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Abstract

Many of true bugs are important insect pests to cultivated crops and some are important vectors of human diseases, but
few cladistic analyses have addressed relationships among the seven infraorders of Heteroptera. The Enicocephalomorpha
and Nepomorpha are consider the basal groups of Heteroptera, but the basal-most lineage remains unresolved. Here we
report the mitochondrial genome of the unique-headed bug Stenopirates sp., the first mitochondrial genome sequenced
from Enicocephalomorpha. The Stenopirates sp. mitochondrial genome is a typical circular DNA molecule of 15, 384 bp in
length, and contains 37 genes and a large non-coding fragment. The gene order differs substantially from other known
insect mitochondrial genomes, with rearrangements of both tRNA genes and protein-coding genes. The overall AT content
(82.5%) of Stenopirates sp. is the highest among all the known heteropteran mitochondrial genomes. The strand bias is
consistent with other true bugs with negative GC-skew and positive AT-skew for the J-strand. The heteropteran
mitochondrial atp8 exhibits the highest evolutionary rate, whereas cox1 appears to have the lowest rate. Furthermore, a
negative correlation was observed between the variation of nucleotide substitutions and the GC content of each protein-
coding gene. A microsatellite was identified in the putative control region. Finally, phylogenetic reconstruction suggests
that Enicocephalomorpha is the sister group to all the remaining Heteroptera.
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Introduction

Mitochondrial (mt) genome sequences are becoming increasingly

important for comprehensive evolutionary and population studies.

Mt genome sequences are not only more informative than shorter

sequences of individual genes, but also provide sets of genome-level

characters, such as the relative position of different genes, RNA

secondary structures and modes of control of replication and

transcription [1–4]. For the past two decades, mtDNA has been

widely regarded as the molecular marker of choice for the

phylogenetic analysis in metazoans because of its abundance in

animal tissues, the small genome size, faster rate of evolution, low or

absence of sequence recombination, and evolutionary conserved

gene products [5,6], although the applicability of mt genomes as a

marker of deeper divergences or highly divergent lineages is still

controversial [7,8]. It is pertinent that the ideal molecular systematic

approach would include both nuclear and organellar DNA such as

mtDNA markers [9].

The suborder Heteroptera (true bugs) contains over 40,000

species, and majority of the agriculturally important true bugs are

the group of phytophagous species attacking cultivated crops. The

haematophagous assassin bug Triatoma dimidiata, a representative of

Triatominae (a subfamily of Reduviidae), is the most important

vector of Chagas disease in humans [10,11]. Relatively few cladistic

analyses have addressed relationships among the seven infraorders

of Heteroptera during the past 25 years and the hypotheses on

infraordinal relationships conflict on crucial points [12]. For

example, what is the basal-most sister-group of the majority of

Heteroptera - the Enicocephalomorpha (orthodoxy) or Nepomor-

pha [13]? Mt genome sequences provide a novel insight into the

infraordinal relationships of Heteroptera, although the applicability

remains to be elucidated. At present, the complete or nearly

complete mt genomes of 32 species of heteropterans are available at

NCBI (as of April 15, 2011; Table S1). Among these, 15 belong to

Pentatomomorpha, nine belong to Nepomorpha, four belong to

Cimicomorpha, two belong to Gerromorpha, and two belong to

Leptopodomorpha [11,14–16]. Most of the submitted sequences are

typically a small double-stranded circular molecule of 14–18 kb in

length and contain 13 protein-coding genes (PCGs), two rRNA

genes, 22 tRNA genes and a control region (CR). The control region

is mostly AT-rich and fulfils a role in the initiation of replication and

transcription [17,18]. To date, mt genome sequences of Enicoce-
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phalomorpha and Dipsocoromorpha have not been reported. This

lack of information impedes our ability to trace the evolution of the

basal groups of Heteroptera based on mt genomes.

Enicocephalomorpha, or unique-headed bugs, are a relatively

small group of true bugs [19–21], the only ones that engage in

nuptial swarming among Heteroptera. They comprise two

families, Aenictopecheidae and Enicocephalidae, which include

22 and 322 valid species, respectively, although hundreds of

species remain undescribed [22]. Enicocephalomorpha was at one

time placed in the Reduvioidea [23], but is now considered the

putative sister group to all remaining Heteroptera [12,20,24–26].

In this paper, we present the complete mt genome of a

representative species from the unique-headed bug, Stenopirates sp.

This is the first species from the Enicocephalomorpha for which

the entire mt genome has been sequenced, and for the first time,

we report the rearrangement of protein-coding genes in a

Heteroptera mt genome. We also discuss architecture of Stenopirates

sp. mt genome and analyze the RNA secondary structure across

the heteropterans. Finally, results from phylogenomic analysis

shed lights on the phylogenetic relationship of Enicocephalomor-

pha among heteropterans.

Results and Discussion

Genome organization
The complete mt genome of Stenopirates sp. is a typical circular

DNA molecule of 15, 384 bp in length (GenBank accession

no. JN100019; Figure 1). This genome is a medium level of true

bug mt genome size, ranging from 14,935 bp to 17,191 bp [14].

Within true bug mt genomes, the length variation was minimal in

PCGs, tRNAs, the large and small rRNA subunits (rrnL and rrnS),

but very different in the putative control region (Figure 2; Table

S2). The mt genome of Stenopirates sp. contains 37 genes in total (13

PCGs, 22 tRNA genes, and two rRNA genes) which are typically

present in metazoan mt genomes [17]. Twenty-three genes were

transcribed on the majority strand (J-strand), whereas the others

were oriented on the minority strand (N-strand). Gene overlaps

were found at 17 gene junctions and involved a total of 59 bp; the

longest overlap (11 bp) existed between atp6 and cox3. In addition

to the large non-coding region, several small non-coding intergenic

spacers were present in the Stenopirates sp. mt genome and were

spread over six positions, ranging in size from 1 to 67 bp (Table

S3).

The gene order of the Stenopirates sp. mt genome differs largely

from those of all other analyzed insect species. Compared to

Drosophila yakuba, which is considered the representative ground

pattern for insect mt genomes [27], 30 of the 38 gene boundaries

in D. yakuba were conserved in Stenopirates sp. The most striking

features were the inversion of two tRNA genes (trnT and trnP) and

translocations of five gene clusters (trnT-trnP-nad6, cytB-trnS2, nad1-

trnL2, rrnL-trnV-rrnS and CR) between nad4L and trnI (Figure 3).

The complete or nearly complete mt genomes of 32 species of

Heteroptera have been sequenced and exhibit highly conserved

gene order. The mt genomes of three Pentatomomorpha species

Figure 1. Mitochondrial map of Stenopirates sp. The tRNAs are denoted by the color blocks and are labelled according to the IUPACIUB single-
letter amino acid codes. Gene name without underline indicates the direction of transcription from left to right, and with underline indicates right to
left. Overlapping lines within the circle denote PCR fragments amplified used for cloning and sequencing.
doi:10.1371/journal.pone.0029419.g001

Mitochondrial Genome of Stenopirates sp.
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present gene rearrangements in the inversion of tRNA genes [14].

Two species in the superfamily Pyrrhocoroidea share the same

gene order with the inversion of trnT and trnP. Two tRNA genes

(trnI and trnQ) are inversed in the flat bug Neuroctenus parus.

Rearrangements of the mt genome are relatively rare events at the

evolutionary scale, and, therefore, provide a powerful tool to

delimit deep divergences among some metazoan lineages [28]. In

comparison to Stenopirates sp., rearrangements in other true bugs

seem to occur independently. These results suggest that mt gene

orders might lack of resolution to deduce phylogenetic relation-

ships among infraorders within Heteroptera, although it has been

used extensively to elucidate phylogenetic relations at the

superfamily level [29,30].

Base composition and codon usage
As is the case in other heteropteran mt genome sequences, the

nucleotide composition of the Stenopirates sp. mt genome was also

biased toward A and T (J-strand: A = 43.9%, T = 38.6%,

G = 7.5%, C = 10.0%; Table S4). The overall AT content

(82.5%) of Stenopirates sp. was the highest and much higher than

the average AT content of heteropteran mt genomes (Figure 4).

Metazoan mt genomes usually present a clear strand bias in

nucleotide composition [31,32], and the strand bias can be

measured as AT- and GC-skews [33]. A comparative analysis of

A+T% vs AT-skew and G+C% vs GC-skew across all available mt

genomes of true bugs is shown in Figure 4. The average AT-skew

of true bug mt genomes was 0.15, ranging from 0.04 in Hydaropsis

longirostris to 0.23 in Leptopus sp., whereas the Stenopirates sp. mt

genome exhibited a slight AT-skew (0.06) (Table S4). The average

GC-skew of true bug mt genomes was 20.18, ranging from 20.04

in Yemmalysus parallelus to 20.27 in Triatoma dimidiata, and the

Stenopirates sp. mt genome exhibited a marked GC-skew (20.14)

(Table S4). AT- and GC-skews of true bug mt genomes are

consistent compared to the usual strand biases of metazoan

mtDNA (positive AT-skew and negative GC-skew for the J-strand).

The reversal of strand asymmetry over the entire mt genome

was found to have accelerated gene rearrangement rates [34] and

was caused by inversion of replication origin [35]. However,

species that have accelerated gene rearrangement rates do not

always show a reversal of strand asymmetry, e.g., three Nasonia

species (Insecta: Hymenoptera) [36], Thrips imagines (Insecta:

Thysanoptera) [37] and Stenopirates sp. in this paper. Therefore,

the mechanism of gene rearrangement also needs more in-depth

study.

The genome-wide bias toward AT was well documented in the

codon usage (Table S5). At the third codon position, A or T were

overwhelmingly overrepresented compared to G or C. The overall

pattern was very similar among the true bugs, with similar

frequency of occurrences of various codons within a single codon

family. There was a strong bias toward AT-rich codons with the

six most prevalent codons in Stenopirates sp., as in order, TTA-Leu

(12.76%), ATT-Ile (11.86%), ATA-Met (10.75%), TTT-Phe

(9.93%), AAT-Asn (6.72%) and TAT-Tyr (4.49%) (Table S5).

Protein-coding genes
The total length of all 13 PCGs was 11,056 bp, and accounted

for 71.87% of the entire length of Stenopirates sp. mt genome. The

overall AT content of PCGs was 82.05%, ranging from 74.0%

(cox1) to 90.4% (atp8). Start and stop codons were determined

based on alignments with the corresponding genes of other true

Figure 2. The size of PCGs, rrnL, rrnS, and CR, respectively,
among sequenced true bug mt genomes. Lower horizontal bar,
non-outlier smallest observation; lower edge of rectangle, 25 percentile;
central bar within rectangle, median; upper edge of rectangle, 75
percentile; upper horizontal bar, non-outlier largest observation; blue
circle, outlier.
doi:10.1371/journal.pone.0029419.g002

Figure 3. Gene rearrangement of the Stenopirates sp. mt genome. Only protein-coding genes (blue), ribosomal RNA genes (yellow) and
control region (green) are marked. Blue boxes represent protein-coding genes with the same relative position as in the insect ground pattern,
Drosophila yakuba; purple boxes and horizontal lines represent gene clusters that changed positions relative to D. yakuba; red boxes represent
inversions of tRNAs. tRNA genes are abbreviated using the one-letter amino acid code, with L1 = CUN; L2 = UUR; S1 = AGN; S2 = UCN. All genes are
transcribed from left to right except those underlined to indicate an opposite transcriptional orientation.
doi:10.1371/journal.pone.0029419.g003

Mitochondrial Genome of Stenopirates sp.
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bugs (Table S3). Five genes (atp6, cox3, nad4, cytB, nad1) used the

standard ATG start codon, four genes (nad2, atp8, nad4L, nad6)

started with ATA and three genes (cox2, nad3, nad5) initiated with

ATT. Cox1 most likely started with codon TTG. Nine genes

employ a complete translation termination codon, either TAG

(nad3, cytB) or TAA (nad2, cox1, atp8, atp6, nad4L, nad1, nad6),

whereas the remaining four have incomplete stop codons T. The

presence of an incomplete stop codon is common in metazoan mt

genomes [17] and these truncated stop codons are presumed to be

completed via post-transcriptional polyadenylation [38].

The rate of non-synonymous substitutions (Ka), the rate of

synonymous substitutions (Ks), and the ratio of Ka/Ks were

calculated for each PCG, respectively. In this respect, atp8

showed the highest evolutionary rates, followed by nad2, while

cox1 appeared to be the lowest (Figure 5). Notably, the ratio of

Ka/Ks for each and every PCG was below 1, indicating that

these genes are evolving under the purifying selection [39,40].

Furthermore, a negative correlation was observed between the

Ka/Ks and the GC content of each PCG (R = 20.916, P,0.01)

(Table S6), which indicate that the variation of GC content

probably causes the different evolutionary patterns among genes

[14].

Transfer RNAs
The entire complement of 22 tRNAs typical of arthropod mt

genomes was found in Stenopirates sp. and schematic drawings of

their respective secondary structures are shown in Figure 6. Most

of the tRNAs could be folded as classic clover-leaf structures, with

Figure 4. AT% vs AT-Skew and GC% vs GC-Skew in true bug mt genomes. Measured in bp percentage (Y-axis) and level of nucleotide skew
(X-axis). Values are calculated on J-strands for full length mt genomes. Green circle, Pentatomomorpha; blue circle, Nepomorpha; red circle,
Cimicomorpha; yellow circle, Gerromorpha; purple circle, Leptopodomorpha; black circle, Enicocephalomorpha (Stenopirates sp.).
doi:10.1371/journal.pone.0029419.g004

Mitochondrial Genome of Stenopirates sp.
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the exception of trnS1, in which its DHU arm simply formed a

loop. This phenomenon is a common theme in the true bug mt

genomes. The aberrant tRNAs possess non-Watson-Crick match-

es, aberrant loops, or extremely short arms are common in

metazoan mt genomes [17]. Whether or not the aberrant tRNAs

lose their respective functions is still unknown, however, a post-

transcriptional RNA editing mechanism has been proposed to

sustain functions for these modified tRNAs [41,42].

Ribosomal RNAs
The ends of rRNA genes are impossible to be precisely

determined by DNA sequencing alone, so they are assumed to

extend to the boundaries of flanking genes [43,44]. The srRNA was

assumed to fill up the blanks between tRNA-V and nad1. For the

boundary between the lrRNA gene and the non-coding putative

control region, alignments with homologous sequences in other

heteropteran mt genomes were applied to determine the 39-end of

the gene [11,14–16]. The length of rrnL and rrnS of Stenopirates sp.

was determined to be 1, 245 bp and 829 bp, respectively.

Both rrnL and rrnS are incongruent with the secondary structure

models proposed for other insects [45–48]. The secondary

structure of Stenopirates sp. rrnL consisted of six structural domains

(domain III is absent in arthropods) (Figure 7). Among sequenced

true bugs, the sequence variations were too high in some regions

for meaningful structural comparisons. Overall, the 59 and 39 ends,

some helices (H183, H589, H687, H736, H837, H991, H1196,

H1648, H1792, H2077, H2520), and domain VI were the most

variable regions. Domains IV and V were more conserved. The

secondary structure of rrnS contained three domains (Figure 8).

Conservative sites were mainly in domain III and some helices

(loops of H673, H769 and H889) in domain II.

Non-coding regions
The largest non-coding region (765 bp) was flanked by trnS2

and rrnL in the Stenopirates sp. mt genome. It was highly enriched in

AT (74.9%) and could form stable stem-loop secondary structures.

Based on these features, it possibly functions as a control region

[17,49].

Based on the sequence pattern, the control region could be

subdivided into five parts (Figure 9). The first region (10,779–

10,807) was a 29 bp leading sequence enriched in AT. The second

region (10,808–10,830) included the 9 bp poly-C and 14 bp poly-

G. The poly-G has been reported in assassin bug Agriosphodrus

dohrni (referred as G element) [50], and triatomine bugs Rhodnius

prolixus and Triatoma dimidiata (referred as Gs) [11], and some

dipterans (referred as G islands) [48]. The possible involvement of

this unique motif in insect replication and transcription initiation is

one topic for the future research [51–53]. The third region

(10,952–11,392) contained five (I–V) tandem repeats including two

(I & III) 80 bp, one (V) 52 bp (a partial copy of the anterior repeat

unit), and two (II & IV) repeats (with substitute of few nucleotides).

The maximum size difference found in the control regions across

all sequenced true bug mt genomes was 2,756 bp, indicating that

strong size variation among true bug mt genomes is significantly

correlated to the control regions (Figure 2). This result is consistent

with previous findings from other insects [14,51,54]. In fact, the

control region has been identified as the source of size variation in

the entire mt genome, usually due to the presence of a variable

copy number of repetitive elements [49]. Repeated sequences are

common in the control region for most insects, and length

variations due to the various numbers of repeats are not without

precedent [11]. Consequently, analysis of the repeat units among

individuals from different geographical locations may shed light on

the geographical structuring and phylogenetic relationships of

species. The fact that tandem repeats are non-conserved among

these heteropteran mt genomes indicates a lack of a functional

role. Replication slippage is regarded as a dominant mechanism to

account for the existence of tandem repeats [55,56].

The fourth region (10,831–10,951 & 11,393–11,439) was near

the tandem repeat region, and stem-loop structures which may be

involved in the initiation of the replication of animal mtDNA [57]

could be folded (Figure 10A), but none of these structures had

Figure 5. Evolutionary rates of true bug mt genomes. The rate of non-synonymous substitutions (Ka), the rate of synonymous substitutions
(Ks) and the ratio of the rate of non-synonymous substitutions to the rate of synonymous substitutions (Ka/Ks) for each PCG.
doi:10.1371/journal.pone.0029419.g005

Mitochondrial Genome of Stenopirates sp.
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Figure 6. Inferred secondary structure of 22 tRNAs of Stenopirates sp. The tRNAs are labeled with the abbreviations of their corresponding
amino acids. Inferred Watson-Crick bonds are illustrated by lines, whereas GU bonds are illustrated by dots.
doi:10.1371/journal.pone.0029419.g006

Mitochondrial Genome of Stenopirates sp.
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flanking sequences similar to those that are conserved in the

control region of the mt genomes of insects [58]. The fifth region

(11,440–11,543) contained five CTTT-repeats, 31 CT-repeats and

22 AT- repeats. This domain can be considered a microsatellite

[59]. In arthropod mtDNA such microsatellites are rare and only

been reported for butterflies [47], the Asian arowana, Scleropages

formosus [60], and a house dust mite, Dermatophagoides pteronyssinus

[58]. This is remarkable because a mt microsatellite has not been

reported for any heteropteran species. As described previously,

four other stretches of non-coding nucleotides were found outside

the control region. These short sequences can fold into stable

stem-loop structures (Figure 10B & C) which may function as

splicing recognition sites during processing of the transcripts [61].

Phylogenetic analysis
Phylogenetic analyses were carried out using nucleotide

sequences of 13 mt PCGs from 31 heteropteran species and 4

outgroup hemipteran insect species (Pachypsylla venusta [30],

Acyrthosiphon pisum [62], Sivaloka damnosa [63] and Lycorma delicatula

[16]). BI and ML analyses generated identical tree topologies

(Figure 11).

The seven-infraorder classification of Heteroptera has been

accepted by most researchers [20,26], however phylogenetic

relationships among infraorders are still controversial

[13,16,20,26,64–66]. The major problem is the basalmost sister-

group of the majority of Heteroptera, the Enicocephalomorpha

(orthodoxy) or Nepomorpha [13].

In the present study, the sister-relationship within the individual

infraorders (as shown in Figure 11) are supported for the

Pentatomomorpha (14 taxa), Nepomorpha (8 taxa), Leptopodo-

morpha (2 taxa) and Gerromorpha (2 taxa) by BI and ML analyses.

In addition, both ML and BI analyses are highly supportive of the

contention that Stenopirates sp. (Enicocephalomorpha) is the sister

group to all the remaining Heteroptera [26,67].

Within Cimicomorpha, Reduviidae was paraphyletic with

respect to Anthocoridae and Miridae in our trees, and this is

largely incongruent with previous phylogenetic works [65,68,69].

The mt genome data in this study, however, may be limited to

resolve the phylogeny of Cimicomorpha, and increased taxon

sampling will be required to resolve this problem.

The ability of mt genome data to resolve infraordinal

relationships of Heteroptera has not been fully evaluated. This

study provides the initial evidence for the feasibility of using mt

genome data to resolve infraordinal relationships of Heteroptera;

however, the prerequisite is to ensure the integrity and

representative of the infraorder-level taxa.

Future directions should focus on the following problems raised

in the modern literature: (a) Are Dipsocoromorpha monophyletic

and sister to the rest of Heteroptera (orthodoxy) or are they formed

by two distinct clades with uncertain relationships (Štys, in prep.)?

Figure 7. Predicted secondary structure of the rrnL gene in Stenopirates sp. The nucleotides showing 100% identities among true bugs are
marked with orange color, and more than or equal to 75% identities are marked with blue color. Roman numerals denote the conserved domain
structure. Inferred Watson-Crick bonds are illustrated by lines, GU bonds by dots.
doi:10.1371/journal.pone.0029419.g007

Mitochondrial Genome of Stenopirates sp.
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(b) Are Nepomorpha monophyletic (orthodoxy) or should the

Pleomorpha be excluded and its origin seeked for elsewhere [16]?

(c) Are some ‘‘Thaumastocoridae’’ pentatomomorphans and

others cimicomorphans [65]? (d) Are the Pentatomomorpha

monophyletic (orthodoxy) or should the Aradimorpha be excluded

and its origin be seeked elsewhere [66]? and (e) What is the mutual

relationship of Nepomorpha (s. lat.), Leptopodomorpha, and the

truly terrestrial true bugs?

Figure 8. Predicted secondary structure of the rrnS gene in Stenopirates sp. The nucleotides showing 100% identities among true bugs are
marked with orange color, and $75% identities are marked with blue color. Roman numerals denote the conserved domain structure. Inferred
Watson-Crick bonds are illustrated by lines, GU bonds by dots.
doi:10.1371/journal.pone.0029419.g008

Mitochondrial Genome of Stenopirates sp.
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Summary
This is the first description of the complete mt genome of a

species belonging to Enicocephalomorpha, an infraorder within

Heteroptera. The overall AT content of Stenopirates sp. is the

highest among sequenced heteropteran mt genomes. Although the

gene order of the Stenopirates sp. mt genome is extremely

rearranged and represents a new pattern, rearrangements exhibit

relatively rare events and seem to occur independently within true

bug mt genomes. Gene order comparison indicated that mt gene

order seems less useful for deduction of phylogenetic relationships

among infraorders of Heteroptera. Comparative analyses suggest

that the gene size, gene content, and base composition are

comparatively conserved among true bug mt genomes. PCGs

exhibit a different nucleotide substitution pattern, negatively

Figure 9. Organization of the mitochondrial control region of Stenopirates sp. The control region flanking genes trnS2 (S2) and rrnL are
represented in purple boxes. The blue and green boxes with roman numerals indicate the tandem repeat region; grey boxes represent the stem-loop
region.
doi:10.1371/journal.pone.0029419.g009

Figure 10. Secondary structures of non-coding regions of the mt genome of Stenopirates sp. Secondary structure of non-coding regions
between (A) trnS2 and rrnL (CR); (B) cytB and trnS2; (C) trnT and nad6. Inferred Watson-Crick bonds are illustrated by lines, GU bonds by dots.
doi:10.1371/journal.pone.0029419.g010

Mitochondrial Genome of Stenopirates sp.
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correlated with GC content. True bugs mt atp8 represents the

highest evolutionary rate; whereas cox1 appears to be the lowest.

Most of the tRNAs can be folded as classic clover-leaf structures,

with the exception of trnS1, in which its DHU arm simply forms a

loop. In addition to stem-loop structures in the control region,

another common feature is the existence of tandem repeats.

Phylogenetic analysis using concatenated PCG sequences suc-

ceeded in corroborating hypothesis on sister-group relationship of

Enicocephalomorpha to other heteropterans. The present study

demonstrates the great effectiveness of mt genome for inferring

phylogenetic relationships at the infraorder level.

Materials and Methods

Ethics statement
No specific permits were required for the insect collected for this

study in Taiwan. The insect specimens were collected on the road

side by sweeping. The field studies did not involve endangered or

protected species. The species in the genus of Stenopirates are

common small insects and are not included in the ‘‘List of

Protected Animals in China’’.

Samples and DNA extraction
The Oriental and East Palaearctic genus Stenopirates (Enicoce-

phalinae: Enicocephalini) includes 8 described and about 20

undescribed species [19]. Stenopirates sp. adult males were collected

from Pingdong, Taiwan, China, in May 2009. All collections were

initially preserved in 95% ethanol in the field, and transferred to

220uC for the long-term storage upon the arrival at the China

Agricultural University (CAU). The genomic DNA was extracted

from muscle tissues of a single Stenopirates sp. ’s thorax using a

CTAB-based protocol [70].

PCR amplification and sequencing
The mt genome of Stenopirates sp. was generated by amplification

of overlapping PCR fragments (Figure 1 and Table S7). Initially,

eleven fragments were amplified using the universal primer sets

[71]. Four perfectly matched primers (Table S7) were designed

Figure 11. Phylogenetic relationships among the sequenced true bugs. Phylogenetic analyses were carried out for the 31 true bugs based
on all 13 protein-coding genes from their respective mt genomes. The tree was rooted with four outgroups (P. venusta, A. pisum, S. damnosa and L.
delicatula). Numbers at the nodes are Bayesian posterior probabilities (left) and ML bootstrap values (right).
doi:10.1371/journal.pone.0029419.g011
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based on the read of these short fragments for the secondary

PCRs.

Short PCRs (,1.5 kb) were carried out using Qiagen Taq DNA

polymerase (Qiagen, Beijing, China) with the following cycling

conditions: 5 min at 94uC, followed by 35 cycles of 50 s at 94uC,

50 s at 48–55uC, 1–2 min at 72uC depending on the size of

amplicons, and the subsequent final elongation step at 72uC for

10 min. Long PCRs (.1.5 kb) were performed using NEB Long

Taq DNA polymerase (New England BioLabs, Ipswich, MA)

under the following cycling conditions: 30 s at 95uC, followed by

40 cycles of 10 s at 95uC, 50 s at 48–55uC, 3–6 min at 68uC
depending on the size of amplicons, and the final elongation step

at 68uC for 10 min . The quality of PCR products were evaluated

by spectrophotometry and agarose gel electrophoresis.

The PCR fragments were ligated into the pGEM-T Easy Vector

(Promega) and resulting plasmid DNAs were isolated using the

TIANprp Midi Plasmid Kit (Qiagen, Beijing, China). All

fragments were sequenced in both directions using the BigDye

Terminator Sequencing Kit (Applied Bio Systems) and the ABI

3730XL Genetic Analyzer (PE Applied Biosystems, San Francisco,

CA, USA) with two vector-specific primers and internal primers

for primer walking.

Annotation and bioinformatic analysis
The complete mt genome of Stenopirates sp. has been deposited

in GenBank under accession number JN100019. Mt DNA

sequences were proof-read and aligned into contigs in BioEdit

v.7.0.5.3 [72]. PCGs and rRNA genes were identified based on

sequence similarity with published insect mt sequences from public

domains (e.g., GenBank).

The tRNA genes were identified by tRNAscan-SE Search

Server v.1.21 [73] with default settings. Some tRNA genes that

could not be determined by tRNAscan-SE were determined in the

unannotated regions by sequence similarity to tRNAs of other

heteropterans. The base composition, codon usage, and nucleotide

substitution were analyzed with Mega 4.0 [74].

The software packages DnaSP 5.0 [75] was used to calculate the

number of synonymous substitutions per synonymous site (Ks) and

the number of nonsynonymous substitutions per nonsynonymous

site (Ka) for each PCG.

Construction of secondary structures of rRNAs and non-
coding Regions

Secondary structures of the small and large subunits of rRNAs

were inferred using models predicted for Drosophila [45], Apis

mellifera [46], Manduca sexta [47] and Ruspolia dubia [48]. Stem-loops

were named according to the convention of [46], as well as [47].

Regions lacking significant homology and other non-coding

regions were folded using Mfold [76].

Phylogenetic analysis
Phylogenetic analyses were performed based on the 31 complete

or nearly complete mt genomes of true bugs from GenBank (Table

S1). Two species from Sternorrhyncha and two species from

‘‘Auchenorrhyncha’’: Fulgoromorpha were selected as outgroups.

Based on an analysis of mt genomes of nine Nepomorpha and five

other hemipterans, Pleidae were recovered as the sister group to

Geocorisae + Leptopodomorpha + remaining Nepomorpha, and

were suggested to be raised from a superfamily to the infraorder

Plemorpha [13]. Similarly, the phylogenetic position of ‘‘Aradoi-

dea’’ or ‘‘Aradimorpha’’ was also the problem [68]. Since we

didn’t add samples to solve these problems, Paraplea frontalis

(Nepomorpha: Pleidae) and Neuroctenus parus (Pentatomomorpha:

Aradidae) were treated as incertae sedis. These two species were not

included in the phylogenetic analyses to ensure the stability of the

topology.

DNA alignment was inferred from the amino acid alignment of

13 PCGs using Clustal X [77] as implemented in the Mega 4.0 [74],

which can translate between DNA and amino acid sequences within

alignments. Alignments of individual genes were then concatenated

excluding the stop codon. Model selection was based on Modeltest

3.7 [78] for nucleotide sequences. According to the Akaike

information criterion, the GTR+I+G model was optimal for

analysis with nucleotide alignments. MrBayes v.3.1.2 [79] and a

PHYML online web server [80,81] were employed to reconstruct

the phylogenetic trees. In Bayesian inference, two simultaneous runs

of 3,000,000 generations were conducted. Each set was sampled

every 200 generations with a burnin of 25% [16,54,82,83]. Trees

inferred prior to stationarity were discarded as burnin, and the

remaining trees were used to construct a 50% majority-rule

consensus tree. In the ML analysis, the parameters were estimated

during analysis and the node support values were assessed by

bootstrap re-sampling (BP) [84] calculated using 100 replicates.
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68. Schuh RT, Štys P (1991) Phylogenetic analysis of cimicomorphan family

relationships (Heteroptera). J New York Entomol Soc 99: 98–350.
69. Tian Y, Zhu WB, Li M, Xie Q, Bu WJ (2008) Influence of data conflict and

molecular phylogeny of major clades in cimicomorphan true bugs (Insecta:
Hemiptera: Heteroptera). Mol Phylogenet Evol 47: 581–597.

70. Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high

quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:
4692–4693.

71. Simon C, Buckley TR, Frati F, Stewart JB, Beckenbach AT (2006)

Incorporating molecular evolution into phylogenetic analysis, and a new
compilation of conserved polymerase chain reaction primers for animal

mitochondrial DNA. Annu Rev Ecol Evol Syst 37: 545–579.

72. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and
analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.

73. Lowe TM, Eddy SR (1997) tRNAscan–SE: a program for improved detection of
transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955–964.

74. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary

genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.
75. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of

DNA polymorphism data. Bioinformatics 25: 1451–1452.
76. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization

prediction. Nucleic Acids Res 31: 3406–3415.
77. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The

CLUSTAL_X Windows interface: flexible strategies for multiple sequence

alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882.
78. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA

substitution. Bioinformatics 14: 817–818.
79. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference

under mixed models. Bioinformatics 19: 1572–1574.

80. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate
large phylogenies by maximum likelihood. Syst Biol 52: 696–704.

81. Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML Online - a web
server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids

Res 33: W557–559.
82. Wiegmann BW, MTrautwein MD, Winkler IS, Barr NB, Kim JW, et al. (2011)

Episodic radiations in the fly tree of life. Proc Natl Acad Sci USA 108:

5690–5695.
83. Wei SJ, Shi M, Sharkey MJ, van Achterberg C, Chen XX (2010) Comparative

mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility
of mitochondrial genomes with special reference to Holometabolous insects.

BMC Genomics 11: 371.

84. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the
bootstrap. Evolution 39: 783–791.

Mitochondrial Genome of Stenopirates sp.

PLoS ONE | www.plosone.org 13 January 2012 | Volume 7 | Issue 1 | e29419


