
Translocated LPS Might Cause Endotoxin Tolerance in
Circulating Monocytes of Cystic Fibrosis Patients
Rosa del Campo1., Eriel Martı́nez2,3., Carlos del Fresno3, Raquel Alenda4, Vanesa Gómez-Piña2,3, Irene
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Abstract

Cystic Fibrosis (CF) is an inherited pleiotropic disease that results from abnormalities in the gene codes of a chloride
channel. The lungs of CF patients are chronically infected by several pathogens but bacteraemia have rarely been reported
in this pathology. Besides that, circulating monocytes in CF patients exhibit a patent Endotoxin Tolerance (ET) state since
they show a significant reduction of the inflammatory response to bacterial stimulus. Despite a previous description of this
phenomenon, the direct cause of ET in CF patients remains unknown. In this study we have researched the possible role of
microbial/endotoxin translocation from a localized infection to the bloodstream as a potential cause of ET induction in CF
patients. Plasma analysis of fourteen CF patients revealed high levels of LPS compared to healthy volunteers and patients
who suffer from Chronic Obstructive Pulmonary Disease. Experiments in vitro showed that endotoxin concentrations found
in plasma of CF patients were enough to induce an ET phenotype in monocytes from healthy controls. In agreement with
clinical data, we failed to detect bacterial DNA in CF plasma. Our results suggest that soluble endotoxin present in
bloodstream of CF patients causes endotoxin tolerance in their circulating monocytes.
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Introduction

The incidence of Endotoxin Tolerance (ET), defined as a state of

reduced responsiveness to an endotoxin challenge after a primary

bacterial insult [1], has been reported in the settings of several

diseases including sepsis, trauma, and coronary syndromes [2–5].

Cystic Fibrosis (CF) is a complex disease that affects essentially

all exocrine epithelia [6]. CF results from abnormalities in the

gene that codes for the chloride channel termed CF Transmem-

brane Conductance Regulator (CFTR), which belongs to the

extended family of ATP-binding cassette (ABC) transporter

ATPases [6]. This transmembrane glycoprotein is expressed in

some epithelia, and controls chloride flux across cell surfaces. In

addition, it down-regulates transepithelial sodium transport,

regulates calcium-activated chloride channels and potassium

channels, and may also serve important functions in exocytosis.

Some clinical features of CF include injuries of primary organs

(pancreas, sinus, liver, intestine and exocrine pancreas) and

secondary complications such as malnutrition and diabetes.

However, morbidity and mortality of CF patients are usually the

result of chronic lower airway bacterial infections and inflamma-

tion of the lungs. Repeated episodes of polymicrobial infection in

these patients cause a progressive deterioration of lung tissue, a

decline in pulmonary function and, ultimately, respiratory failure

and death in 90% of CF patients. In this regard, the observed high

frequency of pathogen colonization in these patients points to a

significant deficiency of their innate immune system [6,7].

A number of studies conducted so far have focused on local and

resident cells (e.g. lung epithelial cells and neutrophils), and most

of them described a defective secretion of pro-inflammatory

cytokines [8]. Our previous findings revealed a patent ET status in

circulating monocytes (M#/s) isolated from CF patients [9,10].

These cells are unable to mount a standard inflammatory response

after ex vivo endotoxin challenge. Besides that, we also have noticed

other main features of ET status in their M#/s (e.g. high phagocy-

tosis ability and poor antigen presentation) [9,10]. Additionally, a

low expression of TREM-1 at cell surface has been detected in

circulating CF-M#/s [9]. This orphan receptor magnifies the

inflammation after TLR activation in myeloid cells and is

implicated in a number of inflammatory pathologies [11]. The

low levels of TREM-1 expression in circulating CF M#/s partially

justify the non-responsiveness state in CF patients.Nevertheless,

the answer to the question ‘‘Why are circulating cells from CF

patients tolerant?’’ is largely unknown.

The translocations of microorganisms and/or microbial prod-

ucts have been previously described in other pathologies, such as
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HIV, Inflammatory Bowel Disease and pancreatitis [12–14].

Microbial translocation also occurs after damage to the gastroin-

testinal tract (e.g. after cholecystectomy) resulting in systemic

immune deregulation [15,16]. The quantity of LPS, the major

component of the outer membrane of Gram-negative bacteria, is

frequently associated with the degree of bacterial translocation in

several diseases [13,17,18]. In the particular case of CF pathology,

bacteremia has been rarely described and the levels of circulating

soluble LPS have yet to be determined [19].

The goal of the present study was to analyze a possible role of

circulating soluble LPS on the ET status in CF patients. To

accomplish this we first corroborated the ET status in a cohort of

fourteen CF patients. Second, we quantified the plasma levels of

LPS in these patients and the data were compared to healthy

controls and patients who suffer from Chronic Obstructive

Pulmonary Disease (COPD). We also evaluated the presence of

bacterial DNA or viable cells. Finally, we determined if LPS

concentrations found in CF plasma were enough to induce ET in

human monocytes in vitro.

Results

Circulating monocytes from CF patients exhibit an
Endotoxin Tolerant phenotype

According to our previous reports [9,10] circulating M#/s isolated

from CF patients fail to mount an appropriate inflammatory response

in the presence of Gram-negative endotoxin. The reported ‘‘ET-

signature’’ (IL10high/IL12low/IL23low) was corroborated in this new

cohort of CF patients (n = 14) (Fig. 1A–1C) as well as a low TNFa
production after ex vivo LPS challenge (Fig. 1D). However, endotoxin

tolerance was detected neither in healthy controls (n = 11) nor in

patients suffering from the respiratory disease COPD (n = 8). A group

of septic patients used as positive control was included in our study

(n = 8). Additionally, cells from CF as well as sepsis patients showed

high phagocytosis ability and impaired antigen presentation (Fig. 1E
and 1F), both are main features of an endotoxin tolerant phenotype

[1,10]. Note that a set of other cytokines and chemokines (IL6,

CCL3, CCL4, CCL20 and CCL22) were checked to verify the ET

status of CF patients (data not shown).

Figure 1. Circulating monocytes from CF patients exhibit an Endotoxin Tolerant phenotype. Monocytes from healthy controls (HC,
n = 11), CF patients (CF, n = 14), COPD patients (n = 8) and sepsis patients (n = 8) were isolated from circulation and cultured in the presence or not of
10 ng/ml LPS for 3 h. Then, cells were harvested and mRNA levels of IL10 (A), IL12p40 (B) and IL23p19 (C) were determined by real-time Q-PCR. The
ratios [gene]/[b-actin] are depicted. *, p,0.01, LPS vs. none. (D) Concentrations of TNFa were determined by ELISA in supernatants of cultures after
24 h of stimulation with 10 ng/ml LPS. *, p,0.05 LPS vs. none. (E) Cultures of circulating M#/s from healthy controls (HC, n = 11), CF (n = 14) and sepsis
(n = 8) patients were exposed to GFP-labelled E. coli DH5a bacteria for 1 h according to the protocol described in Materials and Methods. Next,
adherent cells were harvested and cell internalization was analyzed by flow cytometry. Percentage of green-positive cells is given, *, p,0,05 vs. HC. (F)
Heterologous human lymphocytes isolated from healthy volunteers were labelled with the membrane stain PKH2 green fluorescent cell linker kit.
Following ex vivo LPS stimulation of monocytes/macrophages isolated from healthy controls (HC, n = 11), CF (n = 14) and sepsis (n = 8) patients for
24 h, stained lymphocytes were added to the plates as responder cells in a relation of 1:5. After three days, non adherent cells were harvested, and
lymphocyte proliferation was assessed by flow cytometry as loss of green fluorescence intensity in the CD3+ gate. The fold induction is shown
(*, p,0.05 vs HC).
doi:10.1371/journal.pone.0029577.g001

Circulating LPS Causes Tolerance in CF Patients
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Significant levels of bacterial endotoxin are detected in
the plasma of CF patients

Having established that CF patients suffer from an ET status, no

strong evidence has reported the cause of this phenomenon. In the

case of sepsis the presence of circulating traces of endotoxin or

viable pathogen itself provides an explanation for their endotoxin

tolerance. However, in general terms CF patients suffer a local

rather than a systemic infection [20]. Others authors have

reported noteworthy levels of microbial products in the circulation

of HIV patients, a fact that correlates to systemic immune

deregulation in chronic HIV infection [17,21–23]. In those

patients detected endotoxins probably derived from the gastroin-

testinal tract and have an impact on the innate immune control.

These reports prompted us to study the presence of LPS in the

plasma of CF patients. As shown in figure 2A, significant levels of

endotoxin were detected in CF plasma (,0.3 ng/ml). In contrast,

low quantities of endotoxin were reported in both healthy controls

and COPD patients (,0.05 ng/ml). These data suggested a role

for endotoxin in the generation of an ET status in these patients.

In fact, in a global analysis including all groups, we found that

endotoxin concentrations inversely correlated to the inflammatory

response after an ex vivo LPS challenge (Fig. 2B–2C). Those M#/s

from patients with high levels of LPS (CF and sepsis) were unable

to produce significant TNFa quantities after ex vivo LPS challenge

(Fig. 2B). Similar results were obtained when the expression of

IL23p19 mRNA was analysed (Fig. 2C). In contrast, LPS

concentration correlates with high IL10 mRNA expression after

ex vivo endotoxin stimulation (Fig. 2D). In addition, a significant

correlation (R2,0.7) was obtained when CF patients were

analyzed (Fig. 2B–2D, insets). Note that two CF-patients were

not included in the analysis (insets) because their LPS concentra-

tion was very low (,0.1 ng/mL) in comparison to the rest of the

patients enrolled. However, their innate response after ex vivo LPS-

challenge were consistent the observed tendency.

A metagenonic analysis of CF plasma suggests the
absence of microbes in the circulation of these patients

The detected levels of LPS in plasma of CF patients suggested

the presence of microbes in this fluid. Similarly to the case of HIV

patients, the source of plasma endotoxin could be bacteria

Figure 2. Circulating endotoxin levels correlates with the refractory state in CF patients. (A) Levels of LPS were tested by LAL kit
endpoint-QCL1000 (see Materials and Methods) in plasma from controls (HC, n = 11), CF (n = 14), COPD (n = 8) and sepsis (n = 8) patients (*, p,0.01).
Circulating monocytes from healthy controls (HC, n = 11), CF patients (CF, n = 14), COPD patients (n = 8) and sepsis patients (n = 8) were isolated and
cultured in presence of 10 ng/mL of LPS for 24 h (B), and 3 h (C and D). Next, levels of TNFa production were analysed by ELISA in the supernatant of
cultures (B) or cells were harvested and mRNA of IL23p19 and IL10 were quantified by real time Q-PCR (C and D), (B–D, insets). Linear regression
analysis was applied in each case to obtain best linear equation with CF only (R2 is given).
doi:10.1371/journal.pone.0029577.g002
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translocation from the gastrointestinal tract [22,23]. In addition,

due to chronic airways colonization that these patients suffer, their

lungs could be an alternative source of microbial translocation. To

test this hypothesis we studied the putative presence of bacteria in

CF plasma using a universal 16S rRNA PCR (see Material and

Methods). Consistent negative PCR results were obtained for the

CF plasma since no bands were visualized in an Acrylamide

Denaturing Gradient Gel Electrophoresis (Fig. 3). In addition,

negative standard blood cultures were observed in duplicate fresh

plasmas from these patients (data not shown).

Sera from Cystic Fibrosis patients induce a patent down
regulation of the inflammatory response in healthy
control M#/ s

In order to demonstrate that levels of endotoxin detected in

plasma from CF patients could be a cause of the observed ET, we

cultured human M#/s isolated from healthy controls in presence of

supplemental sera from CF patients (50% of total volume). After

48 hours, dishes were washed twice and fresh medium was added.

Then, cells were challenged with LPS for 24 hours and the

production of TNFa and IL6 was evaluated at the supernatant of

each culture (see the experimental design in figure 4A). In those

cultures ‘‘pre-treated’’ with sera from CF patients but no with

controls both, TNFa and IL6 exhibited a marked down regulation

of its expression, after LPS challenge (Fig. 4B and 4C).

Moreover, we have also proven that LPS doses found in CF sera

induce ET in healthy monocytes. To test that M#/s were pre-

stimulated with different doses of LPS, including those detected in

CF patients, for six hours. Then, cells were washed and kept in

completed medium for 16 hours. Next, a standard LPS dose

(10 ng/ml) was added and production of TNFa and IL6 were

evaluated 24 hours after in the supernants of these cultures (see the

scheme in figure 4 D). Note that this experimental design was

previously established by us as a solid human model for endotoxin

tolerance [1,10]. Data shown in figure 4E and 4F demonstrate

that the endotoxin concentrations detected in the plasma of CF

patients are sufficient to induce an ET state in human circulating

monocytes (,0.3 ng/ml, figure 2A). In this way, we noticed a

down regulation of both TNFa and IL6 generation when cells

were re-challenged with a standard dose of LPS. Additionally,

IL23p19 mRNA expression is also down regulated and

IL10mRNA shows a patent increase. Others markers of ET

phenotype were also checked and showed a tolerant behavior (data

not shown).

Discussion

Endotoxins are the most potent microbial mediator implicated

in the pathogenesis of sepsis and septic shock [24]. In particular

LPS, a lipopolysaccharide located on outer membrane of Gram-

negative bacteria, has been postulated as the major immunogenic

factor of this kind of bacteria. It is well known that small amounts

of endotoxin may be released in a soluble form during

multiplication or bacterial lyses mediated by complement,

lysozyme, phagocytic digestion or antibiotic treatment [25]. A

sudden release of large quantities of LPS into the bloodstream

starts the generation of a potentially lethal array of inflammatory

mediators in circulation. Conversely, a systematic o repetitive

release of low levels of LPS into the bloodstream could generate an

effect in mononuclear cells known as endotoxin tolerance [1].

Previous research revealed a patent endotoxin tolerance state in

circulating monocytes from CF patients. Two studies on two

different cohorts of CF patients demonstrated that their peripheral

M#/s share all the determinant features of ET, including the IL

pattern of expression (IL10high/IL12low/IL23low), high phagocy-

tosis ability and impaired antigen presentation [9,10].

Herein we have analysed a possible role of circulating cell-free

LPS in ET induction in fourteen CF patients. We report

significant higher concentrations of LPS in CF plasma than in

healthy controls and COPD patients. The ET status in our cohort

of CF patients was corroborated by monocyte unresponsiveness to

LPS exposure. As we and others previously demonstrated, the

observed refractory state in CF is not secondary to impaired LPS

recognition by circulating CF-M#/s. The cell surface molecules

TLR4 and CD14, together with the MD2 expression, are not

affected in these cells [9,26]. Therefore, we postulate that the ET

status in CF patients is due to the presence of circulating

endotoxin. In order to prove this hypothesis, we pretreated control

human monocytes with a range of LPS doses including the

concentrations found in CF plasma (,0.3 ng/mL). Next, these

cultures were challenged with a standard concentration of LPS,

following an ET-model reported before (see ref. [10]). Our data

indicated that a concentration of LPS higher than 0.25 ng/mL

was enough to induce a refractory state in healthy control cells. In

contrast, those doses found in healthy controls and COPD patients

(,0.25 ng/mL) did not provoke an ET. In addition, the ‘‘pre-

treatment’’ with sera from CF patients but not controls provokes a

significant down-regulation of the inflammatory responses after

LPS-challenge (Fig. 4A–4C). Collectively, these results suggest

that the circulating LPS may cause the unresponsiveness state of

M#/s in CF patients.

As we referred above, endotoxemia has been described in other

pathologies, and has been frequently associated to bacteremia

[27]. However, circulating infection rarely has been reported in

CF pathology. In line with these data, we were unable to detect

bacterial DNA in the plasma of our cohort of CF patients. This

Figure 3. Serum from CF patients does not exhibit bacterial
DNA. A metagenomic assay was performed using the plasma from
seven CF patients randomly selected. DNA was extracted from 200 ml of
plasma and analyzed following the protocol described in Material and
Methods. Positive amplicons were visualized on Acrylamide DGGE gels
stained with ethidium bromide. Line 1 Pseudomonas aeruginosa PAO-1
strain, lines 2-8 CF serum samples and line 9 methicillin-resistant
Staphylococcus aureus ATCC 33591 strain.
doi:10.1371/journal.pone.0029577.g003

Circulating LPS Causes Tolerance in CF Patients

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e29577



apparent discordance, on one hand the presence of LPS and, on

the other hand, the absence of circulating bacteria in CF patients,

could be explained by the high antibodies titres found in

CF serum, especially against to the main colonizing bacteria,

Pseudomonas aeruginosa [28]. In addition, other authors have

reported significant amounts of soluble LPS released during

bacteria elimination [29,30]. This endotoxin, like other bacterial

detritus, can be absorbed in part from the intestinal lumen by

human enterocytes. After bacterial death, their cellular compo-

nents might be separate into their elements and LPS could cross

the gastrointestinal barrier directly into blood like other food

nutrients do.

Despite our assays not having clarified the actual source of the

LPS detected in CF patients, we have speculated with two not

mutually exclusive hypotheses. First, due to the chronic bacterial

colonization CF patients’ lungs suffer; endotoxin translocation

from that organ could be a potential source of circulating

LPS. Note that these patients exhibited an inefficiency of the

mucociliary system during the clearance of microorganisms

progressing in the lower respiratory track [6,7]. Second, because

intestinal inflammation is also a constant feature in CF-patients

[31], and this can induce an increased epithelial permeability [32],

the gastrointestinal tract is another putative starting place for LPS

in the circulation of CF patients. In this line, studies of CF patients’

small intestines have reported an increase in mononuclear cells in

the duodenum [33] and the enhancement of luminal albumin,

immunoglobulins, eosinophil cationic protein, neutrophil elastase,

interleukin-1ß, and interleukin-8 [32] detection. The cause of

Figure 4. Concentrations of LPS detected in CF patients induce ET in healthy control M#/s. (A) Schematic representation of the employed
experimental design. Monocytes, isolated from healthy controls, were cultured in presence of sera from CF patients (n = 14) and controls (n = 5) for
48 hours. Then, cultures were washed and fresh complete medium and LPS (10 ng/ml) added for 24 h. Next, TNFa (B) and IL6 (C) production were
analyzed by ELISA in the supernatants. (D) Schematic representation of the employed endotoxin tolerance model (see Materials and Methods and ref.
[10]). Cultures of monocytes, isolated from healthy controls, were pretreated with indicated LPS doses for 6 h. Then, cultures were washed and kept
in complete medium for 16 h. After this period of recovery, the cultures were re-challenged with 10 ng/mL of LPS for 24 h (E) or 3 h (F). Next, TNFa
and IL6 (E) production were analyzed by ELISA in the supernatants of the cultures and cells were harvested and mRNA of IL10 and IL23p19 were
quantified by real time Q-PCR (F).
doi:10.1371/journal.pone.0029577.g004
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intestinal inflammation in humans with CF is unknown, but

around 40% of CF patients have been reported to have microbial

overgrowth in the small intestine [34,35].

Data presented here seems to convey that circulating LPS could

be a marker for endotoxin tolerance grade exhibited by CF

patients, and may open new avenues of research in the clinical

strategies followed during systemic infection in CF patients. In

summary, our findings suggest that circulating endotoxin contrib-

utes decisively to the ET status in CF patients. The determination

of the precise source of circulating LPS awaits further studies.

Materials and Methods

Patients and healthy controls
CF patients. We studied 14 non-smoker adults diagnosed

with CF on the basis of established criteria (clinical phenotype,

sweat testing and CFTR genotyping), who had not used

corticosteroids within the three months previous to the study.

Exclusion criteria included a history of Chronic Obstructive

Pulmonary Disease (COPD), asthma or other active lung disease,

mental or physical handicap, or other significant diseases such as

diabetes mellitus, congestive heart failure, ischemic or valvular

cardiopathy or neuromuscular disease.

None of the subjects had an experienced an exacerbation of

respiratory tract infection within the previous four weeks. The

following clinical variables were collected on each subject: CFTR-

genotype, exacerbations in the last year, microorganisms in sputum,

and usual therapy. Standard, calibrated scales and stadiometers

were used to determine height, weight and body mass index (BMI).

Spirometry (FEV1 and FVC) was performed with a MasterScope

System (Viasys Healthcare, Würtzburg, Germany) according to

American Thoracic Society/European Respiratory Society criteria

[36]. Results were expressed as percentage of normal values, using

best postbronchodilator measurements. Predicted values were

calculated from the equations for adults of the European

Community for Steel and Coal [37]. See table 1.
COPD patients. Eight clinically stable patients with

moderate-severe COPD (post-bronchodilator FEV1 ,80% of

predicted and FEV1/forced vital capacity (FVC)#70%) [38] were

selected. Exclusion criteria included a history of asthma, other

active lung disease, mental or physical handicap, or other

significant diseases, such as congestive heart failure, ischemic or

valvular cardiopathy or neuromuscular disease. None of the

subjects had experienced an exacerbation or respiratory tract

infection within the previous four weeks, and none of them showed

significant bronchodilator reversibility (either .12% of baseline

FEV1 or .200 ml). No subject has had oral corticosteroid therapy

for at least three months.

Septic patients. Eight septic patients were consecutively

admitted to the Department of Internal Medicine at the Hospital

‘‘La Paz’’ with microbiologically confirmed bacteremia (positive

blood cultures for Escherichia coli) secondary to urinary tract

infection, who met the diagnostic criteria for sepsis by consensus

conference definition [39]. Blood samples were taken within 4–8 h

after blood culture collection, when they met the sepsis criteria for

the first time. The following exclusion criteria were imposed:

malignancy and chronic inflammatory diseases, treatments with

steroids or immunosuppressive drugs during the last month,

hepatic failure (serum aspartate aminotransferase and/or alanine

aminotransferase level.100 IU/L; prothrombin time,60%, total

bilirubin level.60 lmol/L), renal insufficiency (plasma creatinine

level.200 lmol/L), AIDS, virus B or C hepatitis, gestation, and

over 70 years of age.

Additionally, eleven age-matched healthy volunteers without

personal history of CF or other significant illness were included as

controls. Written informed consent was obtained from all subjects

enrolled. This study was approved by the local Ethics Committee

(‘La Paz’ Hospital Ethics Committee).

Abs and reagents
The following antibodies were used: anti-CD3-PE (Becton

Dickinson; CA, USA); anti-CD14-APC (Miltenyi Biotec; CA,

USA). The medium used for cell culture was Dulbecco’s MEM

from Invitrogen (Paisley, UK). LPS from Salmonella abortus was a

kind gift from Dr. Galanos (Max-Planck-Insitut für Immunobio-

logie, Freiburg, Germany). All other reagents were obtained from

Sigma-Aldrich (Saint Louis, MI, USA), unless otherwise stated.

Table 1.

Subject
Age,
yr Sex

BMI,
Kg/m2

CFTR
Mutation

FEV1, %
predicted

FEV1/FVC,
%

Microorganism
in sputum

Inhaled
Bronchodilators

Recombinant
human DNasa

Inhaled
Antibiotics

1 23 M 20.2 F508/U 55.5 55.9 P. aeruginosa Formoterol N Colimycin

2 39 M 25.1 F508/F508 87.4 81.4 P. aeruginosa Formoterol 2.5 mg/d Tobramycin

3 30 F 21.8 F508/U 32.8 65.3 P. aeruginosa Salbutamol,Ipratropium N Colimycin

4 30 M 25.2 F508/F508 73.8 70.6 P. aeruginosa Salmeterol N Tobramycin

5 21 M 23.2 R553/2789 85.2 72.9 P. aeruginosa/S. aureus No N Tobramycin

6 29 M 21.8 F508/F508 33.9 48.4 P. aeruginosa Salmeterol, Salbutamol N Colimycin

7 68 F 26.3 F508/F508 65.0 70.3 P. aeruginosa Salmeterol N No

8 32 M 22.8 F508/F508 79.4 75.1 P. aeruginosa Salbutamol N No

9 22 F 23.0 F508/F508 35.9 54.4 P. aeruginosa/S. aureus Formoterol/ Formoterol 2.5 mg/d Tobramycin

10 26 M 21.1 F508/U 82.4 76.2 P. aeruginosa/S.
aureus/H. influenzae

No N No

11 31 M 22.4 F508/F508 51.2 64.3 P. aeruginosa Salmeterol N Tobramycin

12 24 M 21.7 F508/U 83.2 71.7 S. aureus/H. influenzae No N No

13 23 F 20.3 F508/F508 43.1 65.9 P. aeruginosa Formoterol N Colimycin

14 28 F 23.7 F508/U 39.87 67.0 P. aeruginosa Salmeterol, Salbutamol N Tobramycin

doi:10.1371/journal.pone.0029577.t001
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PBMC isolation and cell culture
Starting from peripheral blood from CF, COPD, septic patients

or healthy volunteers, adherent cells were purified following the

same protocol employed for buffy coats in previous reports from

our laboratory [5,9,10,40–42]. Note that plasmas from these

patients were collected for other analysis. The composition of the

adherent population was analyzed by FACS (,92% of CD14).

Once plated, cells were exposed or not to LPS for various times

according to particular experiments. All reagents used for cell

culture were endotoxin-free, as assayed with the Limulus

Amebocyte test (Cambrex; North Brunswick, NJ, USA).

Endotoxin Tolerance model with human monocytes
Once seeded, adherent cells were treated or not with indicated

concentrations of LPS during the ‘‘time of tolerization’’ (ttol = 8 h).

After that, cells were washed three times with PBS and kept in

complete medium for different times through the phase called

‘‘time of recovery’’ (trec = 16 h). Then cells were re-stimulated or

not with 10 ng/ml of LPS for 24 hours. Note that this model was

established by our group in a previous study [10].

RNA isolation and cDNA synthesis
Cells were washed once with PBS and their RNA was isolated

using the High Pure RNA Isolation Kit from Roche Diagnostics

(Mannheim, Germany). cDNA was obtained by reverse transcrip-

tion of 1 mg of RNA using the High Capacity cDNA Reverse

Transcription kit from Applied Biosystems (Foster City, CA, USA).

mRNA quantification
Gene expression levels were analyzed by real-time quantitative

PCR (Q-PCR) using the LightCycler system from Roche

Diagnostics and cDNA obtained as described above. Q-PCR

was performed using a QuantiMix Easy SYG kit from Biotools

(Madrid, Spain) and specific primers. Results were normalized to

the expression of the b-actin, and the cDNA copy number of each

gene of interest was determined using a seven-point standard curve

as we described before [5,9,10,40–42].

Primers
The sequences of oligonucleotides used and their annealing

temperatures are:

IL-10: sense 59-ATG CCC CAA GCT GAG AAC CA-39,

antisense 59-TCT CAA GGG GCT GGG TCA GC-39 (58uC);

IL12p40: sense 59-GAC ATT CAG TGT CAA AGC AGC A-

39, antisense 59-CCT TGT TGT CCC CTC TGA CTC T-39

(64uC);

IL23p19: sense 59-GTT CCC CAT ATC CAG TGT GG-39,

antisense 59-GAG GCT TGG AAT CTG CTG AG-39 (60uC);

b-actin; sense 59-GTG GGG CGC CCC AGG CAC CA-39,

antisense 59-CTC CTT AAT GTC ACG CAC GAT TTC-39

(60uC).

All primers were synthesized, desalted, and purified by Bonsai

Biotech (Madrid, Spain).

ELISA for TNFa and IL6
Concentrations of TNF-a in supernatants were determined

using the ELISA development kit supplied by PeproTech (Rocky

Hill, NJ, USA). IL-6 levels in supernatants were determined with a

commercial ELISAs purchased from Bender MedSystem (Burlin-

game, CA, USA).

Phagocytosis of bacteria assay
We followed protocols previously described by de las Heras and

co-workers [43] or da Silva and co-workers [44].

Proliferation assay
We followed a protocol previously described by Hernández-

Fuentes and co-workers and Adam and co-workers [45,46].

Endotoxin quantification
The LPS concentrations were determined in 200 ml of plasma

using a kit based on a Limulus amaebocyte extract (LAL kit

endpoint-QCL1000, Cambrex BioScience, Walkersville, MD).

Determinations were done five times per sample.

Metagenomic assay
DNA was extracted from 200 ml of plasma using a QIAamp

tissue kit (Qiagen, Hilden, Germany), and a universal bacteria set

of primers for 16S rRNA (sense 59-ATT AGA TAC CCT GGT

AGT CCA-39 and antisense 59-AGG CCC GGG AAC GTA

TTC AC-39) were used yielding an amplicon size of ca. 550 bp.

All PCRs were carried out in a final volume of 50 ml containing

100 ng of DNA, 0.5 mM of each primer, 0.2 mM of dNTPs,

100 ng/ml of BSA, 3 mM of MgCl2, and 2 U of FastStart Taq

polymerase (Roche Diagnostics, Indianapolis, IN, USA). The

thermal cycling conditions used were as follows: an initial DNA

denaturation step at 95uC for 7 min, followed by 40 cycles of

denaturation at 95uC for 30 s, primer annealing at 52uC for 45 s,

and a final extension at 72uC for 45 s. Positive amplicons were

visualized in both 0.8% agarose gels and separated in vertical

electrophoresis polyacrylamide gels (8%) at 60uC; the urea-

formamide denaturating gel gradient (33–43%) was submitted to

130 V during 330 min. Gels were visualized with ethidium

bromide.

Data analysis
The number of patients or experiments analyzed is indicated in

each figure. In the case of in vitro assays, data were collected from

a minimum of three experiments to calculate the mean 6 SD and

the statistical significance was calculated using the unpaired

Student’s test and differences were considered significant at p

values,0.05 using Prism 5.0 software (GraphPad, San Diego, CA,

USA). Also ANOVA analysis following of a Turkey test was

performed.
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6. Ratjen F, Döring G (2003) Cystic fibrosis. The Lancet 361: 681–689.
7. Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, et al. (1998) Evidence

for periciliary liquid layer depletion, not abnormal ion composition, in the
pathogenesis of cystic fibrosis airways disease. Cell 95: 1005–1015.

8. Hartl D, Latzin P, Hordijk P, Marcos V, Rudolph C, et al. (2007) Cleavage of

CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease.
Nat Med 13: 1423–1430.
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et al. (2005) Tumor Cells Deactivate Human Monocytes by Up-Regulating IL-1

Receptor Associated Kinase-M Expression via CD44 and TLR4. The Journal of

Immunology 174: 3032–3040.

42. Gómez-Piña V, Soares-Schanoski A, Rodrı́guez-Rojas A, del Fresno C, Garcı́a F,

et al. (2007) Metalloproteinases Shed TREM-1 Ectodomain from Lipopolysac-

charide-Stimulated Human Monocytes. The Journal of Immunology 179:

4065–4073.

43. de las Heras B, Hortelano S, Girón N, Bermejo P, Rodrı́guez B, et al. (2007)

Kaurane diterpenes protect against apoptosis and inhibition of phagocytosis in

activated macrophages. Br J Pharmacol 152: 249–255.

44. Pinheiro da Silva F, Aloulou M, Skurnik D, Benhamou M, Andremont A, et al.

(2007) CD16 promotes Escherichia coli sepsis through an FcR[gamma]

inhibitory pathway that prevents phagocytosis and facilitates inflammation.

Nat Med 13: 1368–1374.

45. Adams AB, Pearson TC, Larsen CP (2003) Heterologous immunity: an

overlooked barrier to tolerance. Immunol Rev 196: 147–160.

46. Hernandez-Fuentes MP, Warrens AN, Lechler RI (2003) Immunologic

monitoring. Immunol Rev 196: 247–264.

Circulating LPS Causes Tolerance in CF Patients

PLoS ONE | www.plosone.org 8 December 2011 | Volume 6 | Issue 12 | e29577


