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Abstract

The 14-3-3 proteins are a family of regulatory signaling molecules that interact with other proteins in a phosphorylation-
dependent manner and function as adapter or scaffold proteins in signal transduction pathways. One family member, 14-3-
3f, is believed to function in cell signaling, cycle control, and apoptotic death. A systematic proteomic analysis done in our
laboratory has identified signal transducers and activators of transcription 3 (Stat3) as a novel 14-3-3f interacting protein.
Following our initial finding, in this study, we provide evidence that 14-3-3f interacts physically with Stat3. We further
demonstrate that phosphorylation of Stat3 at Ser727 is vital for 14-3-3f interaction and mutation of Ser727 to Alanine
abolished 14-3-3f/Stat3 association. Inhibition of 14-3-3f protein expression in U266 cells inhibited Stat3 Ser727
phosphorylation and nuclear translocation, and decreased both Stat3 DNA binding and transcriptional activity. Moreover,
14-3-3f is involved in the regulation of protein kinase C (PKC) activity and 14-3-3f binding to Stat3 protects Ser727
dephosphorylation from protein phosphatase 2A (PP2A). Taken together, our findings support the model that multiple
signaling events impinge on Stat3 and that 14-3-3f serves as an essential coordinator for different pathways to regulate
Stat3 activation and function in MM cells.
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Introduction

The 14-3-3 proteins are a family of highly conserved,

ubiquitously expressed regulatory molecules and seven isoforms,

designated d, g, c, e, h, b and f, have been described previously

[1,2]. The 14-3-3 proteins are known for their ability to bind a

plethora of client proteins, mostly through a phosphorylated

serine or threonine motif [3,4]. Because 14-3-3 interactions are

primarily phosphorylation- dependent, the 14-3-3 proteins have

been tightly integrated into the central phosphor-relay regulatory

pathways that form the core of vital signal transduction

pathways. Through regulated interactions with crucial signaling

mediators, 14-3-3 controls diverse cellular responses ranging

from signal transduction, cell cycle progression, metabolism,

oncogenesis and apoptosis [5]. The 14-3-3 proteins have raised

to a position of integrators of diverse signaling cues that impact

cell fate and cancer development [5]. In general, 14-3-3 proteins

play a role in promoting survival and repressing apoptosis [6].

However, individual 14-3-3 proteins may have unique functions

in certain physiological contexts and might selectively affect

distinct aspects of the carcinogenic process [7]. Especially,

involvement of 14-3-3f in multiple signaling pathways has been

reported and activities of various signaling mediators are

differentially regulated by 14-3-3f via direct physical association

[8]. However, whether 14-3-3f also regulates the signal

transducers and activators of transcription (Stat) family was

unknown. In the course of our search for proteins that interact

with 14-3-3f, for the first time, we found that Stat3 is one of the

novel 14-3-3f interacting proteins [9].

The Stat proteins are a conserved family of transcription

factors implicated in regulating processes such as inflammation,

survival, proliferation, metastasis, angiogenesis, and chemoresis-

tance of tumor cells [10]. One of these members, namely Stat3,

is ubiquitously expressed and is functionally involved in

regulating cell proliferation, differentiation and cell survival

[11]. In many cancer cells, Stat3 signaling has been recognized

as a pivotal pathway supporting survival and growth [12,13,14].

Stat3 is often constitutively active in many human cancer cells

including multiple myeloma (MM), leukemia, lymphoma, and

solid tumors [12,15]. The Stat3 signaling is modulated, both

positively and negatively, by its interaction with numerous other

proteins, and crosstalk occurs with various other signaling

cascades, including the NF-kB, AP-1 or PI-3K pathways [16].

We made the hypothesis that the physiological interaction

between 14-3-3f with Stat3 might contribute to the cooperation

and/or coordination of their functions in the control of

numerous intracellular signaling and regulatory pathways in

MM cells.
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The purpose of the present study was to further elucidate the

molecular mechanisms underlying the regulation of Stat3 pathway

and to contribute to a better understanding of the cross-talk

between 14-3-3f and Stat3 signaling in MM cells. In this study,

evidence is provided that 14-3-3f interacts with Stat3 in a

phosphorylation-dependent manner and the phosphorylated

Ser727 is necessary for 14-3-3f binding. Of note, 14-3-3f is

required for nuclear translocation, optimal DNA-binding and

transcriptional activity of Stat3. Furthermore, our results indicated

that 14-3-3f is involved in the regulation of PKC activity and

protection of Ser727 dephosphorylation from protein phosphatase

2A (PP2A) in U266 cells. Thus, our findings have important

implications in the understanding of the mechanisms that regulate

Stat3 activity and function in MM cells.

Results

14-3-3f Interacts with Stat3 Protein
We had previously reported an interaction between 14-3-3f and

Stat3 in U266 cells [9]. We further confirm this association

between endogenously expressed proteins by using reciprocal

immunoprecipitation. As shown in Figure 1A, Stat3 was detected

in the 14-3-3f immune complex and the U266 cell lysate (Input)

but not in the normal rabbit IgG control (Ctr). Furthermore,

reverse immunoprecipitation assay using specific antibodies for

Stat3 followed by Western blotting with 14-3-3f confirmed their

binding to 14-3-3f. Thus, compelling evidence shows that 14-3-3f
interacts with Stat3 in U266 cells. Seven 14-3-3 isoforms are

expressed in U266 cells [9]. To determine whether Stat3 also

interacts with other 14-3-3 isoforms, U266 cell lysates were

immunoprecipitated using 14-3-3 isoform specific antibodies [9]

and the co-precipitated Stat3 was detected by Western blot. The

results showed absence of binding to rabbit IgG control (Ctr) and

14-3-3d, g; weak binding to c, e, h; moderate binding to b and

strong binding to f (Fig. 1B). We have shown that several 14-3-3

isoforms (14-3-3b, e, c, g, h) were co-purified with 14-3-3f [9],

which is in accordance with previous reports showing hetero-

dimerization between different 14-3-3 isoforms [17,18]. Therefore,

our results demonstrated that Stat3 can interact with 14-3-3f
directly and also suggested that Stat3 can bind with other

mammalian 14-3-3 isoforms in a redundant manner or through

binding to 14-3-3f.

Figure 1. 14-3-3f is a Stat3-interacting protein. (A) Immunoprecipitation assays of 14-3-3f and Stat3 proteins were carried out in U266 cells as
described in Materials and Method section. No band of Stat3 was observed in the IgG negative control (Ctr). (B) Interaction of Stat3 with 14-3-3
isoforms. (C) Schematic illustration of Stat3 domains and their truncations. ND: N-terminal domain, CC: coiled-coil domain, DBD: DNA binding domain,
LD: linker domain, SH2: SH2 domain and CT: C-terminal. (D) Identification of the Stat3 domains interacting with 14-3-3f. Myc-Stat3 domain truncation
mutants were transfected with HA-14-3-3f in U266 cells. An empty vector was used as a control. Anti-HA immunoprecipitates were analyzed by
Western blot with antibodies to Myc (upper panel) or HA (middle panel). The expression of Myc-Stat3 is shown in the bottom panel. (E) Stat3 C-
terminal mutants binding to 14-3-3f. Experiments were performed in triplicate and representative data are shown.
doi:10.1371/journal.pone.0029554.g001

Functional Interaction between Stat3 and 14-3-3f
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The C-terminal domain of Stat3 Is Responsible for Its
Association with 14-3-3f

To identify which region of Stat3 is involved in this interaction,

we generated Stat3 truncated mutants, successively deleting Stat3

domains from the C terminus (Fig. 1C), and analyzed their ability to

interact with 14-3-3f. These truncated Stat3 constructs were

transfected with 14-3-3f into U266 cells. Co-IP experiments

revealed that Stat3 C-terminal region (amino acids 688 to 770)

retained 14-3-3f interaction whereas all other truncated mutants

failed to co-IP with 14-3-3f (Fig. 1D). These results indicate that the

C-terminal tail of Stat3 is responsible for interaction with 14-3-3f.

Serine 727 of Stat3 Is Essential for 14-3-3f Binding
A major function of 14-3-3 proteins is to bind to proteins with

phosphorylated serine and threonine residues [19,20,21]. Since we

had demonstrated an association between C-terminal region

(amino acids 688 to 770) of Stat3 and 14-3-3f, we wanted to

determine whether the association between Stat3 and 14-3-3

proteins required phosphorylation. Mass spectrometric analysis

identified several phosphorylation sites on the C-terminal tail of

Stat3, including S691 [22], T714 [23,24], T717 [24], S719 [25]

and S727 [26,27,28,29]. To find the phosphorylation site that is

involved in binding to 14-3-3f, myc-Stat3 (688–770) or mutants

(S691A, T714A, T717A, S719A and S727A) plasmids were

generated and transfected into U266 cells, along with the HA-14-

3-3f plasmids. Total cell lysates were analyzed by anti-HA IP

followed by myc Western blot. The results showed that Stat3

binding to 14-3-3f was abrogated by the S727A mutation (Fig. 1E).

These results suggested that phsophorylated Ser727 (pSer727) is

the major binding site for 14-3-3f.

Modeling of the 14-3-3f/Stat3 Complex Allows
Rationalization of the Results

To rationalize our results we analyzed the structures of the 14-3-

3f/Stat3 complex. A number of 14-3-3f-partner (most are short

peptides) complex structures were solved and available in the PDB

database (Table S1). In the complex structures, partners

interacting with 14-3-3f contain phsophorylated serine or

threonine, which bind to positive charged residues R56 and

R127, and R60 of 14-3-3f. So R56, R127 and R60 are supposed

to be the possible binding sites of the pSer727 of Stat3. In all the

14-3-3f partner peptides listed in Table S1, a positive charged

residue (R or K) which is 1-3 residues away in the N-terminal

direction from the phsophorylated site is found. This positive

residue is proposed to interact with the phsophorylated site too,

helping to stabilize the interaction of 14-3-3f R56, R127 and R60

with the phsophorylated site. Stat3 is different to all the above

peptides as its positive residue (R) is in the C-termical direction

from the phsophorylated site (pSer727). For simplicity of MD

simulation, we used a 17-peptide (CSNTIDLPMpSPRTLD SL) of

Stat3 (referred to as Stat3 peptide in the following text) that is

critical for the binding to represent Stat3. We constructed the

starting structure of the Stat3 peptide by residue mutation using

1IB1 as template and then MD simulations with AMBER10

program were carried out to simulate the interaction between 14-

3-3f and Stat3 peptide with phsophorylated Ser727 (referred to as

pSer727 Stat3 peptide in the following text). After more than 24 ns

simulation, the system balanced and the key residue pSer727, form

four stable salt bridges with R56, R60, R127 of 14-3-3f and with

R729 of Stat3 peptide itself. All distances between the arginine CZ

atoms and the pSer727 phosphorous atom are nearly 4 Å (Fig. 2A

and 2B). Then the 24 ns structure was stripped from the MDs

trajectory as the starting geometry for further simulations. A 14-3-

3f/Stat3 peptide complex was constructed by dephosphorylation

of the pSer727 of the 14-3-3f/pSer727 Stat3 peptide complex.

Both 14-3-3f/Stat3 peptide complex and 14-3-3f/pSer727 Stat3

peptide complex were subject to further MD simulations. The

further MD simulations show that without phsophorylated Ser727

Stat3 peptides moves away from the binding region (Video S1).

The interaction energies of 14-3-3f with Stat3 peptide and

pSer727 Stat3 peptide are shown in Figure 2C. After 24 ns

simulations the interaction energy of 14-3-3f with pSer727 Stat3

peptide (about 280 KCal/mol) is more than three times lower

than that with Stat3 peptide (about 220 KCal/mol), which means

a significant binding affinity decrease after Ser727 dephsophoryla-

tion. The Stat3 peptide also moves away from the interaction

region for about 6.5 Å to 22.8 Å (Fig. 2D). Notably, for most of

the simulation time, pSer727 and R729 of Stat3 peptide are

combined together, which proved our previous suppose that R729

helps to stabilize the interaction of 14-3-3f’s R residues with

pSer727.

14-3-3f regulates Stat3 transcriptional activity via Ser727
Stat3 is constitutively activated in U266 cells [12] and various

primary tumors and tumor cell lines [30]. Transcriptional activity

of Stat3 is controlled by phosphorylation on Ser727 and Tyr 705,

followed by dimerization and nuclear translocation. Evidence

indicates that cooperation of both tyrosine and serine phosphor-

ylations is necessary for full activation of Stat3 [30,31]. To

investigate the level of Stat3 signaling the 14-3-3f acts on, we

studied whether 14-3-3f knockdown interferes with activation of

Stat3, that is, phosphorylation of tyrosine 705 and serine 727. In

our previous work, we developed the 14-3-3f knockdown U266

cell line (U266-KD) and its negative control cell line (U266-NC)

[9]. As shown in Figure 3A, compared with parental U266 and

U266-NC cells, Stat3 phosphorylation at S727 was clearly

inhibited by 14-3-3f depletion, meanwhile phosphorylation at

Y705 and total Stat3 protein levels were not affected. Our results

prompted us to further investigate the effects of overexpression of

14-3-3f in U266 cells. We transiently transfected U266-KD,

U266-NC and parental U266 cells with an expression vector

containing a cDNA encoding human 14-3-3f or a blank vector as

a control. The overexpression of 14-3-3f was confirmed by

Western blotting (Fig. 3A). As shown in Figure 3A, compared with

the cells transfected with the control vector, transient expression of

14-3-3f increased the Stat3 phosphorylation at S727 in U266-KD

cells. The results showed that 14-3-3f knockdown inhibited S727

phosporylation of Stat3. Because phosphorylation causes dimer-

ization of Stat3 and then nuclear translocation [12], we therefore

next studied whether 14-3-3f knock down might influence this

translocation process by immunocytochemistry. In U266 cells,

Stat3 preferentially localized to the nucleus, as apparent by

Hoechst staining (Figure 3B). Depletion of 14-3-3f prevented

nuclear translocation of Stat3, as was expected from its inhibitory

effect on phosphorylation of Stat3 (Fig. 3B). When Stat3 is

translocated to the nucleus, it binds to the DNA, an event that in

turn regulates gene transcription [12]. Therefore, we monitored

the activity of Stat3 dimers inside the nucleus by assessing the

Stat3 DNA binding ability in the presence or absence of 14-3-3f.
Relative expression of Stat3 was determined using image

densitometry. As shown in Figure 3C, the DNA-binding ability

of Stat3 in the U266-KD cells was significantly reduced (Fig. 3C,

lane 4). With the overexpression of 14-3-3f, the DNA-binding

ability of nuclear Stat3 was increased significantly in the U266-KD

cells (Fig. 3C, lane 7). These data indicate that 14-3-3f is required

for optimal DNA binding of Stat3 to its DNA response element.

Next, we further measured the effects of 14-3-3f on Stat3 activity

Functional Interaction between Stat3 and 14-3-3f
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in luciferase reporter gene assays. As shown in Figure 3D, knock

down of 14-3-3f in U266 cells yielded a significant decrease in the

Stat3-dependent relative luciferase activity, while overexpression

of 14-3-3f markedly enhanced Stat3-mediated transcriptional

activity in U266-KD cells. Taken together, these data suggest that

14-3-3f positively regulates the transcriptional activity of Stat3 and

is necessary for Stat3-mediated transcriptional activation in U266

cells.

PKC activity is compromised in the absence of 14-3-3f
It is well established that 14-3-3 proteins function as a protein

kinase C (PKC) regulator [32,33,34,35] and 14-3-3f activates

PKC in vitro [36,37]. Recently, evidence indicates that PKC

interacts with Stat3, phosphorylates Stat3 Ser727, and increases

both DNA-binding and transcriptional activity of Stat3 [38].

Therefore, we speculated that 14-3-3f might affect Stat3 activation

via regulating the PKC activity. In MM, PKC isoform expression

has been reported in several MM cell lines [39,40,41]. Specifically,

our results show high expression of PKC a, PKC d and PKC f;
low expression of PKCi, PKC b, PKC m and PKC e; and absence

of PKC h and PKC c in U266-NC, U266-KD cells and its parent

U266 cell line (Fig. 4A). We therefore focus on PKC a, PKC d and

PKC f. We investigated whether 14-3-3f knock down affects PKC

activity in U266 cells using immunoprecipitation kinase assays. As

shown in Figure 4B–D, knockdown of 14-3-3f resulted in a

significant decrease in the kinase activities of PKC a, PKC d and

PKC f (p,0.05), whereas the amount of PKCs that was used in

each experimental condition was similar, as determined by

immunoblotting with specific PKC isoform antibodies. With the

overexpression of 14-3-3f, the kinase activities of PKC a, PKC d
and PKC f were increased significantly in the U266-KD cells

(p,0.05), compared with the cells transfected with the control

Figure 3. Effect of 14-3-3f knock down on Stat3 activity. (A) Effect of 14-3-3f knock down on Stat3 activity in U266 cells. U266, 14-3-3f
knockdown U266 cell line (U266-KD) and its negative control cell line (U266-NC) cells were transfected with 14-3-3f plasmid or blank vector.
Phosphorylation of Stat3 Tyr705 and Ser727 was detected by the specific anti-phospho-Tyr705 and anti-phospho-Ser727 antibodies, and the blot was
stripped and reprobed with anti-Stat3 antibody. The blot was also probed by GAPDH antibody to serve as loading controls. (B) Influence of 14-3-3f
knock-down on Stat3 nuclear translocation. The subcellular localization of Stat3 in U266-NC and U266-KD cells was monitored by using fluorescence
microscopy. (C) 14-3-3f knock down inhibits constitutively active Stat3 in U266 cells. U266, U266-NC and U266-KD cells were transfected with 14-3-3f
plasmid or blank vector as indicated. Nuclear extracts prepared from these cells were incubated with hSIE probe and analyzed by EMSA. Lane 1 (C1),
hSIE oligonucleotide only; lane 8 (C2), U266 nuclear extracts+1006excess unlabeled hSIE oligonucleotide. Relative expression of Stat3 (normalized to
U266 samples) was determined using image densitometry. (D) Reporter constructs were cotransfected into U266, U266-NC and U266-KD cells
together with expression vectors encoding 14-3-3f or blank vector as indicated. Luciferase activity in the cells was analyzed by dual-luciferase assay.
*Significantly different compared to the U266 and U266-NC cells (p,0.01). **Significantly different compared to U266-KD cells transfected with blank
vector (p,0.01). Experiments were performed in triplicate and representative data are shown.
doi:10.1371/journal.pone.0029554.g003

Figure 2. Structural models of 14-3-3f in complex with Stat3. (A–B) The crucial amino acids of 14-3-3f interacting with phosphorylated Stat3
peptide. Distance of the zeta carbon atoms of R56, R60, and R127 of 14-3-3f between the phosphorus atom of the phosphorylated Stat3 peptide
after 24 ns MD simulations of balance were shown. (C) Binding free energy change and the structural movements of the Stat3 peptide after
dephosphorylation. Differences of the binding free energies of 14-3-3f with phosphorylated and dephosphorylated Stat3 peptides. (D) Starting
geometry of dephosphorylated Stat3 peptide (purple), and the dissociated dephosphorylated Stat3 peptide after 24 ns MD simulation (green). The
14-3-3f is shown in cyan.
doi:10.1371/journal.pone.0029554.g002
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vector. Taken together, our results indicate that 14-3-3f was

involved in the regulation of PKC activity in U266 cells.

14-3-3f Proteins Protect Stat3 phosphorylation at S727
from PP2A Activity

It has been reported that 14-3-3 can protect phosphorylated

proteins from access by the catalytic unit of the protein phosphatase

2A (PP2A) thus preventing its dephosphorylation [42]. Therefore,

we hypothesized that binding of 14-3-3f to Ser727 of Stat3 protects

it from phosphatase activity. To test this hypothesis, we used a

nonphosphorylated peptide, R18, which has been shown to displace

14-3-3 from its phosphorylated binding partners [43,44]. As

predicted, the R18 peptide efficiently displaced 14-3-3f from Stat3

(Fig. 5A). Lysates containing phosphorylated Myc-Stat3 were then

subjected to an in vitro dephosphorylation assay in a buffer

compatible with phosphatase but not kinase activity. As shown in

Figure 5B, S727 was dephosphorylated when 14-3-3f was displaced

by R18, suggesting the presence of an active phosphatase (s).

Dephosphorylation of Y705, site not implicated in 14-3-3f binding,

was unaffected by R18 (Fig. 5B). Because previous data suggest that

PP2A is the predominant Ser/Thr phosphatase that interacts with

Stat3 [45], we addressed its contribution to Ser727 dephosphory-

lation in cell-free extracts containing FST, a selective inhibitor of

PP2A [46]. In the presence of R18, FST inhibited dephosphory-

lation of Stat3 at S727 in a dose-dependent manner (Fig. 5C). To

demonstrate that PP2A has the capacity to directly dephosphorylate

Stat3, we performed an in vitro phosphatase assay. As shown in

Figure 5D, increasing amounts of purified PP2A effectively

Figure 4. Effects of 14-3-3f on PKC activity. (A) PKC isoform expression in U266, U266-NC and U266-KD cells. Cell lysates from rat brain were
used as a positive control for PKC expression. (B–D) 14-3-3f knock down inhibits PKC isoform kinase activity. PKC isoform activity was determined
using PKC immunoprecipitation kinase assays. After transfected with 14-3-3f plasmid or blank vector as indicated, equal amounts of whole-cell
lysates were immunoprecipitated with PKC a (B), PKC d (C) and PKC f (D) antibodies and immunoblotted with indicated antibodies. IP indicates
immunoprecipitation; Ctr, immunoprecipitation with protein A/G Plus beads, whole-cell lysates, and preimmune rabbit serum. *Significantly different
compared to the U266 and U266-NC cells (p,0.05). **Significantly different compared to U266-KD cells transfected with blank vector (p,0.05).
Experiments were performed in triplicate and representative data are shown.
doi:10.1371/journal.pone.0029554.g004
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dephosphorylated Stat3 at S727. Collectively, our findings strongly

suggest that the association between Stat3 and 14-3-3f protects

S727 dephosphorylation from PP2A.

Discussion

Stat3 activity is tightly regulated by its interacting proteins and

multiple signaling cascades and its prolonged activation is

associated with various malignancies, including MM [12,47]. In

this study, we reported a novel interaction between 14-3-3f and

Stat3 in myeloma cells. Through the use of multiple biochemical

approaches, we demonstrated that 14-3-3f is a bona fide Stat3

interacting partner in U266 cells. Phosphorylation of the Ser727

residue in the C terminus of Stat3 mediates the Stat3/14-3-3f
interaction, and replacement of this crucial residue with

phosphorylation-resistant Alanine totally abolishes the protein

associations (Fig. 1E). Based on these results, it is possible that 14-

3-3f interacts only with Ser727-phosphorylated Stat3 in U266

cells. The Stat3/14-3-3f interaction leads to an increase of the

endogenous Stat3 transcriptional activity, whereas the absence of

14-3-3f leads to significant impairment in Stat3 activity (Fig. 3).

These results suggest that 14-3-3f is a positive regulator of Stat3

activity. Generally, in addition to the phosphorylation of Tyr705,

phosphorylation of the Ser727 residue also contributes to the

activation of Stat3. While tyrosine phosphorylation plays a key role

in all the basic events required for Stat3 activation, such as dimer

formation, nuclear translocation and DNA binding, serine

phosphorylation is required for its maximal transcriptional

activity. Serine phosphorylation, therefore, probably represents a

second level in the regulation mechanism through which, with the

assistance of 14-3-3f, maximal Stat3 transcriptional activity is

achieved. 14-3-3f may, in fact, serve as a molecular stabilizer,

specifically devoted to serine phosphorylation, by converting Stat3

from its ‘primarily activated’ form to ‘optimally activated’ form.

This second stage of regulation may involve various events such as

enhanced Stat3 DNA binding and coactivator recruitment.

Identification of Stat3/14-3-3f interaction via the Ser727 residue

also provides a potential explanation for the long-undetermined

mechanism of the serine phosphorylation-mediated enhancement

to Stat3 transcription.

Importantly, it is well established that 14-3-3 proteins are

involved in various steps regulating the Stat3 activity, including

PKC [32,33,34,35], Raf1 [48,49], MEK1/2 [50], and PP2A [42].

Consistent with these reports, our results demonstrated that 14-3-

3f is involved in the regulation of PKC activity (Fig. 4) and the

association between Stat3 and 14-3-3f protects Ser727 dephos-

phorylation from PP2A (Fig. 5). These data, along with the results

on Stat3/14-3-3f interaction, support the model that multiple

signaling events, including PKC, Raf1, MEK1/2, ERK1/2 and

PP2A, impinge on Stat3 and that 14-3-3 proteins serve as an

essential coordinator for different pathways to regulate Stat3

activity in myeloma cells (Fig. 6). As shown in Figure 6, 14-3-3f is

linked to constitutive activation of Stat3 in myeloma cells. 14-3-3f
and Stat3, the proteins with oncogenic traits, are important

components of development and maintenance of MM.

Recently, 14-3-3f has been identified as a prognostic marker

and therapeutic target for multiple tumor types [5]. We also

reported that inhibition of 14-3-3f decreases the activity of some

pathways of the MM signaling network and induces apoptosis in

MM cells [51]. Therefore, 14-3-3f contributes to the maintenance

of the MM survival network and pharmacologic inhibition of 14-3-

3f could be an interesting approach to develop novel therapies for

MM. However, targeting 14-3-3f may be challenging at the

current stage because 14-3-3f regulates many important proteins

that are essential for homeostasis. Based on our findings that 14-3-

3f and Stat3 act in concert in the maintenance of the MM

signaling, it is worthwhile considering a more specific strategy that

target Stat3/14-3-3f interaction, as such drugs may spare some of

the essential homeostatic functions executed by 14-3-3f and Stat3

on their own, while inhibiting their malicious cooperation in

Figure 5. 14-3-3f protects Stat3 phosphorylation. (A) Competition of R18 peptide for 14-3-3f/Stat3 interaction. Immunoprecipitated 14-3-3f
from U266 cells transfected with Myc-Stat3 was incubated with varying amounts of R18 and analyzed by Western blotting with the indicated
antibodies. (B) Total cell lysates were prepared in phosphatase lysis buffer A, and aliquots were either left on ice or dephosphorylated in the presence
(+) or absence (2) of 25 mM R18 peptide. Reactions were analyzed by immunoblotting (IB) with the indicated antibodies. (C) Lysates from U266 cells
were prepared as in A. Aliquots were either left on ice or dephosphorylated in the presence of 25 mM R18 peptide. Where indicated, FST (1–10 mM)
was added on ice for 10 min before initiating dephosphorylation. Reactions were analyzed by Western blotting with the indicated antibodies. (D)
Immunoprecipitated Stat3 from U266 cells was treated with the indicated units of purified PP2A enzyme at 30uC for 30 min, and analyzed by Western
blotting with the indicated antibodies. All experiments were performed in triplicate and representative data are shown.
doi:10.1371/journal.pone.0029554.g005
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cancer cells. This should alleviate the systemic toxicity associated

with total 14-3-3f or Stat3 inhibition and retain most of their

functions but may affect tumor growth. Taken together, the

malicious cooperation formed by 14-3-3f and Stat3 may serve as

the Achilles Heel of MM and many other cancers, providing new

opportunities for therapeutic intervention. Experiments testing this

hypothesis are ongoing in our laboratory.

Materials and Methods

Materials and Antibodies
The R18 peptide, with a sequence of PHCVPRDLSWL

DLEANMCLP, was purchased from Biomol International (Plym-

outh Meeting, PA). Fostriecin (FST), a selective inhibitor of protein

phosphatase 2A (PP2A) was purchased from Sigma-Aldrich

(Taufkirchen, Germany). The antibodies and sources of the

antibodies used in this study were as follows: 14-3-3f, 14-3-3e, 14-

3-3s, 14-3-3h, 14-3-3b, GAPDH antibodies (Santa Cruz Biotech-

nology, Santa Cruz, CA), 14-3-3c, 14-3-3g, Stat3, pY705-Stat3,

pS727-Stat3 antibodies (Cell Signaling, Danvers, MA), HA tag,

Myc tag antibodies (Genecopoeia, Rockville, MD). Antibodies to

PKC isoforms were obtained from BD Biosciences (San Jose, CA).

Cell Cultures
The human myeloma cell line U266 was purchased from

American Type Culture Collections (Rockville, MD). All cells were

routinely maintained in RPMI 1640 supplemented with 1%

penicillin/streptomycin, 1 mmol/L L-glutamine, and 10% fetal

bovine serum at 37uC, 5% CO2 in air. Stable 14-3-3f knock down

(designated as U266-KD) and its negative control (designated as

U266-NC) cell lines were generated and maintained as previously

described [9].

Plasmid Constructs and Transient Transfections
Human Stat3 and its truncated isoforms corresponding to

amino acids 1–688, 1–585, 1–465, 1–320, 1–130 or 688–770 were

cloned into the NH2 terminal Myc-tagged pReceiver-M43

expression vector (Genecopoeia, Rockville, MD). Human 14-3-

3f was cloned into the NH2 terminal HA-tagged pReceiver-M06

expression vector.

To create point mutations in the C terminus of Stat3, the

expression vector encoding C terminus of Stat3 (688–770) was

used as a template. Construction of mutant Stat3 (688–770)

cDNAs, where the codons for S691, T714, T717, S719 and S727

are exchanged to Ala, was performed by site-directed mutagenesis

using a QuikChange kit (Stratagene, La Jolla, CA) following the

manufacturer’s instructions. Primers used, with the introduced

mutations underlined, were: (Ser691RAla) 59-GTCGGCCA-

GAGGCCCAGGAGCAT-39; (Thr714RAla) 59-CTGTGTG-

GCACCAAC GACCTGC-39; (Thr717RAla) 59-GTGA CAC-

CAACGGCCTGCAGCAAT-39; (Ser719RAla) 59- CGACCT-

GCGCCAATA CCATTGAC-39; (Ser727RAla) 59-GACCT-

Figure 6. Proposed model of 14-3-3 and Stat3 interaction. The model illustrated that multiple signaling events, including PKC, Raf1, MEK1/2,
ERK1/2 and PP2A, impinge on Stat3 and that 14-3-3f serves as an essential coordinator for different pathways to regulate Stat3 activity in myeloma
cells.
doi:10.1371/journal.pone.0029554.g006
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GCCGATGGCCCCCCGCAC-39. All mutant constructs were

confirmed by DNA sequence analysis. The plasmids were

introduced into U266 cells using the Nucleofector X005 (Amaxa,

Cologne, Germany), according to the Optimized Protocol for the

U266B1 cell line.

Immunoprecipitation and Western blot analysis
Protein extracts prepared with lysis buffer (150 mM NaCl,

10 mM HEPES, pH 7.5, 0.2% Nonidet P-40, 5 mM NaF, 5 mM

Na4P2O7, 2 mM Na3VO4, 10 mg/l aprotinin, 10 mg/l leupeptin,

and 1 mM PMSF), incubated on ice for 309, and centrifuged to

remove insoluble materials. The BioRad (Hercules, CA) protein

assay was used to measure protein concentrations. For immuno-

precipitations, cell extract was precleared by Protein A/G Plus

beads (Santa Cruz Biotechnology) followed by incubation with

primary antibody overnight on a rocker at 4uC. Immune complexes

were pulled down by incubating with Protein A/G Plus beads for

4 h at 4uC followed by washing twice with lysis buffer containing

0.1% Triton X-100, and two times with lysis buffer without

detergent. Bound proteins were eluted by boiling and analyzed by

Western blot. For Western blots, 30 mg of cellular extract was

resolved by 10% SDS-PAGE, transferred to nitrocellulose, and

probed with appropriate antibodies. These experiments were

repeated three times and representative data are shown.

Preparation of the structures for MD simulations
The crystal structure of the 14-3-3f/serotonin N-acetyltrans-

ferase complex (PBD ID: 1IB1) was used as the template to

construct the 14-3-3f/Stat3 peptide complex by mutating the

residues on N-acetyltransferase to the corresponding residues of

Stat3, with the phosphorylation residues (S for Stat3 and T for N-

acetyltransferase) for sequence alignment point. After 24 ns

balance with simulations, the pSer727 Stat3 peptide was then

used as a template to construct a dephosphorylated Stat3 peptide.

All the structures were modeled by using the program LEaP

embeded in AMBER10 program with the parm99 AMBER force

field [52]. The protonation states of HIS164 were treated as HID

(ND1-protonated) form. The systems were neutralized and

immersed in octahedral periodic box of TIP3P [53] water

molecules with a closeness parameter of 8 Å away from the

boundary of any atoms. The AMBER force field parameter for

phosphoserine, which were retrieved from the AMBER parameter

database (http://www.pharmacy.manchester.ac.uk/bryce/amber/)

[54,55] were used to build the phosphorylated structure. The 14-3-

3f/pSer727 Stat3 peptide complex system contains 9043 waters and

9 Na+ ions with a volume of 361016.092 Å3 (oct). The 14-3-3f/Stat3

peptide complex system contains 8640 waters and 11 Na+ ions with a

volume of 349988.538 Å3 (oct).

MD Simulations
The Ewald method [56] was used for the treatment of long

range electrostatic interactions and the SHAKE algorithm were

used for constraining all bonds involving hydrogen atoms. The

non-bond interaction cutoff was set to 8.0 Å. Energy minimization

was performed for each solvated complex using the conjugate

gradient algorithm, harmonic constraints were applied with a force

constant gradually relaxed from 2 kcal/Å. After minimization, all

systems were heated up from 0 K to 310 K during 50 ps, then

50 ps density equilibration at 310 K with weak restraints on the

complex (2 kcal/Å) was carried out. Production runs were carried

out for more than 24 ns at 310 K. An integration time-step of 2 fs

was used and structures were saved every 4 ps. The systems were

run with constant pressure and temperature (NPT ensemble mode)

with periodic boundary conditions. Constant pressure was

maintained using the Langevin piston method with a 1 kDa

pressure piston, a piston collision frequency of 2 ps-1.

MM-PBSA Calculations and Analysis
The binding free energy was calculated by the MM/PBSA

(Molecular Mechanics/Poisson-Boltzmann Surface Area) [57,58]

method using the MM-PBSA package of the AMBER10 [52,59].

It needs dynamical sampling of the system in explicit water and

also needs to post-process the trajectory of the system from MD

production runs. The binding free energy was calculated by using

a simple thermodynamic cycle that combines the molecular

mechanical and continuum solvent approach PB [60,61]. We get

snapshot every 4 ps from MD trajectory and the binding free

energy was calculated according to the equation [62]:

DGbind~GtotC{GtotA{GtotB ð1Þ

where C, A and B stand for complex, monomer A and monomer B

for sake of representation. The free energy of each species was

calculated ad follows:

G~EMMzGSOL{TDS ð2Þ

where EMM was the molecular mechanics energy, or enthalpic

contribution and were given by internal energy (bonds, angles and

dihedrals) (Eint), electrostatic energy (Eele) and van der waals term

(Evdw):

EMM~EintzEelezEvdw ð3Þ

GSOL denoted the salvation free energy which was composed of

the polar and nonpolar part. The polar part is the electrostatic

contribution to solvation which calculated by solving the linear

Poisson Boltzmann equation in a continuum model of the solvent.

The nonpolar part accounts for the cost of opening a cavity in the

condensed phase, which is related linearly to the solvent accessible

surface area [63]. GSOL was calculated according to the equation

in AMBER10. TDS is omitted since for both 14-3-3f/pSer727

Stat3 peptide and 14-3-3f/Stat3 peptide, the TDS of them are

similar.

Immunocytochemistry
The U266 and U266-KD cells were grown on sterile glass

coverslips using 24-well plates coated with poly-l-lysine (Sigma,

USA) and then fixed with 4% paraformaldehyde, permeabilized

by 0.1% Triton X- 100. After a brief washing in PBS, slides were

blocked with 5% bovine serum albumin for 1 h and then

incubated with the anti-Stat3 at a dilution of 1:500. The cells

were then washed three times with PBS and incubated with Texas

red-conjugated secondary antibody (Santa Cruz Biotechnology) at

a dilution of 1:500 for 1 h. Finally, the cells were washed with PBS

followed by incubation with Hoechst (50 ng/mL) for 15 min and

then thoroughly washed again with PBS. The coverslips with

stained cells were mounted on glass slides with anti-fade mounting

medium and viewed under a fluorescence-microscope (Nikon,

Japan). Pictures were captured using a Photometrics Coolsnap CF

color camera (Nikon). Experiments were performed in triplicate

and representative data are shown.

Stat3 Luciferase Reporter Assay
U266, U266-NC or U266-KD cells were transfected with a blank

or HA-14-3-3f plasmid, and a Stat3 firefly luciferase reporter

plasmid pStat3-TA-luc (Clontech, Mountain View, CA) and a
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control Renilla luciferase reporter plasmid pRL-TK (Clontech) in a

3:1.5:0.5 ratio using the Nucleofector X005 (Amaxa, Cologne,

Germany), according to the protocol described above. 48 hours

after transfection, the luciferase activity was determined using a

Dual-Luciferase Reporter Assay kit (Promega, Madison, WI)

according to the manufacturer’s protocol. Experiments were

performed in triplicate. Luciferase values were normalized by

transfection efficiency as measured by b-galactosidase. All data

represent mean values 6 s.d. of three independent experiments.

Electrophoretic Mobility Shift Assay (EMSA) for Stat3-
DNA Binding

U266, U266-NC or U266-KD cells were pelleted and washed

twice in ice-cold PBS. Nuclear protein extracts were prepared with

a nuclear extract kit (Active Motif, Carlsbad, CA) and Stat3-DNA

binding activities were assessed by chemiluminescent electropho-

retic mobility shift analysis (EMSA) Kit (Pierce, Rockford, IL),

according to the manufacturer’s protocol. Briefly, nuclear protein

extracts (10 mg) were incubated in a final volume of 20 mL of 106
binding buffer, 50% Glycerol, 100 mM MgCl2, 1 mg/mL Poly

(dIdC), 1% NP-40 with the biotin end-labeled high-affinity

sis-inducible element (hSIE) probe (59-CTTCATTTCCCG-

TAAATCCCTAAAGCT- 39) derived from the c-fos gene

promoter, as described [33,34] for 30 min at RT and terminated

by adding 2.0 mL of 106 loading buffer (0.2% (w/v) bromophenol

blue and 0.2% xylene cyanol containing 10% (v/v) glycerol).

Assays were loaded onto native 5% polyacrylamide gels that were

pre-electrophoresed for 60 mins in 0.56 Tris borate/EDTA

buffer, resolved at 100 V, and transferred onto nylon membranes

(HybondTM-N+, Amersham) in 0.56Tris borate/EDTA buffer at

100 V for 30 mins. DNA was cross-linked (120 mJ/cm2) and

detected using HRP-conjugated streptavidin chemiluminescence.

For competition assays, nuclear extracts containing equal amounts

of total protein were incubated with 100-fold molar excess of

unlabeled hSIE probe. The immunoblots were scanned, and

densitometric analysis was performed using the public domain

NIH Image program ImageJ (developed at the U.S. National

Institutes of Health and available on the Internet at http://rsb.

info.nih.gov/nih-image/). This experiment was repeated three

times and representative data are shown.

Measurement of PKC Activity
PKC activity was determined in PKC immunoprecipitate using a

PKC assay kit (Millipore, Billerica, MA) according to the

manufacturer’s instructions. The assay kit is based on phosphory-

lation of a specific substrate peptide (QKRPSQRSKYL) using the

transfer of the c-phosphate of adenosine-59-[32P] triphosphate

([c-32P] ATP) by PKC kinase. The phosphorylated substrate is then

separated from the residual [c-32P] ATP using P81 phosphocellulose

paper and quantitated by using a Beckman LS 6500 scintillation

counter (Brea, CA). Endogenous phosphorylation of proteins in the

sample was determined by substituting the assay dilution buffer for

the substrate mixture. To assure that equal amounts of PKC were

used in the assay, immunoprecipitates were denaturated, eluted,

separated by 10% SDS-PAGE, electrophoretically transferred, and

immunoblotted with PKC antibody. This experiment was repeated

three times and representative data are shown.

In Vitro Stat3 Dephosphorylation Assay
U266 cells transiently transfected with Myc-Stat3 were washed

twice with PBS. Cell extracts were prepared in phosphatase assay

buffer A (50 mM Tris-Cl, pH 7.5, 150 mM NaCl, 1 mM EDTA,

0.25% Nonidet P-40, 1 mM phenylmethylsulfonyl fluoride,

10 mg/ml aprotinin, and 10 mg/ml leupeptin, which was also

supplemented with one tablet of serine and cysteine protease

inhibitor per 10 ml of buffer). The buffer lacked serine/threonine

phosphatase inhibitors, and the cell extracts were maintained on

ice. Extracts were cleared of cellular debris by centrifugation at

14,0006 g for 5 min at 4uC. For competition assay, aliquots of

clarified lysates containing equal amounts of protein were

immunoprecipitated with anti-Myc antibody as described above

and incubated with various concentrations of R18 peptide for

60 min on ice. For dephosphorylation assay, aliquots of lysates

were incubated either with or without 25 mM R18 peptide. Where

indicated, FST was added to the appropriate aliquots on ice for

10 min before initiation of dephosphorylation. Dephosphorylation

was performed by incubating lysates for 30 min at 30uC with

intermittent mixing before terminating the reaction by boiling in

46Laemmli reducing sample buffer. For dephosphorylation of

Stat3 by PP2A, four aliquots of RIPA buffer (50 mM Tris-HCl,

pH 7.4, 150 mM NaCl, 1% [V/V] NP-40, 0.5% [W/V] sodium

deoxycholate, 0.1% [W/V] SDS, and 5 mM EDTA) extracts from

U266 cells transfected with Myc-Stat3, equalized for protein

concentration and volume, were subjected to immunoprecipitation

with anti-Myc antibody. Three of the anti-Myc immunocomplexes

containing Stat3 were resuspended in phosphatase lysis buffer B

[20 mM 3-(N-morpholino)propanesulfonic acid, pH 7.5, 150 mM

NaCl, and 14.4 mM b-mercaptoethanol] supplemented with

Complete (Roche, Indianapolis, IN) but no phosphatase inhibitors

and subjected to treatment with the indicated units of purified

PP2A purified enzyme (Upstate, Temecula, CA) for 30 min at

30uC with intermittent mixing. The remaining immunocomplex

was incubated in phosphatase lysis buffer B alone. The reactions

were terminated by boiling in 46Laemmli reducing sample buffer.

The proteins were resolved by SDS-PAGE and then immuno-

blotted with the appropriate antibodies. This experiment was

repeated three times and representative data are shown.

Statistical Analysis
Data are expressed as the mean 6 standard error of the mean

from at least three separate experiments performed in triplicate,

unless otherwise noted. Statistical analysis was performed using a

two-tailed Student’s t-test. Results were considered significant if p

values were less than 0.05.

Supporting Information

Table S1 Sequences of 14-3-3f interaction peptides in
Protein Data Bank. Red letter stands for the residue
which interacts with phosphorylated residue (blue
letter).
(DOC)

Video S1 The movements of 14-3-3f (cyan), the Ser727
phosphorylated STAT3 peptide (purple) and the dephos-
phorylated STAT3 peptide (green) during MD simula-
tions were shown in the movie. As shown in the video, the

dephosphorylated STAT3 peptide moves away from the binding

region and the residue pSer727 of phosphorylated STAT3 peptide

forms four stable salt bridges with R56, R60, R127 of 14-3-3f and

with R729 of phosphorylated Stat3 peptide itself.
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