infected cells

were extracted from cell pellets using the RNeasy mini kit (Qiagen)

according to the manufacturer’s instructions. The S genomes for

DUGV and the S genomes and antigenomes for CCHFV were

then quantified using a quantitative RT-PCR previously described

[16,34].

Cytokine detection
Supernatants of Huh7 were analysed to determine the amount

of cytokines released using ELISA kits following the manufactur-

er’s protocol. The cytokines tested were IL-1b (Pierce Biotechnol-

ogy, Rockford, IL, USA), IL-8, IL-6, TNF-a, MIP-1a, MIP-1b,

IP-10, RANTES, IL-10 and IL-2 (Bender Medsystem, Vienna,

Austria).

Terminal deoxynucleotidyl transferase-mediated
deoxyuridine triphosphate nick end labelling (TUNEL)
assay

Huh7 cells, mock-infected and infected with UV-inactivated

CCHFV and infective CCHFV at a MOI of 0.1 and 1, were fixed

with 3.7% PAF and permeabilised with Triton X-100 (0.1%) in

PBS solution. The cells were then washed with PBS solution and

subjected to TUNEL assay using an in situ cell death detection kit

(Roche) according to the manufacturer’s instructions. The Epics

XL instrument and the Expo32 software (Beckman Coulter) were

used and a total of 5 000 events were acquired. The cells were

properly gated and a single parameter dot plot of FL2H was

recorded.

Annexin V assay
Huh7 cells were infected, fixed and permeabilised as described

in the previous paragraph. The cells were then labelled with

FITC-Annexin V, according to the manufacturer’s instructions

(FITC-Annexin PharmingenTM Apoptosis Detection Kit I, BD).

Cell viability determination
Cell viability was determined by the trypan blue exclusion assay.

After trypsinisation and washing, viable and unviable CCHFV-

infected cells were scored in a Kova Glasstic slide (Hycor

Biomedical, Garden Grove, CA, USA) using trypan blue stain

0.4% (v/v). A total of 500 cells per condition were counted.

Quantitative real-time PCR
The total RNAs were extracted from cell pellets using

the RNeasy mini kit (Qiagen) following the manufacturer’s

protocol and were reverse transcribed using the Improm II kit

(Promega). Quantitative real-time PCR commercial kits (Search-

LC, Roche, Heidelberg, Germany) were used to quantify the

expression of genes coding for cytokines: TNF-a, IL-8 and IL-6;

apoptosis pathways proteins: BAX, Bcl-2, Bcl-xL and the

housekeeping gene PBGD. HRK, PERK, CHOP, PUMA and

Noxa were quantified following the real-time PCR protocols

described by others, respectively [35–37]. The levels of RNA were

normalised according to the PBGD mRNA level, which was

amplified in duplicate for each of the tested mRNAs using a Bio-

Rad CFX96 (Bio-Rad, Hercules, CA, USA). For each mRNA, the

ratio value was obtained as follows: ratio of mRNA of interest

= 22[(Ct gene of interest – Ct PBGD) infected – (Ct gene of interest – Ct PBGD) mock].

Detection of messenger RNA
Semi-quantitative conventional PCR tests were used to detect

XBP1 [38] and TRAIL [39]. The expected sizes of PCR-

amplified fragments were 416 bp for XBP1 (if any alternative

splicing is observed) and 442 bp (for the unspliced form) 494 bp

for TRAIL (if any alternative splicing is observed) and 537 bp

(for the unspliced form). The expected amplicon size for PBGD
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was 341 bp. Cycling conditions were those described by

Klomporn et al., 2011 [40]. Accurate separation and sizing of

spliced variants of TRAIL and XBP1 was done using the

Agilent DNA 1000 Chip (Agilent Technologies, Waldbronn,

Germany).

Cloning and sequencing XBP1 and TRAIL splice variants
Amplicons of TRAIL, XBP1 and the correspondent splice

variants were obtained by RT-PCR as described above, ligated

into the pCR2.1-TOPO vector (Invitrogen) and cloned in

accordance to standard protocols. Clones were sequenced by

GATC Biotech (Mulhouse, France) using T7 and M13R site-

specific primers.

IL-8 neutralization assay
Confluent Huh7 cells were pre-incubated with or without

neutralising antibody against IL-8 (50 mg/ml; catalog no. AB-208-

NA; R&D Systems, Lille, France) diluted in fresh medium, for 3 h

at 37uC, 5% CO2. CCHFV infection was performed as described

in the cells and in vitro virus infection paragraph. After infection the

same suspension of IL-8 was added to the infected cells. IL-8 was

quantified using the ELISA kit previously described, to control its

neutralisation.

Statistical analysis
The Student t test was used to compare two sets of data with a P

value,0.05 considered significant. Standard deviation (SD) were

determined using the ExcelH SD function (Microsoft).

Results

CCHFV and DUGV infect and replicate in Huh7 cell line
During human infection with CCHFV, hepatocytes are

considered to be one of the main target cells [15]. To further

test the susceptibility and the response of these cells to CCHFV

infection, we used in our in vitro model experiments, the Huh7 cell

line derived from hepatocellular carcinoma. Each experiment

presented in this work represents the results obtained from three

independent experiments, performed in duplicate. Daily,

CCHFV-infected Huh7 cells were examined microscopically for

the appearance of CPE compared to mock-infected cells and UV-

inactivated CCHFV-infected cells. Marked CPE and cell death

were observed from 72 through 120 h p.i. (figure 1; Panel A)

leading us to define 48 h p.i., as the maximal time point of the

kinetics for all experiments. Viral antigens determined by indirect

immunofluorescence assay (IFA) (figure 1; Panel B), were detected

from 18 through 48 h p.i.. It appears that the ability of CCHFV to

infect Huh7 was similar for both MOIs (0.1 and 1) but slightly

higher for MOI 1 at 18 h and 24 h p.i. (5.1% versus 9.8%,

p,0.05 at 18 h p.i. and 12.1% versus 29.2%, p,0.05 at 24 h p.i.

for MOI 0.1 and 1, respectively). It is important to point out that

at 48 h p.i., 100% of the cell monolayer was found positive by IFA

(figure 1; Panel B and figure 2; Panel B). UV-inactivated CCHFV-

infected cells did not exhibit detectable viral antigens. The

replicative virus released into the medium was detected as soon

as 6 h p.i. for both MOIs. The viral growth curve (figure 2; Panel

A) indicated that the viral production peaked at 18 h p.i. (1.06106

FFU/mL), smoothly decreasing 1 log10 from 24 to 48 h p.i.

Figure 1. CCHFV effects and expression in Huh7 cell line. (A) Optical photomicrography of CCHFV-infected Huh7 monolayers at MOIs 0.1 and
1. Observations were performed from 48 to 120 h p.i.: on the left are represented mock-infected cells (M) and UV-inactivated CCHFV-infected cells (i);
on the center CCHFV-infected Huh7 at a MOI of 0.1; on the right CCHFV-infected Huh7 at a MOI of 1. Data represents one out of three experiments
performed in duplicate. Magnification: 206. (B) Fluorescent photomicrography of CCHFV-infected Huh7 monolayers (MOIs 0.1 and 1), incubated with
a specific anti-CCHFV polyclonal antibody. Observations were performed from 3 to 48 h p.i.: on the left are represented mock-infected cells (M) and
UV-inactivated CCHFV-infected cells (i); on the center CCHFV-infected Huh7 at a MOI of 0.1; on the right CCHFV-infected Huh7 at a MOI of 1. Data
represents one out of three experiments performed in duplicate. Magnification: 206.
doi:10.1371/journal.pone.0029712.g001
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(2.36105 FFU/mL). When cells were infected at the lowest MOI,

the viral yield was similar to that of MOI 1 except for 18 h p.i.

where the titre decreased slightly (4.26105 FFU/mL). According-

ly, the kinetics of viral production had the same profile. In the

experiments performed at times higher than 48 h p.i., a decrease

of the titre was observed, for example, a titre of 1.66104 FFU/mL

was obtained at day 3 p.i., for MOI 1 (data not shown). UV-

inactivated CCHFV-infected cells did not display any foci.

To further demonstrate CCHFV replication, we assayed a

quantitative strand specific RT-PCR detecting either the genomic

or the antigenomic strand of the S segment. Detection of the

genomic and antigenomic strand was performed using total RNA

extracted from the infected cells. The kinetic curve of the genomic

strand copies (figure 2; Panel C) showed that CCHFV genome

began to replicate as soon as 3 h p.i., it increased abruptly until

18 h p.i., plateaued from 18 to 24 h p.i. and decreased steadily

until 48 h p.i. We also assayed the antigenomic S RNA,

synthesized in infected cells (figure 2; Panel D). As expected, in

the mock and UV-inactivated controls the antigenomic strand was

not detected. High amounts were detected as early as 3 h p.i. in

CCHFV-infected Huh7 cell line at both MOIs (9.16101 and

1.46102 copies/mL for MOI 0.1 and 1, respectively). The number

of antigenome molecules declined slightly at 48 h p.i (figure 2;

Panel D). Both genomic and antigenomic RNA strand profiles

were correlated with the profile of the replicative particles with a

ratio 1 to 20 genomic strand for 1 antigenomic replicative

intermediate.

Like CCHFV, DUGV was found to replicate in these cells

(figure 2; Panel A and C), however, we found that DUGV titres

and genomic copy numbers were from 10 to 1000 times lower

than CCHFV when infected at the highest MOI. For MOI 0.1 the

difference was more pronounced. The DUGV titres and genomic

copy numbers curve had a similar profile peaking at 18 h p.i..

Moreover, DUGV replication profile for MOI 1 was similar to

CCHFV. Despite the virus replication, no CPE were observed in

Huh7 cells at any time of the kinetic (data not shown).

CCHFV and DUGV increase the secretion of IL-8 in Huh7
cell lines

Following the infection of Huh7 cell line with CCHFV, the

release of several mediators with a potential role in the pathogenic

cascade was tested. Among all soluble mediators potentially

secreted by hepatocytes tested in our experiments including IL-1b,

IL-8, IL-6, TNF-a, MIP-1a, MIP-1b, IP-10, RANTES, IL-10 and

IL-2, IL-8 was the only one to be modulated by CCHFV from 18

to 48 h p.i. (figure 3; Panel A). The over-secretion of IL-8 started

Figure 2. Sensitivity and permissivity to CCHFV and DUGV. (A) CCHFV- and DUGV-infected cells were assayed for the cell supernatant titres,
using a specific polyclonal antibody, expressed in FFU/ml; (B) the percentage of CCHFV-infected cells, calculated using the fluorescent
photomicrography and analysed using Metamorph v7.5; (C) the genomic strand was assayed for CCHFV and DUGV-infected Huh7 cells by real time
qRT-PCR. (D) the antigenomic strand copy number from cellular extracts of CCHFV-infected cells, obtained by real time qRT-PCR. Means 6 SD three
independent experiments performed in duplicate are represented. _¤_ mock-infected cells; --N--, infection at MOI of 1; _m_, infection at MOI of 0.1
(CCHFV in black and DUGV in grey); --&--, UV-inactivated CCHFV.
doi:10.1371/journal.pone.0029712.g002
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between 3 and 6 h p.i. and increased until 48 h p.i., where it

reached its maximum 4.6-fold (p,0.05) at the highest MOI (MOI

1) when compared with the mock-infected cells. UV-inactivated

CCHFV-infected cells elicited an increase of 1.6-fold when

compared to mock-infected cells. We also observed the up-

regulation of IL-8 mRNA (figure 3; Panel B). Moreover, we

confirmed by quantitative RT-PCR, the absence of the soluble

mediators including TNF-a and IL-6, by testing the corresponding

cytokines’ genes (data not shown).

When we investigated the response triggered by DUGV in

Huh7 cells, we observed that like CCHFV, DUGV over-expressed

only IL-8 (3.1-fold (p,0.05) at 48 h p.i.) (figure 3 and Table 1).

This modulation was 1.5 times lower than the one observed for

CCHFV at 48 h p.i..

Huh7 cell death at 72 h p.i. is due to CCHFV-induced
apoptosis

To determine whether the CPE observed for CCHFV-infected

Huh7 cell line at 72 h p.i. was due to apoptosis, a TUNEL assay

was performed at 3, 24 and 48 h p.i., as endonucleolysis is

considered one of the key biochemical events of apoptosis. The

number of CCHFV-infected TUNEL-positive cells for MOI 1 was

13.5% at 48 h p.i. (p,0.05), compared to 0.16% for the mock-

infected cells and 0.23% for the UV-inactivated CCHFV-infected

cells. Lower amounts of oligonucleosomal length DNA were

detected at 24 h p.i.: 2.2% for CCHFV-infected Huh7 (p,0.05),

compared to 0.64% for the mock-infected cells and 0.23% for the

UV-inactivated CCHFV-infected cells (data not shown). Consis-

tent with the CPE effects, no major difference was observed

between MOI 0.1 and MOI 1. Annexin V experiments confirmed

the results obtained with the TUNEL assay (data not shown). To

further confirm the apoptotic effect observed in CCHFV-infected

Huh7 cells, the up-regulation of the expression the Bcl-2 family of

genes was investigated due to its role in the regulation of

programmed cell death. The results obtained are consistent with

those described for the TUNEL assay, i.e. a significant increase in

the expression of BAX and HRK genes was observed; and only a

slight increase of Bcl-xL gene and no expression modulation of

Bcl-2 gene were detected (figure 4; Panel A–C). The up-regulation

of BAX mRNA expression in CCHFV-infected cells relative to

mock infected cells was only observed at 18 h p.i. with a ratio of

2.9-fold increase (p,0.05) for MOI 1 (figure 4; Panel A). For MOI

0.1 and UV-inactivated CCHFV-infected cells the increase was

not statistically significant. Moreover, HRK gene expression was

significantly up-regulated for both MOIs, reaching 22-fold

(p,0.01) over-expression at 48 h p.i. (figure 4; Panel C) when

compared to mock-infected cells and UV-inactivated CCHFV-

infected cells. Bcl-xL displayed an up-regulation of 2.1-fold at 24 h

p.i. for MOI 1 and 1.9-fold at 48 h p.i. for MOI 0.1 (figure 4;

Figure 3. IL-8 release induced by CCHFV is higher than that induced by DUGV. (A) IL-8 released into the maintenance medium was assayed
by ELISA and represented as IL-8 fold increase ratio comparing to mock-infected cells; (B) Expression levels of the IL-8 gene were quantified by by real
time qRT-PCR, using mean 6 SD of three independent experiments performed in duplicate. _¤_ mock-infected cells; --N--, infection at MOI of 1; _m_,
infection at MOI of 0.1 (CCHFV in black and DUGV in grey); --&--, UV-inactivated CCHFV.
doi:10.1371/journal.pone.0029712.g003

Table 1. mRNA modulation of CCHFV-infected versus DUGV-
infected Huh7 at different times post infection.

CCHFV DUGV

18 h 24 h 48 h 18 h 24 h 48 h

Inflammatory response genes

IL-8 +* +* +* 2 2 +

Mitochondrial apoptotic pathway genes

BAX +* 2 2 2 2 2

HRK + +* +* + + +

Bcl-xL 2 + 2 2 2 2

Bcl-2 2 2 2 2 2 2

ER-stress genes

XBP1s +* + + + , ,

PERK + + 2 + + 2

ER-stress/apoptosis crosstalk genes

PUMA + + + 2 2 2

Noxa 2 2 , 2 2 2

CHOP + + + 2 2 2

Death receptor apoptotic pathway genes

TRAIL-R2 2 2 2 2 2 2

TRAILs + + + 2 2 2

*significantly higher for CCHFV-infected Huh7 cells.
+ positive.
2 negative.
, slightly positive.
doi:10.1371/journal.pone.0029712.t001
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Panel B). Furthermore, the ratio of BAX/Bcl-2 genes, which

appears to determine whether some cells live or die, was found to

be positive, corresponding to the up-regulation of the expression of

BAX gene. Cell viability, characterised by trypan blue exclusion

test cell counts from 3 to 48 h p.i., was determined. We observed

at 48 h p.i., 4.5, 6.0 and 7.3% of dead cells for the mock-infected

and CCHFV-infected cells at MOI 0.1 and 1, respectively.

In DUGV-infected cells, no TUNEL-positive cells were found

from 3 to 48 h p.i. However, BAX and HRK genes were over-

expressed in significant lower amounts when compared to

CCHFV (figure 4 and Table 1).

CCHFV and DUGV infection trigger ER-stress in Huh7 cells
We hypothesized that CCHFV triggered ER-stress in Huh7

cells. We examined the induction of two ER-stress pathways, the

Unfolded Protein Response (UPR) and Noxa/PUMA in response

to CCHFV infection in Huh7 cells from 3 to 48 h p.i.. For the

UPR, we investigated the IRE1 mediated splicing of the XBP1

transcript, a hallmark of UPR induction, and the up-regulation of

the expression of PERK, one of the transmembrane sensors of ER-

stress, together with IRE1 [41]. Results demonstrated a clear

induction of the alternate splicing of XBP1 at 18 h p.i. with a peak

at 24 h p.i. for both MOIs (figure 5; Panel A). These results were

confirmed by XBP1 sequencing (data not shown). Of note, the

sequence analysis showed that the spliced variant gene corre-

sponded to the variant 2 of XBP1 (accession number

NM_001079539). Mock-infected cells as well as UV-inactivated

CCHFV-infected cells did not display any visible splicing of XBP1.

As noted by others, we also observed the presence of an additional

band (named H, figure 5; Panel A), which is believed to be a

heteroduplex product between the spliced and the unspliced

products [40,42,43]. An up-regulation of the expression of PERK

gene was also observed at 18 h and 24 h p.i. for MOI 1 and MOI

0.1 respectively, and decreased after these time points. Figure 5;

Panel C illustrates that at 18 h p.i. the expression in CCHFV-

infected Huh7 cells was double comparing to mock-infected cells

and UV-inactivated CCHFV-infected cells.

CCHFV-infected hepatocytes induce ER-stress and
apoptosis crosstalk, but not DUGV

In search of the molecular link between ER-stress and the

mitochondria, we also examined the expression of CHOP mRNA,

as it is one of the apoptotic proteins up-regulated by the UPR. The

expression of CHOP mRNA increased from 6 h p.i. and reached

4.2-fold at 24 h p.i. when MOI 1 was used; at an MOI 0.1 it

increased from 18 h p.i. and reached 2.5-fold at 48 h p.i. when

compared to mock-infected cells (p,0.05) (figure 6; Panel A). In

addition to the UPR, the Noxa/PUMA ER-stress pathway was

also investigated. The mRNA expression of the genes PUMA and

Noxa in Huh7 cells was analysed. As shown in figure 6; Panel B,

an increase of PUMA mRNA expression was observed in

CCHFV-infected cells from 6 h p.i., peaking at 24 h p.i. with a

fold increase of 3.9 when MOI 1 was used; and starting from 18 h

p.i. when MOI 0.1 was used, with a peak of 2.4-fold at 24 h p.i.

related to mock-infected cells (p,0.05). A slight up-regulation of

Noxa mRNA was detected by 48 h p.i. for MOI 0.1, when

compared to mock-infected cells and UV-inactivated CCHFV-

infected cells (figure 6; Panel C). The increase observed by 24 h

p.i. at MOI 1 was statistically not significant (p.0.05).

Lower levels of XBP1 splicing were observed in the DUGV

model (figure 5; Panel B). The up-regulation of the PERK gene

expression was comparable to that obtained for CCHFV (figure 5;

Panel C and Table 1). No up-regulation of CHOP, PUMA and

Noxa was observed in DUGV-infected Huh7 (data not shown).

CCHFV infection induces splicing of TRAIL mRNA in Huh7
cells

To determine if the apoptotic features observed in CCHFV-

infected Huh7 cells derives only from the intrinsic pathway or to a

coordination between the intrinsic and the extrinsic pathways, the

mRNA levels of the death receptor TRAIL-R2 and its ligand

TRAIL were assessed. The results obtained showed that neither

TRAIL-R2 nor TRAIL were significantly expressed (figure 7;

Panel A–B). We observed, in CCHFV-infected cells (18, 24 and

48 h p.i.), that two additional bands co-amplified with the

expected TRAIL amplicon, one of 43 bp shorter and another of

160 bp longer than the expected amplicon (figure 7; Panel A).

Sequence analyses showed the presence of a splicing variant of

TRAIL (TRAIL-ß) described elsewhere [44]. Interestingly, the

splicing site of TRAIL-ß mRNA was located one nucleotide

downstream of the splicing site already described. The upper

additional band, which could correspond to a heteroduplex, was

not sequenced due to its very low concentration. When we

examined the expression of TRAIL, we observed that, in contrast

Figure 4. CCHFV modulates members of the Bcl-2 family of genes. Expression levels of (A) BAX, (B) Bcl-xL and (C) HRK genes were quantified
by real time qRT-PCR, using mean 6 SD of two independent experiments performed in duplicate. _¤_ mock-infected cells; --N--, infection at MOI of 1;
_m_, infection at MOI of 0.1 (CCHFV in black and DUGV in grey); --&--, UV-inactivated CCHFV.
doi:10.1371/journal.pone.0029712.g004
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with CCHFV, DUGV did not induce any expression of TRAIL-b
(data not shown).

CCHFV replication and apoptosis induction is not IL-8-
dependent

IL-8 has been described to have both apoptotic [45] and anti-

apoptotic [46] functions. Furthermore, IL-8 protein levels were

described to be positively associated with virus replication in vitro

[47]. To investigate the relationship between IL-8 over-expression,

virus replication and apoptosis induction, IL-8 protein was

neutralised during the CCHFV kinetic by adding anti-IL-8

polyclonal antibodies until the protein levels of IL-8 were

undetectable by ELISA. We found that neither the CCHFV

replication nor the mRNA levels of apoptotic genes were modified

after IL-8 neutralisation (data not shown).

Discussion

The hepatocytes, together with the mononuclear phagocytes

and the endothelial cells, are considered target cells of CCHFV

infection in humans [15]. Little is known about the pathogenesis

mechanisms of CCHFV. So far, only few in vitro studies have

Figure 5. CCHFV and DUGV induce ER-stress. CCHFV-infected cells were examined for the (A) IRE1-mediated XBP-1 splicing by conventional RT-
PCR (H is the heteroduplex, U the unspliced and S the spliced form of the XBP1 transcript) or (B) the expression levels of PERK by real time qRT-PCR,
using mean 6 SD of two independent experiments performed in duplicate. _¤_ mock-infected cells; --N--, infection at MOI of 1; _m_, infection at MOI
of 0.1 (CCHFV in black and DUGV in grey); --&--, UV-inactivated CCHFV.
doi:10.1371/journal.pone.0029712.g005

Figure 6. CCHFV upregulates the expression of ER-stress-induced apoptotic genes. Expression levels of (A) CHOP, (B) PUMA and (C) Noxa
genes were quantified by real time qRT-PCR, using mean 6 SD of two independent experiments performed in duplicate. _¤_ mock-infected cells; --N--,
infection at MOI of 1; _m_, infection at MOI of 0.1 (CCHFV in black and DUGV in grey); --&--, UV-inactivated CCHFV.
doi:10.1371/journal.pone.0029712.g006
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focused on the effects of CCHF on mononuclear phagocytes

[16,17], endothelial cells [18] and hepatocyte cells [21,22]. That is

why we extensively studied the in vitro interaction between

CCHFV and hepatocytes in order to correlate these interactions

with CCHF pathogenesis. Our main findings were that CCHFV

induced ER-stress, activated inflammatory mediator and modu-

lated both intrinsic and extrinsic pathways of apoptosis in

hepatocytes, which are key target cells. The comparison with a

non-pathogenic nairovirus response highlighted the contribution

of the ER-stress and apoptosis crosstalk in CCHFV-infected liver

cells. These molecular and cellular mechanisms observed in vitro

could be relevant factors which could explain why CCHFV is

extremely pathogenic.

According to our results, CCHFV infection was considered to

be rapid and to replicate to high loads in Huh7 cell line, when

compared to the replication in other in vitro CCHFV-infected

human cells, including moDCs, moMPs, HUVEC, A549 and

SW13 cells [16–18,21,22]. When compared to DUGV infection in

Huh7 cells, CCHFV was shown to replicate better in Huh7 cells.

Furthermore, the CCHFV titres obtained for Huh7 cells were in

accordance with those obtained by others [21,22]. These features

suggest that the liver may play an important role in the

amplification of CCHFV load, which is a key element in the

pathogenesis of the disease and is considered as a predictor of

mortality [48]. The ability of CCHFV to replicate in liver cells was

also proven in vivo in mice experiments: liver was shown to display

the highest levels of CCHFV load. [19,20], .We further observed

that CCHFV at a MOI 0.1 rapidly attained the same rate of

replication as CCHFV at a MOI 1 and that the percentage of

infected cells, reaching 100%, was similar for both concentrations

of the virus throughout the 48 h of infection. A comparable result

was observed in in vivo experiments, for which, independently of

the dose of virus used for the challenge, similar titres of viral RNA

were found in the organs [19]. At 72 h p.i., when the strong CPE

occurred at both MOIs, most of the CCHFV-infected cells of the

monolayer were detached when compared to mock-infected cells.

The absence of CPE in UV-inactivated CCHFV-infected cells

suggests a direct effect of CCHFV replication. Comparing to the

lack of CPEs during DUGV infection, we suggested that CPEs

could be an in vitro marker of CCHFV pathogenicity. Since the

CPEs were observed after 72 h p.i., when CCHFV replication had

already reached its maximum at 18 h p.i., we are tempted to

speculate that CCHFV-induced CPE was a late event, allowing

efficient viral production and spread. These results leaded us to

suggest that in humans, after a tick bite, and after the APCs

provided systemic dissemination of the virus [16,17,49], CCHFV

reaches the liver, which might be one of the main sites of CCHFV

replication, before or simultaneously disseminating systemically in

greater amounts into multiple organs.

To determine the cause of the CPE, we tested two different

morphologic markers of apoptosis. The ability of bunyaviruses to

induce apoptosis in vitro was already described, including in

CCHFV-infected SW13 cell line [50–55]. The detection of

apoptosis before the CPE in CCHFV- but not in DUGV-infected

Huh7, suggests that CCHFV-induced CPE could be the

consequence of apoptosis in Huh7 cells. Furthermore, we found

that the capacity of CCHFV to elicit apoptosis in hepatocytes was

dependent on the ability of the virus to replicate, given that UV-

treated virus failed to cause apoptosis. This indicates that viral

replication-associated products may be essential to trigger

apoptosis.

In order to characterise the molecular mechanisms that elicited

CCHFV-induced apoptosis, we investigated the differential

expression of several proteins of the Bcl-2 family at the mRNA

level. The Bcl-2 family of proteins has been shown to be the

central regulator of the intrinsic apoptotic pathway [56]. Bcl-xL

and Bcl-2, two anti-apoptotic members, have been found to block

apoptotic cell death by, respectively, interaction and heterodimer-

ization with BAX, which is a potent mediator of programmed cell

death.. We demonstrated a differential regulation of endogenous

BAX mRNA but not Bcl-2 gene and only a minor up-regulation of

Bcl-xL expression in response to the CCHFV replication,

obtaining a positive BAX/Bcl-2 ratio comparing to mock-infected

cells and UV-inactivated CCHFV-infected cells. It is important to

Figure 7. CCHFV induces TRAIL alternative splicing. CCHFV-infected cells were examined for the (A) the expression levels of TRAIL by
conventional RT-PCR (H is the heteroduplex, U the unspliced and S the spliced form of the TRAIL transcript) or (B) the expression levels of TRAIL-R2 by
real time qRT-PCR, using mean 6 SD of two independent experiments performed in duplicate. --N--, CCHFV at MOI of 1; _m_, CCHFV at MOI of 0.1;
--&--, UV-inactivated CCHFV; _¤_ mock-infected cells.
doi:10.1371/journal.pone.0029712.g007
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note that the increase of BAX mRNA at 18 h p.i. was concomitant

with the peak of viral production, suggesting a possible link

between the up-regulation of BAX and CCHFV replication. The

absence of differential expression of Bcl-2 was not surprising since

several authors described the absence of Bcl-2 expression in

hepatocytes [57,58]. The ratio BAX/Bcl-xL was also positive at

18 h p.i., corresponding to the peak of up-regulation of BAX.

These results strongly suggest that CCHFV-induced apoptosis

involves the mitochondrial pathway. To further confirm the

involvement of the mitochondrial pathway, the up-regulation of

the expression of the BH3-only genes of the Bcl-2 family HRK,

PUMA and Noxa was investigated. These proteins are essential

initiators of apoptotic cell death [59] through their interaction with

the anti-apoptotic members of the Bcl-2 family [59,60]. We clearly

showed a strong up-regulation of the expression of the HRK gene

in CCHFV-infected cells comparing to mock-infected and UV-

inactivated CCHFV-infected cells (figure 6). Both anti-apoptotic

proteins (Bcl-xL and Bcl-2) have been found to interact with HRK,

inhibiting its death-promoting activity [61]. Similarly to BAX, the

balance between the levels of Bcl-xL and Bcl-2 and those of HRK

appears to modulate apoptosis. Thus, the strong up-regulation of

HRK but not Bcl-2 as well as the minor Bcl-xL up-regulation

provides evidence that the viral infection was able to trigger

apoptosis. Taken together, we illustrated in our experiments

CCHFV-induced apoptosis in Huh7 with the participation of the

mitochondrial pathway. Many studies have shown that viruses are

able to modulate mitochondrial apoptosis (reviewed by Galluzzi et

al, 2008) [62]. For example, Dengue virus, which can also induce a

hemorrhagic fever, was described to decrease the expression of

Bcl-2 and Bcl-xL in both mRNA and protein levels [63]. Vesicular

Stomatitis Virus was shown to decrease the cellular levels of Bcl-xL

while maintaining the levels of BAX [64]. The envelope

glycoprotein complex encoded by HIV-1 was described to induce

the expression of BAX [65]. HCV was proven to induce apoptosis

through the mitochondrial pathway by down-regulating Bcl-2 and

up-regulating BAX protein expression [66].

The increase in the transcription of PUMA in response to

CCHFV infection not only emphasizes the participation of the

intrinsic pathway, but also suggests the crosstalk between the ER

and the mitochondrial apoptosis machinery, specifically through

the Noxa/PUMA pathway. These BH3-only genes of the Bcl-2

family were recently described as novel components of the ER-

stress-induced apoptotic pathways [67]. Under conditions of ER-

stress, the transcriptional activation of Noxa and PUMA by p53

leads to the induction of apoptosis by the release of cytochrome C

from the mitochondria as a result of the activation of Bak or BAX

[67]. In CCHFV-induced apoptosis the over-expression of PUMA

at the mRNA level was greater and was observed earlier than

Noxa, suggesting a more important role for PUMA. The over-

expression of CHOP gene mRNA, a transcription factor that can

be activated in cells suffering from ER-tress during the UPR [68],

was also observed in CCHFV-infected Huh7 cells. In CCHFV-

infected Huh7 cells, CHOP differential expression appeared to

match well with the CCHFV-replication.. As documented here, an

increase in the transcription of CHOP and PUMA occur in

response to CCHFV replication (figure 6), confirming the

involvement of the mitochondrial pathway in CCHFV-induced

apoptosis and demonstrating the activation of multiple pathways

of crosstalk between the ER and the mitochondrial apoptosis

machinery. Furthermore the up-regulation at the mRNA level of

the apoptotic genes BAX and HRK was found to be lower in

DUGV-infected comparing to CCHFV-infected Huh7 cells

(figure 4), and the expression of CHOP and PUMA mRNA was

not observed in DUGV-infected Huh7 cells during the kinetic.

This reinforces the possible specificity of apoptosis to CCHFV

infection in Huh7 cells. We hypothesized that CCHFV-induced

ER-stress, could possibly be the cause of apoptosis in hepatocytes

cells. We assessed the alternative splicing of the XBP1 gene, a

hallmark of ER-stress and the differential expression of the gene

coding for PERK, one of the three key sensors of ER-stress present

on the ER membrane [41]. The presence of the spliced variant of

XBP1 and the up-regulation of the PERK gene (figure 5) were

concomitant with CCHFV replication. Furthermore, DUGV also

induced ER-stress, comparable to CCHFV but in a lower manner.

This suggests that despite a similar ER-stress profile, the ER-stress

response acts as a survival mechanism in DUGV-infected cells.

Since the ER serves as the primary site of replication for many

enveloped viruses [5], viral infections associated with synthesis of

large amounts of viral proteins in a short amount of time perturbs

ER homeostasis [69,70]. Moreover, it has been shown that over-

expression of viral components alone in cultured cells is enough to

induce ER-stress mediated apoptosis [71,72]. Thus we suggest that

the demand of synthesis and folding of high amounts of CCHFV

proteins in such a short period of time leads to ER-stress in

CCHFV-infected Huh7 cells. We showed here that both known

ER-stress pathways are triggered after CCHFV infection: the UPR

and the Noxa/PUMA pathway. We also showed that apoptosis is

mediated by the mitochondrial pathway and that there is a

crosstalk between the ER and the mitochondrial apoptosis. Thus,

it is tempting to assume that CCHFV-induced mitochondrial

apoptosis is ER-stress mediated, although studies blocking the ER-

stress pathways are needed to further prove this assertion.

Apart from the cellular perturbations that comprise the intrinsic

pathway of apoptosis, hepatocyte apoptosis can also be initiated

via the death receptor or extrinsic pathway of apoptosis [73]. Since

the secretion of TNF-a was not observed in CCHFV-infected

Huh7 cells, we investigated the modulation of the expression of

TRAIL and its receptor TRAIL-R2. Interestingly, despite the

absence of a differential expression of TRAIL-R2 or TRAIL

genes, the detection of a spliced variant of TRAIL, only in

CCHFV-infected Huh7 cells (figure 7) suggested a modulation of

this pathway. This spliced variant, proven to correspond to

TRAIL-b, undergoes an extensive loss of its extracellular binding

domain, being unable to form stable ligand-receptor complexes

and failing to trigger TRAIL-mediated apoptosis [44]. This result

provides evidence that CCHFV may interfere with the fine tuning

of TRAIL simply by reducing the amount of full length ligand, and

it was emphasised by the absence of splicing during DUGV-

infection. However, further studies are needed to understand the

biological significance of this interesting feature.

In our in vitro model, we also observed an increase of IL-8

transcription and secretion into the supernatants of CCHFV-

infected Huh7 cells, which were shown to be higher than in the

supernatants of DUGV-infected cells. The increase of IL-8 could

be a consequence of CCHFV-induced cellular stress and

activation of the inflammatory response. Indeed, it has been

shown that IL-8 can be induced in response to cellular stress,

including Hepatitis C virus [28] or Dengue virus [74] infection. It

is known that IL-8 increases endothelial cell permeability [75–77],

suggesting a role for IL-8 in plasma leakage, which is a hallmark of

CCHF. Recently Connolly-Andersen et al. described the secretion

of IL-8 in CCHFV-infected endothelial cells [18] Thus, it could be

interesting to test IL-8 in infected patients to assess the potential of

IL-8 as a marker of the disease severity. IL-8 has also been

described to enhance endothelial cell proliferation and survival by

the expression of anti-apoptotic genes [45] but one study

correlated IL-8 secretion with the induction of apoptosis in

leukemic cells [46]. To determine the possible link between IL-8
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and CCHFV replication and/or CCHFV-induced apoptosis, a

commercial neutralizing antibody directed against IL-8 was used.

In our experiments, CCHFV replication and CCHFV-induced

apoptosis were independent from CCHFV-induced IL-8 up-

regulation.

Altogether, these results showing differences of cellular response

between these two nairoviruses with such a different clinical

outcome, temptingly, offer elements to explain the pathogenesis of

the CCHFV.

In summary, we think that our findings could provide new

approaches to understand the molecular and cellular mechanisms

of pathogenesis of CCHFV infection.
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