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Abstract

Background: OTUB1 is a member of OTUs (Ovarian-tumor-domain-containing proteases), a deubiquitinating enzymes
family (DUBs), which was shown as a proteasome-associated DUB to be involved in the proteins Ub-dependent degradation.
It has been reported that OTUB1 was expressed in kidney tissue. But its concrete cellular location and function in the kidney
remain unclear. Decorin (DCN) in mesangial cells (MC) is considered to be a potentially important factor for antagonizing
glomerulonephritides, and its degradation is mediated by ubiquitination. The aim of this study is to investigate the role of
OTUB1 expression in MC and its relationship with DCN during glomerulonephritis.

Methodology/Principal Findings: Using quantitative RT-PCR and Western blot, we demonstrated that OTUB1 mRNA and
protein were constitutively expressed in cultured rat MC and found to be upregulated by the stimulation of IL-1b or ATS.
OTUB1 overexpression was detected in the mesangial area of glomeruli in some immunocomplex mediated nephritides
such as IgA nephropathy, acute diffuse proliferative glomerulonephritis and lupus nephritis by immunohistochemistry. The
immunoprecipitation assay demonstrated that OTUB1 interacted with DCN. The overexpression of OTUB1 enhanced the
ubiquitination and degradation of DCN in MC.

Conclusion/Significance: These data showed the inflammatory injury could up-regulate OTUB1 expression in MC, which
might attribute the promoting effect of OTUB1 on glomerulonephritides to the decrease of DCN level.
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Introduction

Ovarian-tumor-domain-containing proteases (OTUs) are part

of the deubiquitinating enzymes (DUBs) family [1,2]. They have

been implicated to play an important role in mediating the

processes of proteins ubiquitination and degradation through

ubiquitin-proteasome pathway (UPP). DUBs are large groups of

cysteine proteases that are classified into six main families, such as

UBPs (ubiquitin-processing proteases), UCHs (ubiquitin C-termi-

nal hydrolases), ataxin-3/Josephin domains, OTUs (ovarian-

tumour-domain-containing proteases), pathogen-encoded ubiqui-

tin-processing proteases and JAMM (JAB1/MPN/MOV34 me-

talloenzyme) proteases [3]. DUBs can hydrolyze isopeptide bonds

between ubiquitin and folded proteins, remove the ubiquitin or

polyubiquitins from target proteins, and interfere the degradation

of substrates in the Ub-dependent pathway [4]. DUBs are

generally recognized as negative regulator to reverse the process

of ubiquitinization [3,5]. However, DUBs are also found recently

to be involved in a multiprotein complex of proteasom to facilitate

substrates degradation in ER stress. During the proteolysis by

proteasome, the removal of the Ub chain from the substrate by

proteasome-associated DUBs such as OTUB1 is a key to allow the

passage of the unfolded polypeptide through a narrow constriction

into the proteolytic chamber of the proteasome core particle,

where proteolysis ensues [6,7].

One of the most recently recognized DUBs is the OTUs. This

family mainly comprises a group of putative cysteine proteases

including OTUB1, OTUB2, A20 and yeast OTU1 [2]. All of

them have an OTU domain of 130 amino acids that is highly

conserved from yeast to mammals [1]. The OTU family is a

matter of considerable interest to us due to its conserved sequences

in viruses, bacteria, plants, yeast, and humans, and its role in

immunity and inflammation [8]. OTUB1 was the first member of

OTU family to be confirmed for its deubiquitinating properties. It

is located at chromosomal position 11q13.1, and is ubiquitously

expressed in human tissues [9]. A structural analysis of OTUB1

shows differences in accessibility to the active site and in surface

properties of the substrate-binding regions that may reflect

functional diversity in regulatory mechanisms and substrate

specificity [2]. Recently, study has shown that YOD1, which is
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the closest homolog of yeast OTU1, performed as a proteasome-

associated DUB to be involved in the ER-associated degradation

(ERAD) pathway, which is related to the metabolism of numerous

glycoprotein [6,10,11]. Therefore, OTUB1 is thought to play an

important role in many physiological and pathological processes of

human being. The OTUB1 gene product is identified to be

involved in the control of cell division and differentiation of the

cystoblast into an oocyte and nurse cells [12,13]. Although widely

expressed, OTUB1 was specifically implicated in mediating

lymphocyte antigen responsiveness through affecting the stability

of the lymphocyte-specific E3 ligase GRAIL (gene related to

anergy in lymphocytes) in CD4+ T-lymphocytes [14]. Moreover,

OTUB1 was also found in Lewy bodies of the brain on mass

spectrometry, and may be involved in the pathogenesis of

neurodegenerative disorders [15].

OTUB1 expressing in kidney tissue has been detected by RT-

PCR and Western blot [16]. However, its concrete cellular

location and function in the kidney are unknown. There are also

no relative reports about its relationship with kidney diseases.

Decorin (DCN) is a small proteoglycan composed of a core

protein and a glycosaminoglycan chain. It has been shown that

DCN has a variety of functions and may interfere the binding of

TGF-b to its receptor complex [17]. Forced expression of DCN in

human mesangial cells (MC) inhibit the expression of TGF-b1 and

Collagen IV [18–20]. It plays a critical role in the reduction of

ECM deposition in mesangium during glomerulonephritis,

inhibition of mesangial cell (MC) proliferation, and impediment

of glomerulosclerosis development [21].Therefore, DCN is

considered to be a potentially important factor for antagonizing

glomerulonephritides.

Recently, the investigation of metabolism and regulation of

DCN has been expanded. Our prior report showed that

intracellular DCN was degraded by the UPP in MC [22].

Furthermore, on mass spectrometric analysis of immunoprecipi-

tation gels using DCN-antibody, we found that OTUB1was highly

expressed in MC (data not shown), which suggested a possible

interaction of OTUB1 with DCN. We thus speculated that the

deubiquitinating enzyme OTUB1 may mediate the process of

DCN degradation in MC. To understand the mechanism of this

event would help to elucidate the role of OTUB1 expression and

its relationship with DCN during glomerulonephritis.

In this study, we examined OTUB1 expression in rat MC with or

without stimulation of inflammatory factors and the ectopic

expression of OTUB1 in biopsy tissues of human kidney with some

common glomerulonephritides. Further immunoprecipitation stud-

ies were performed to investigate the interaction between OTUB1

and DCN in MC. The aim of our study was to test our hypothesis

that OTUB1 is implicated in pathogenesis of glomerulonephritides.

Results

1. The expression of OTUB1 in cultured MC
In cultured MC, OTUB1 mRNA was found with an amplified

fragment of 850 bp by using RT-PCR (Figure 1a), and OTUB1

protein expression was confirmed by Western blot with a

molecular weight of 36 kD (Figure 1b). Immunofluorescence

detection of OTUB1 was also performed with positive fluorescent

signals in the cytoplasm and nuclei of MC compared to the

corresponding control (Figure 1c).

2. Upregulation of OTUB1 and DCN mRNA in MC were
mediated by IL-1b and ATS

Quantitative real time PCR showed that OTUB1 mRNA was

markedly upregulated in rat MC after administrating of IL-1b for

3, 6, 12 and 24 hours. There was a statistically significant

difference between the administrating and normal control groups

(p,0.05). To observe the relationship between OTUB1 and DCN

in MC, DCN mRNA was also tested synchronously and found to

be significantly upregulated in rat MC after exposure to IL-1b for

3, 6, 12 and 24 hours, compared with controls (p,0.05; Figure 2a).

After treatment of MC with ATS for 3, 6, 12 and 24 hours,

both OTUB1 and DCN mRNA were significantly increased in

administrating groups versus normal groups (p,0.05; Figure 2b),

besides the group of OTUB1 in ATS treating for 3 h. This

suggested that the IL-1b and ATS may upregulate the expression

of OTUB1 in MC.

3. The protein expression of OTUB1 and DCN in MC were
mediated by IL-1b and ATS

We continued to detect the protein level of OTUB1 and DCN in

cultured MC after treatment with IL-1b and ATS. Western blot

analysis showed that OTUB1 expression increased in cells exposed

to IL-1b at 3, 6, 12, and 24 hours (p,0.05, Figure 3a), which was

consistent with the expression of their mRNA. However, increased

expression of DCN induced by IL-1b was found at 3 and 6 hours,

significantly different from that in cells of health controls (p,0.05),

then its expression decreased quickly at IL-1b 12 and 24 hours.

There was no significant difference of DCN expression at cells of IL-

1b 24 h compared with health control cells (p.0.05) (Figure 3a).

The same pattern occurred in MC treated with ATS. OTUB1

expression was significantly higher in ATS treated cells at 6, 12,

and 24 hours, while DCN was higher at 3 and 6 hours compared

to cells of health controls (p,0.05 ), and again declined in 12 and

24 hours (Figure 3b). These results demonstrated that IL-1b or

ATS could upregulate the protein level of OTUB1 in MC. In

contrast, both factors could downregulate the protein level of

DCN after a transient response of up-expression in the early

stages. It suggested that the mechanism of regulation for the two

proteins in MC might be different post-transcriptionally.

4. Upregulation of OTUB1 in MC with
glomerulonephritides

55 samples were acquired from kidney needle biopsy, including 8

cases from healthy kidney tissue (distant from kidney tumor), 8

minimal change disease (MCD), 7 membranous glomerulonephrit-

ides (MGN), 10 mesangial proliferative type of IgA nephropathy

(IgAN), 12 acute diffuse proliferative glomerulonephritides (APGN),

and 10 lupus nephritis, subtype IV (LN-IV). Immune-reaction

staining demonstrated that OTUB1 expression was diversely

present in nephropathy samples, but with few positive cells in the

normal glomeruli. The degree of OTUB1 expression in the

mesangial region of the glomeruli differed among the various types

of glomerulonephritides. The average optical density in the

glomerulus was 0.004506 in MCD, and 0.004028 in MGN; both

were not significant different from that in normal kidney tissue

(0.002096) (p.0.05). In contrast, the average optical density was

0.03412 in IgAN, 0.065412 of the APGN glomerulus, and 0.088363

of the LN-IV glomerulus, all of which were significantly higher than

that in normal kidney tissue (p,0.01) (Table 1). OTUB1

immunostaining was localized mainly in the mesangial area, in

which the brown granules were distributed diffusely, which

consisted with the morphological features of dendritic MC.

Moreover, some of the parietal epithelial cells of Bowman’s capsule,

crescent and part of the tubular epithelium were OTUB1 positive. It

was demonstrated that OTUB1 expression was upregulated in MC

of diseased glomeruli, which correlated with the type and intensity

of pathological changes in various glomerulonephritides (Figure 4).

Expression of OTUB1 in Mesangial Cells

PLoS ONE | www.plosone.org 2 January 2012 | Volume 7 | Issue 1 | e29654



5. OTUB1 overexpression downregulated expression of
DCN in MC

To study the role of OTUB1 in regulating the level of DCN in

MC, we constructed eukaryotic expression plasmid pIRES2-

EGFP-OTUB1-myc and stable transfected vector into cultured rat

MC by cationic lipid mediator. The RT-PCR and Western blot

results showed that the positive cell clones markedly overexpressed

OTUB1 mRNA and protein, including myc tag protein

(Figure 5a–b). Meanwhile, the DCN protein levels were also

obviously lower in OTUB1 transfected MC than that in normal

control cells (Figures 5b). The data indicated that OTUB1

overexpression could induce a decrease of the DCN level in rat

MC.

6. OTUB1 and DCN immunoprecipitation with increasing
the ubiquitination of DCN in MC

To further study the link between OTUB1 and DCN in MC,

immunoprecipitation assays were performed with an anti-OTUB1

antibody and blotted with anti-OTUB1, anti-myc, and anti-DCN

antibodies in OTUB1 transfected MC. As shown in Figure 6a (top

bands), the OTUB1 and myc bands were seen in MC. While the

nonspecific IgG was negative, the cellular total protein was the

positive control. Reprobing the same membrane with anti-DCN

antibody confirmed the specificity of OTUB1 combining with

DCN (Figure 6A, lowest band). Conversely, in reciprocal

immunoprecipitation with anti-DCN, the OTUB1 was also

detected in depositing protein linking with DCN (Figure 6b).

Then, the ubiquitination of DCN was determined by anti-

ubiquitin antibody after DCN immunoprecipitation. As shown

in Figure 6c, the level of ubiquitinated DCN were significantly

higher in OTUB1 transfected MC than that in vacant vector

transfected MC. These results indicate that OTUB1 does interact

with DCN and promote the process of DCN ubiquitination and

degradation.

Discussion

Here we report, for the first time, OTUB1 expression in

cultured rat MC with or without inflammatory factor stimulation

Figure 1. The expression of OTUB1 in MC. (a) RT-PCR analysis of OTUB1 performed on total DNA extracted from MC. (b) Western blot analysis of
OTUB1 in MC using anti-OTUB1 antibodies. (c) Immunofluorescence staining of OTUB1 in MC using anti-OTUB1 antibody(A1), Hoechst 33258 staining
(A2), isotype control antibody staining (B1) and Hoechst 33258 staining (B2).
doi:10.1371/journal.pone.0029654.g001

Expression of OTUB1 in Mesangial Cells
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by using quantitative real time PCR and Western blot, and in

human MC of glomeruli from various nephritides by using

immunohistochemistry. Balakirev demonstrated that OTUB1

expression was relatively higher in the kidney [16]. It remains

uncertain whether OTUB1 is expressed in glomeruli. In our study,

constitutive expression of OTUB1 was shown, and upregulation of

OTUB1 mRNA and protein level induced by IL-1b and ATS

were observed in cultured MC. ATS can interact with antigens on

the cell membranes of MC to form immune complexes, which

subsequently activate complement in fresh serum to assemble the

sublytic C5b-9, leading to immune injury of cells in vitro [23,24].

Therefore, it was confirmed that cytokines and immune

stimulation could promote OTUB1 upregulation in MC. Consist-

ing with the cell test, OTUB1 overexpression was also observed in

mesangial area in some immunocomplex-mediated nephritides

such as IgAN, APGN and LN. These data suggested that OTUB1

upregulation may relate to the pathological changes of glomeru-

lonephritides.

Recently, the OTU family has attracted attention for its role

in innate immunity and inflammation of cells [8,14,25,26]. The

OTU Characterized by the presence of ovarian tumor domain-

containing sequences acts as general deubiquitinases. It can

hydrolyze ubiquitin and ISG15 from cellular target proteins,

antagonize the antiviral effects of ISG15, which enhance the

susceptibility to Sindbis virus infection in vivo [27]. A20 (also

known as tumor necrosis factor alpha-induced protein 3),

another member of OTU family [28], is a unique protein that

exerts both NFk-B inhibitory and anti-apoptotic activities, and is

now recognized as a key regulator in inflammation and

immunity [8,26,29]. Mice deficient for A20 are hypersensitive

to TNF and die prematurely due to severe multi-organs

inflammation and cachexia [30]. Recent genetic studies demon-

strate a clear association between several mutations in the

human A20 locus and immunopathologies such as Crohn’s

disease, rheumatoid arthritis, systemic lupus erythematosus,

psoriasis, and type 1 diabetes [31]. However, the mechanism

of OTUs mediation in these diseases has still not been fully

elucidated.

The pathogenesis of many primary and secondary glomerulo-

nephritides is also related to disorders of immune and inflamma-

tory response. Here we have found that OTUB1 ectopic

expression was related to MC injury and pathological changes of

glomerulonephritides. Therefore, we speculated that OTUB1 may

play an important role in the development of glomeruli diseases. In

this work, we not only confirmed the overexpression of OTUB1 in

diseased glomeruli, but also demonstrated that OTUB1 could

interact with DCN and promote DCN degradation. Since DCN is

an important antagonizing factor for glomeruli inflammation, it is

suggestion that OTUB1 may be another novel regulator involved

in the pathogenesis of glomerulonephritis.

Figure 2. OTUB1 and DCN mRNA were upregulated in MC stimulated with IL-1band ATS. (a) MC were treated with IL-1b10 ng/mL for 3 h,
6 h, 12 h and 24 h. (b) MC were treated with ATS 30 mL/mL for 3 h, 6 h, 12 h and 24 h respectively. mRNA levels of OTUB1 and DCN in MC were
analyzed by quantitative real-time PCR. Besides the group of OTUB1 in ATS treating for 3 h, both OTUB1 mRNA and DCN mRNA significantly
increased in all groups treated with IL-1b or ATS compared with normal group (*P,0.05, **P,0.01). Data are presented as mean6standard error (SE)
from at least three individual experiments carried out in duplicate.
doi:10.1371/journal.pone.0029654.g002
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We previously determined that glycoprotein DCN in MC was

regulated via the UPP for its degradation [22]. Here we further

demonstrated that OTUB1 overexpression induced by gene

transfection or by inflammatory stimulation could increase the

DCN ubiquitination and proteolysis in MC. The Schlieker’ lab

reported that another OTUB1-like protein YOD1 was a

proteasom-associated deubiquitinating processing factor in the

context of protein dislocation from the ER and degradated by

proteasomal proteolysis [6]. YOD1 is a constituent of a p97

complex for proteasome and it displays a strong ability to

deconjugate K48 linked Ub chains [9,28]. Ubiquitination is a

highly dynamic process carefully controlled by opposing Ub-

conjugating and deconjugating activities. In the case of the 26S

proteasome, deubiquitination is needed to remove the impediment

of attached Ub chains to allow the substrates get into the

proteolytic core particle. The otubain core domain of YOD1 is

necessary and sufficient for catalytic activity hydrolyzed K48-

linked poly- and di-Ub chains degradation of truncated substrate.

A dominant negative YOD1 variant stalled the proteolysis and

caused accumulation of ubiquitinated substrates [6]. So it

coincides with the fact that OTUB1 may serve as proteasome-

associated DUB to exert important function for a deubiquitinating

activity in the process of DCN degradation.

DCN can neutralize TGF-b1 bioactivity and inhibit the

development of glomerulonephritis and glomerulosclerosis

[32,33]. DCN administration has been advocated as a potential

antagonist against nephropathies because of the relative deficiency

of DCN and relative excess of TGF-b1 existing in glomerulone-

phritis [18,19]. Deficiency of DCN has been shown to enhance

progressive nephropathy in diabetic mice [32]. Some reports

showed that DCN expression increased in rat diabetic kidneys and

in glycogen-stimulated cultured MC, suggesting a possible

compensatory response to antagonize local TGF-b1 activity

Figure 3. OTUB1 and DCN expression mediated by IL-1b and ATS. (a) MC were treated with IL-1b 10 ng/mL for 3 h, 6 h, 12 h, 24 h,
respectively. Western blot analysis showed that OTUB1 expression increased with IL-1b at 3 h, 6 h, 12 h and 24 h, while the increased DCN expression
induced by IL-1b was found at 3 h and 6 h, which were significantly higher than that of normal controls. The expression of DCN then decreased
quickly at 12 h and 24 h. (b) MC were treated with ATS 30 mL/mL for 3 h, 6 h, 12 h and 24 h. OTUB1 expression was significantly higher in ATS treated
cells at 6 h, 12 h and 24 h, while DCN expression markedly increased at ATS 3 h and 6 h compared to normal controls. However, the DCN expression
declined again in 12 h and 24 h. (%) OTUB1/b-actin; (& )DCN/b-actin. (*P,0.05; **P,0.01). Data are presented as mean6standard error (SE) from at
least three individual experiments carried out in duplicate.
doi:10.1371/journal.pone.0029654.g003

Table 1. Quantitative analysis of OTUB1 immunoreactivity in
glomerulonephritides.

groups n mean density(IOD/AOI)

Normal 8 0.00209660.00034

MCD 8 0.00450660.002153

MGN 7 0.00402860.002089

IgAN 10 0.0341260.003823**

APGN 12 0.06541260.020209**

LN 10 0.08836360.034724**

Immune staining of OTUB1 was quantitatively assessed on the mean density
(ratio of integrated optical density (IOD) to area of interest (AOI) per glomerulus
in normal kidney tissue and some nephropathy tissues. The expression of
OTUB1 was statistically significantly higher in IgA nephropathy, acute diffuse
proliferative glomerulonephritides and lupus nephritis than that in normal
kidney tissue (**P,0.01).
doi:10.1371/journal.pone.0029654.t001
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[33]. But, DCN is absent in chronic glomerulosclerosis and

interstitial fibrosis in renal diseases [34,35]. Therefore, the

question remains: what is the change of DCN during the

development of chronic glomeruli diseases? In some glomerulo-

nephritides and severe diabetic glomerulosclerosis, increased DCN

concentration was found in the urine. Failure to detect increased

glomerular proteoglycan quantity during the development of

nephropathy could be partly explained by assuming that they are

Figure 5. Overexpression of OTUB1 downregulated the expression of DCN in MC. (a) mRNA expression of OTUB1 in MC after OTUB1 gene
transfection was assessed by RT-PCR. Lane 2, 5, 8 are normal mesangial cells (MC) as control, Lane 3, 6, 9 are pIRES2-EGFP-OTUB1-myc stable
transfected MC (MC/OTUB1), Lane 4, 7, 10 are vacant vector pIRES2-EGFP transfected MC (MC/pIRES2). The mRNA expression of OTUB1 increased in
lane 9. (b) Protein expression of OTUB1 and DCN were assessed by Western blot. Lane 1 is normal mesangial cells (MC) as negative control, Lane 2 is
pIRES2-EGFP-OTUB1-myc stable transfected MC (MC/OTUB1), Lane 3 is vacant vector pIRES2-EGFP transfected MC (MC/pIRES2). Overexpression of
OTUB1 was seen in lane 2 with myc labeling positive. Meanwhile, the DCN expression significantly decreased after OTUB1 gene transfection in lane 2.
(%) OTUB1/b-actin; (& )DCN/b-actin. (*P,0.05; **P,0.01). Data are presented from at least three individual experiments carried out in duplicate.
doi:10.1371/journal.pone.0029654.g005

Figure 4. OTUB1 expression in glomerular during some golmerulonephritides was detected by immunohistochemistry. (a) Normal
glomerulus, there is few positive staining in golmerulus; (b) minimal change disease; (c) membranous glomerulonephritis, there is minor positive in
the mesangium at (b) and (c); (d) IgA nephropathy, moderate positive in the mesangium; (e) acute proliferative glomerulonephritis; (f) lupus nephritis.
The increased positive staining was seen in mesangium at (d), (e) and (f). In addition, the tubular epithelial cells are partially diaminobenzidine
positive. Hematoxylin is used as the nuclear counterstain. (ABC immunochemistry, 6100).
doi:10.1371/journal.pone.0029654.g004
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secreted into the mesangial matrix, partly to form complexes with

TGF-b1 and partly to be cleared via the vasculature or the urinary

tract [36,37]. Furthermore, it was interesting to note in our work

that DCN was transiently upregulated in cultured MC under IL-1

or ATS stimulation, and then returned quickly to baseline

(Figure 3), while DCN mRNA was still kept at a high level. It

may imply that the loss of DCN was caused by post-transcriptional

proteolysis. These phenomena revealed that a part of the

intracellular DCN protein might be quickly degraded during

MC injury. It was further validated by the experiment that

overexpression of OTUB1 increased the ubiquitination of DCN in

MC. We might thus attribute the promoting effect of OTUB1 on

glomerulinephritides to the decrease of DCN level.

In summary, we demonstrated that OTUB1 was expressed in

MC in vitro and in vivo. OTUB1 expression was upregulated in

MC after inflammatory stimulation. There was a relationship

between the OTUB1 upregulation and pathological changes of

glomerulonephritides. OTUB1 could interact with DCN in MC.

The overexpression of OTUB1 promoted DCN ubiquitination

and degradation, which may contribute to the pathogenesis of

glomerulonephritides. Thus, OTUB1 revealed to be a possible

novel regulator during glomerulonephritides, which would facil-

itate degradation of DCN and enhance the vicious circle

characterized by increased TGF-b1 production and matrix

deposition in developing glomerulosclerosis. Our work also

presented an example of OTUB1 as a proteasome-associated

DUB to mediate proteasomal proteolysis.

Materials and Methods

Antibodies and reagents
Mouse anti-DCN was purchased from R&D Systems (Minne-

apolis, MN, USA). Rabbit anti-OTUB1, mouse anti-myc

monoclonal antibody, mouse anti-b-actin monoclonal antibody,

and IL-1b were purchased from Sigma-Aldrich (St. Louis, MO,

USA). mouse anti-ubiquitin monoclonal antibody and Protein G

PLUS-Agarose was purchased from Santa Cruz Biotechnology,

Inc. (Santa Cruz, CA, USA). Plasmid Midiprep Kit, Opti-MEM,

Lipofectamine 2000, and Trizol reagent were purchased from

Invitrogen (Carlsbad, CA, USA). The Super Signal West Pico

stable peroxide solution enhanced chemiluminescence (ECL)

system and the bicinchoninic acid (BCA) Protein Assay Reagent

Kit were obtained from Pierce Biotechnology (Rockford, IL,

USA). All other reagents were obtained from Sangon Biological

Engineering Technology & Service Co. Ltd. (Shanghai, China).

Cell culture and treatment
MC were prepared from the cortex of male Sprague–Dawley

rat kidneys [38]. The cells were utilized between passages 6 and 10

and maintained in RPMI 1640 medium supplemented with 10%

newborn bovine serum (NBS) at 37uC in a humidified atmosphere

containing 5% CO2/95% air. MC were treated with different

reagents containing 10 ng/mL of recombinant rat IL-1b or 30 ml/

ml of rabbit ATS (anti-Thy1 serum) for 3, 6, 12, and 24 hours,

respectively. ATS was made in our lab as described in a prior

paper, which could cross-react with antigens on the cell membrane

of the MC in vitro [39].

Total RNA extraction and quantitative real-time RT-PCR
analysis

Total RNA was extracted from the lysates of rat MC using

Trizol reagent. Reverse transcription (RT) was carried out using a

PrimeScript RT reagent Kit at 37uC for 15 minutes and 85uC for

5 seconds. Real time quantitative RT-PCR was performed using a

SYBR Premix Ex TaqTM Kit, in a total reaction volume of 20 ml

containing 10 ml of SYBR Green RT-PCR master mix, 2 ml of

cDNA template and 0.4 mM of each target-specific primer

designed to amplify a part of each gene. After PCR, a melting

curve analysis was performed to demonstrate the specificity of

each PCR product as a single peak. The relative amounts of

OTUB1, DCN and GAPDH mRNA were calculated by

comparison with standard curves [40]. Changes in the mRNA

expression level were calculated following normalization with

GAPDH. The sequences of OTUB1 used were: sense: 59-

GCGACCACATCCACATCA-39, anti-sense: 59-TAGGACCA-

TTTACAACCACA GA-39. The sequences of DCN used were:

sense: 59-TGGCTAAGTTGGGATTGA-39, anti-sense: 59-CTG-

AAGGTGGATGGCTGT-39. The sequences of GAPDH used

were: sense: 59-AACGGATTTGGTCGTATTG-39, anti-sense:

59-GGAAGA TGGTGATGGGATT-39. The sizes of the ampli-

Figure 6. OTUB1 interaction with DCN in MC concomitant with increase of DCN ubiquitination. (a) MC was stable transfected with
pIRES2-EGFP-OTUB1-myc. Then we performed IP with OTUB1 antibody and analyzed by SDS-PAGE using antibodies against the OTUB1, myc and
DCN. (b) Reciprocal IP with anti-DCN antibody was analyzed using OTUB1 antibody. Lysate from MC (input) was used as a positive control, isotype
matched nonspecific IgG as negative control. Lane 2(M) represents marker. (c) Cell lysates were subjected to immunoprecipitation with anti-DCN
antibody followed by immunoblotting with an anti-ubiquitin (Ub) antibody. Lane 1 is normal mesangial cells (MC), cell lysates were analyzed by
immunoblotting. Lane 2 is vacant vector pIRES2-EGFP transfected MC (MC/pIRES2) as control, Lane 3 is pIRES2-EGFP-OTUB1-myc transfected MC (MC/
OTUB1), overexpression of Ub was seen in lane 3.
doi:10.1371/journal.pone.0029654.g006

Expression of OTUB1 in Mesangial Cells

PLoS ONE | www.plosone.org 7 January 2012 | Volume 7 | Issue 1 | e29654



fied fragments were 263 bp, 294 bp. and 208 bp for OTUB1,

DCN, and GAPDH, respectively. All samples were run three

times. RT-PCR: RNA Extraction and reverse transcription are the

same as above. The conditions for PCR were hot-start (95uC) for

2 min, followed by 30 cycles of amplification (denaturation at

95uC for 30 s, annealing at 58uC, 55uC and 56uC for OTUB1, b-

actin and DCN for 30 s, respectively and extension at 72uC for

30 s). The final extension was at 72uC for 7 min. The sequences of

OTUB1 used were: sense: 59- GCCCTCGAGATGGCGGCG-

GAGGAACCTC-39, anti-sense: 59- GCGGATCCTCACA-

GATCCTCTTCTGAGATGAGTTTTTGTTCTTTGTAG-39;

and the sequences of b-actin used were: sense: 59- AGGATGCA-

GAAGGAGATTACTGCC-39, anti-sense: 59- AAAACGCAG-

CTCAGTAACAGTGC-39. The sequences of DCN used were:

sense: 59-TGGCAGTCTGGCTAATGT-39, anti-sense: 59- ACT-

CACGGCAGTGTAGGA -39. The sizes of the amplified frag-

ments were 850, 248 and 199 base pair for OTUB1, b-actin, and

DCN respectively. Final PCR products were electrophoresed in a

1% agarose gel.

Protein isolation and Western blot analysis
Cell pellets was lysed in cold cell lysis buffer (pH 7.4) (50 mM

Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 10%

glycerol, 0.2 mg/mL NaN3, 1 mg/mL pepstatin A, 1 mg/mL

aprotinin, 1 mg/mL leupeptin, and 1 mmol/L phenylmethylsul-

fonyl fluoride) for 30 minutes on ice. Then, 60 mg of protein was

loaded with 56SDS loading buffer and resolved by (10%) SDS-

polyacrylamide gel electrophoresis (PAGE), then transferred onto

a PVDF membrane (Millipore, Eschborn, Germany). The

membrane was blocked with 5% non-fat milk solution in room

temperature for 1 hour, then immunoblotted with OTUB1

polyclonal antibody (1:50 dilution), DCN monoclonal antibody

(1:1,000 dilution), Ubiquitin monoclonal antibody (1:1000 dilution

) and b-actin monoclonal antibody (1:1,000 dilution). Detection by

enzyme-linked chemiluminescence was performed according to

the manufacturer’s protocol (ECL; Pierce Biotechnology). The

housekeeping protein b-actin was used as a control. Results were

analyzed quantitatively using Gelpro32 (Media Cybernetics,

Shanghai, China). Each experiment was repeated at least three

times.

Immunoprecipitation
Precleared cell lysates (1 mg total protein) were immunoprecip-

itated with 1 mg of antibodies against either OTUB1 or DCN plus

30 mL of Protein G Sepharose beads, after adjusting the volumes

to 0.5 ml with NET buffer (50 mM Tris–HCl, pH 7.4, 150 mM

NaCl, 0.1% Nonidet P (NP)-40, 1 mM ethylene diamine tetra-

acetic acid, 0.25% gelatin, 0.02% sodium azide, 1 mM PMSF,

and 1% aprotinin), and incubated overnight at 4uC. The beads

were centrifuged at 2000 G for 5 minutes at 4uC and washed

three times with 500 mL NET buffer, and once with PBS.

Immunoprecipitated proteins were eluted with 56SDS loading

buffer and resolved by standard SDS–PAGE. The following steps

were the same as for Western blotting.

Immunofluorescence
For immunofluorescence experiments, cells were seeded onto

the glass coverslip and fixed in paraformaldehyde. After a brief

washing with PBS buffer, the fixed cells were incubated with anti-

OTUB1 (1:100) antibody and nonspecific isotype control antibody

(1:100) for 1 hour at 37uC, followed by incubation with TRITC-

conjugated secondary antibody at 37uC for 45 minutes. Photos

were taken by fluorescence microscope.

Immunohistochemistry
Renal needle biopsies were collected at the nephrosis

laboratory, Department of Pathology, Shanghai Medical College,

Fudan University, in accordance with our institutional ethics

guidelines. Paraffin sections (4 mm) of biopsy tissue were

deparaffinized, endogenous peroxidase was quenched using 3%

H2O2, and antigen retrieval was performed by microwave in a

10 mmol/L citrate buffer, pH 6.1. Non-specific binding was

blocked using 5% normal sheep serum for 30 minutes at 37uC.

Sections were then incubated with a rabbit polyclonal anti-

OTUB1 antibody (1:100) at 37uC for 1 hour, then overnight at

4uC. Immobilized antibodies were detected by biotinylated

secondary antibody (ABC assay Kit; Vector Laboratories, Orton

Southgate, UK). Diaminobenzidine (DAB) was used as the

chromogen substrate and hematoxylin stain was the nuclear

counterstain. The primary antibody was replaced by PBS or

normal rabbit serum (1:100) as negative control.

Immunohistochemistry of the OTUB1 staining was assessed

using Image-Pro Plus 6.0 software (Media Cybernetics). At least

five glomeruli were selected from each section under microsco-

py. the positive area inside a glomerular was calculated with the

total OTUB1-positive area in global capillary tufts divided by

the whole glomerulus area. The mean absorbance of the

OTUB1 position per glomerulus was calculated for each

nephritis group. The absorbance of OTUB1 position was

defined as the integrated optical density (IOD) in the global

capillary tufts divided by the whole glomerulus area (area of

interest, AOI).

OTUB1 Stable transfection on rat MC
The pIRES2-EGFP-OTUB1-myc plasmid was amplified in E.

coli DH5.a and the authenticity was verified by sequencing. MC

(16106 cells) was seeded in six well plates with 70–80%

confluence. The cells were washed twice with PBS, then three

times with Opti-MEM before transfection. The plasmid DNA

(10 mg) of pIRES2-EGFP-OTUB1-myc and 10 mL of Lipofecta-

mine 2000 were incubated in 250 mL Opti-MEM for 5 minutes

at room temperature and then mixed for another 30 minutes at

room temperature. The 500 mL complex was added into the

culture dishes and the cells were incubated at 37uC for

6.5 hours, followed by the addition of 2 ml 10% fetal calf

serum/DMEM medium. After 3 days, stable clones were

selected in the presence of 0.4 mg/ml Geneticin (G-418, Sigma).

After 3 weeks, positive clones were selected by both Western

blotting and RT-PCR analysis after culture expansion. Control

cells were transfected with an empty vector pIRES2-EGFP

alone.

Statistical analysis
Statistical analysis was performed using SPSS software (Chi-

cago, IL,USA). The Student’s t-test was used for analysis of paired

data in the in vitro assays. The one-way ANOVA test was used to

assess the differences among multiple groups in the in vivo assays. A

p-value of less than or equal to 0.05 was regarded as statistically

significant. Data were presented as the mean 6 standard deviation

(SD) of triplicate experiments. The density of the bands on the

Western blots was quantified by densitometry and analyzed by a

Gel-Pro Analyzer from Media Cybernetics (Silver Spring, MD,

USA).
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Absence of decorin adversely influences tubulointerstitial fibrosis of the
obstructed kidney by enhanced apoptosis and increased inflammatory reaction.

Am J Pathol 160: 1181–1191.

36. Kuroda M, Sasamura H, Kobayashi E, Shimizu-Hirota R, Nakazato Y, et al.
(2004) Glomerular expression of biglycan and decorin and urinary levels of

decorin in primary glomerular disease. Clin Nephrol 61: 7–16.
37. Schaefer L, Raslik I, Grone HJ, Schonherr E, Macakova K, et al. (2001) Small

proteoglycans in human diabetic nephropathy: discrepancy between glomerular

expression and protein accumulation of decorin, biglycan, lumican, and
fibromodulin. FASEB J 15: 559–561.

38. Zhang M, Guo MY, Chen Q, Jin H (1995) The culture of rat glomerular
mesangial cells. J Shanghai Med Univ 22: 207–209.

39. Chen GP, Guo MY, Zhang YE, Zhang JS, Zhang XR, et al. (1996) Preparation

of anti-Thy1 serum and establishment of mesangioproliferative glomeruloneprh-
ritis model in rat. J Clin Exp Pathol 12: 241–243.

40. Larionov A, Krause A, Miller W (2005) A standard curve based method for
relative real time PCR data processing. BMC Bioinformatics 6: 62.

Expression of OTUB1 in Mesangial Cells

PLoS ONE | www.plosone.org 9 January 2012 | Volume 7 | Issue 1 | e29654


