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Abstract

Background: Osteopontin represents a multifunctional molecule playing a pivotal role in chronic inflammatory and
autoimmune diseases. Its expression is increased in inflammatory bowel disease (IBD). The aim of our study was to analyze
the association of osteopontin (OPN/SPP1) gene variants in a large cohort of IBD patients.

Methodology/Principal Findings: Genomic DNA from 2819 Caucasian individuals (n = 841 patients with Crohn’s disease
(CD), n = 473 patients with ulcerative colitis (UC), and n = 1505 healthy unrelated controls) was analyzed for nine OPN SNPs
(rs2728127, rs2853744, rs11730582, rs11739060, rs28357094, rs4754 = p.Asp80Asp, rs1126616 = p.Ala236Ala, rs1126772 and
rs9138). Considering the important role of osteopontin in Th17-mediated diseases, we performed analysis for epistasis with
IBD-associated IL23R variants and analyzed serum levels of the Th17 cytokine IL-22. For four OPN SNPs (rs4754, rs1126616,
rs1126772 and rs9138), we observed significantly different distributions between male and female CD patients. rs4754 was
protective in male CD patients (p = 0.0004, OR = 0.69). None of the other investigated OPN SNPs was associated with CD or
UC susceptibility. However, several OPN haplotypes showed significant associations with CD susceptibility. The strongest
association was found for a haplotype consisting of the 8 OPN SNPs rs2728127-rs2853744-rs11730582-rs11439060-
rs28357094-rs112661-rs1126772-rs9138 (omnibus p-value = 2.0761028). Overall, the mean IL-22 secretion in the combined
group of OPN minor allele carriers with CD was significantly lower than that of CD patients with OPN wildtype alleles
(p = 3.6661025). There was evidence for weak epistasis between the OPN SNP rs28357094 with the IL23R SNP rs10489629
(p = 4.1861022) and between OPN SNP rs1126616 and IL23R SNP rs2201841 (p = 4.1861022) but none of these associations
remained significant after Bonferroni correction.

Conclusions/Significance: Our study identified OPN haplotypes as modifiers of CD susceptibility, while the combined
effects of certain OPN variants may modulate IL-22 secretion.
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Initiative, Investment Funds 2008 and FöFoLe program). The funders had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Stephan.Brand@med.uni-muenchen.de

. These authors contributed equally to this work.

Introduction

The pathogenesis of inflammatory bowel diseases (IBD) such as

Crohn’s disease (CD) and ulcerative colitis (UC) is only partially

understood. Currently, these diseases are assumed to be triggered

by an exaggerated immune response to intestinal bacteria in a

genetically susceptible host. In addition to the nucleotide-binding

oligomerization domain 2/caspase recruitment domain-containing

protein 15 (NOD2/CARD15) [1,2], various novel susceptibility loci

such as the interleukin-23 receptor (IL23R) [3,4], the ATG16L1

(autophagy-related 16-like 1) gene [5,6] and variants in the 5p13.1

region [7] have been identified as susceptibility variants in CD

patients. Based on new insights in the genetic background of CD,

there is raising evidence for a key role of innate immunity and CD-

related inflammatory pathways such as IL-23/IL-17 mediated T

cell responses [8]. Recently, osteopontin (OPN, also known as Eta-

1), an extracellular matrix glycosylated phosphoprotein produced

by immune cells, epithelial cells and osteoblasts has been identified

as an important molecule involved in tissue repair, inflammation

and autoimmunity as well as tumour growth [9,10,11,12]. So far,
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two forms of osteopontin have been identified - secreted

osteopontin (sOPN) seems to be involved in the production of

pathogenetic Th1 and Th17 cells, while an intracellular form of

osteopontin (iOPN) is a key regulator for Toll like receptor-9

(TLR9) and/or TLR7-dependent interferon-a (IFN-a) expression

by plasmacytoid dendritic cells (DCs) and Th17 development [13].

There is evidence for a key role of osteopontin in Th1- and Th17-

mediated diseases [10,14,15] such as rheumatoid arthritis

[16,17,18], psoriasis [19] and multiple sclerosis [20,21,22,23]. In

addition, osteopontin has also shown to be involved in granuloma

formation [10], cell migration [24,25,26], and IL-12 production

[27,28,29].

Osteopontin is expressed in the terminal ileum of CD patients

[30] and seems to be closely involved in the Th1 immune response

associated with CD [31,32,33,34]. Moreover, it has also been

reported to play an important role in the pathogenesis of UC

[35,36,37,38]. Analyzing the exact role of osteopontin in a murine

model of acute colitis, a recent study demonstrated that Opn2/2

mice showed increased serum levels of TNF-a but also reduced

mRNA expression of IL-1b and matrix metalloproteinases as well

as decreased blood levels of IL-22 [39]. In contrast, in a chronic

DSS model, Opn2/2 mice were protected from mucosal

inflammation showing lower serum IL-12 levels compared to

wildtype mice and neutralization of OPN in wildtype mice

abrogated colitis [39]. These findings implicate a dual function

of osteopontin in intestinal inflammation characterized by

activation of innate immunity and Th17 cytokines such as IL-22

initiating mucosal repair in acute inflammation; while under

conditions of chronic intestinal inflammation it may promote the

Th1 response and thereby enhancing inflammation [39]. Further

investigations by daSilva et al. in a DSS model demonstrated that

osteopontin administration reduced the disease activity index,

improved red blood cell counts, and reduced gut neutrophil

activity compared with the DSS-treated wildtype mice [37].

Interestingly, the study by Heilmann et al. demonstrated a

significant correlation of osteopontin serum levels with disease

activity in human CD [39].

In this study, we aimed to analyze the role of OPN gene variants

on IBD disease susceptibility and phenotype. We also investigated

for potential epistasis with IBD-associated IL23R gene variants. In

total, we genotyped nine common single nucleotide polymor-

phisms (SNPs) in the OPN gene, which were previously shown to

be associated with other immune-mediated diseases [40,41,42,43].

Last, based on the important role demonstrated for IL-22 in colitis

experiments in Opn2/2 mice [39], we analyzed the effect of OPN

gene variants on IL-22 serum levels.

Methods

Ethics statement
Written, informed consent was obtained from all patients prior

to inclusion into the study. In the case of minors, the consent was

provided by the parents. This study was approved by the Ethics

committee of the Medical Faculty of Ludwig-Maximilians-

University Munich. The study protocol adhered to the ethical

principles for medical research involving human subjects of the

Helsinki Declaration (as described in detail under: http://www.

wma.net/en/30publications/10policies/b3/index.html).

Study population
Our study population comprised 2819 individuals of Caucasian

origin including n = 841 patients with CD, n = 473 patients with

UC and n = 1505 healthy unrelated controls. All phenotypic data

were collected blind to the results of genotyping and included

detailed demographic and clinical parameters (disease behaviour,

anatomic manifestation of IBD, complications, surgical or

immunosuppressive therapy). The diagnosis of CD and UC was

based on established guidelines according to endoscopic, radio-

logical, and histopathological parameters. For classification of CD

patients, the Montreal classification [44] based on age at diagnosis

(A), location (L), and behaviour (B) of disease was used. In patients

with UC, anatomic location was also based on the Montreal

classification, based on the criteria ulcerative proctitis (E1), left-

sided UC (distal UC; E2), and extensive UC (pancolitis; E3).

Patients with indeterminate colitis were excluded from the study.

The clinical characteristics of the IBD study population are shown

in Table 1.

DNA extraction
From all study participants, blood samples were taken and

genomic DNA was isolated from peripheral blood leukocytes using

the DNA blood mini kit from Qiagen (Hilden, Germany)

according to the manufacturer’s guidelines.

Genotyping of OPN gene variants
Nine OPN SNPs (rs2728127, rs2853744, rs11730582,

rs11739060, rs28357094, rs4754 = p.Asp80Asp, rs1126616 =

p.Ala236Ala, rs1126772 and rs9138) were genotyped by PCR

and melting curve analysis using a pair of fluorescence resonance

energy transfer (FRET) probes in a LightCyclerH 480 Instrument

(Roche Diagnostics, Mannheim, Germany) as previously described

in detail [45,46,47,48]. The selection of these SNPs was based on

previous studies in which associations for several of these OPN

variants with autoimmune and Th1- and Th17-mediated diseases

Table 1. Demographic characteristics of the IBD study
population.

Crohn’s
disease

Ulcerative
colitis Controls

n = 841 n = 473 n = 1505

Gender

Male (%) 49.2 47.3 62.6

Female (%) 50.8 52.7 37.4

Age (yrs)

Mean 6 SD 39.4613.1 41.7614.4 45.9610.7

Range 10–80 7–85 18–71

Body mass index

Mean 6 SD 23.164.2 23.964.1

Range 13–40 15–41

Age at diagnosis

(yrs)

Mean 6 SD 27.9611.7 31.9613.4

Range 7–71 9–81

Disease duration

(yrs)

Mean 6 SD 12.268.4 11.067.7

Range 0–44 1–40

Positive family

history of IBD (%) 16.1 16.0

doi:10.1371/journal.pone.0029309.t001
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have been shown [40,41,42,43,49,50,51,52,53]. The donor

fluorescent molecule (fluorescein) at the 39-end of the sensor

probe (or the anchor probe in the case of rs2853744 and

rs11730582) is excited at its specific fluorescence excitation

wavelength (533 nm) and the energy is transferred to the acceptor

fluorescent molecule at the 59-end (LightCycler Red 610, 640 or

670) of the anchor probe (or the sensor probe in the case of

rs2853744 and rs11730582). The specific fluorescence signal

emitted by the acceptor molecule is detected by the optical unit of

the LightCycler. The sensor probe is exactly matching to one allele

of each SNP, preferentially to the rarer allele, whereas in the case

of the other allele, there is a mismatch resulting in a lower melting

temperature. The total volume of the PCR was 5 ml containing

25 ng of genomic DNA, 16Light Cycler 480 Genotyping Master

(Roche Diagnostics), 2.5 pmol of each primer and 0.75 pmol of

each FRET probe (TIB MOLBIOL, Berlin, Germany). In the case

of rs11739060, the concentration of the forward primer, and in the

case of rs1126772, the concentration of the reverse primer was

reduced to 0.5 pmol. The PCR comprised an initial denaturation

step (95uC for 10 min) and 45 cycles (95uC for 10 sec, primer

annealing temperature as given in the Supplementary data (Table

S1) for 10 sec, 72uC for 15 sec). The melting curve analysis

comprised an initial denaturation step (95uC for 1 min), a step

rapidly lowering the temperature to 40uC and holding for 2 min,

and a heating step slowly (1 acquisition/uC) increasing the

temperature up to 95uC and continuously measuring the

fluorescence intensity. The results of the melting curve analysis

have been confirmed by analyzing two patient samples for each

possible genotype using sequence analysis. For sequencing, the

total volume of the PCR was 100 ml containing 250 ng of genomic

DNA, 16PCR buffer (Qiagen, Hilden, Germany), a final MgCl2
concentration of 2 mM, 0.5 mM of a dNTP mix (Sigma,

Steinheim, Germany), 2.5 units of HotStar Plus TaqTM DNA

polymerase (Qiagen) and 10 pmol of each primer (TIB MOL-

BIOL). The PCR comprised an initial denaturation step (95uC for

5 min), 35 cycles (denaturation at 94uC for 30 sec, primer

annealing at 60uC for 30 sec, extension at 72uC for 30 sec) and

a final extension step (72uC for 10 min). The PCR products were

purified using the QIAquick PCR Purification Kit (Qiagen) and

sequenced by a commercial sequencing company (Sequiserve,

Vaterstetten, Germany). All sequences of primers and FRET

probes and primer annealing temperatures used for genotyping

and for sequence analysis are given in Tables S1 and S2.

Genotyping of IL23R gene variants
Genotypes of 10 IBD-associated IL23R gene variants

(rs1004819, rs7517847, rs10489629, rs2201841, rs11465804,

rs11209026 = p.Arg381Gln, rs1343151, rs10889677, rs11209032,

rs1495965) were available for all study patients and controls from

previous studies [4,54].

Analysis of IL-22 serum levels in CD patients
In order to investigate a potential correlation between IL-22

serum expression and OPN/SPP1 genotype, IL-22 serum levels

were determined in a subcohort of CD patients, in which serum

samples and genomic DNA was available. IL-22 serum levels for

the majority of these patients were available from a previous study

[55]. For the ELISA analysis, the human IL-22 Quantikine Elisa

Kit (R&D Systems, Minneapolis, MN) was used following the

manufacturer’s guidelines. The following steps were performed:

First, all reagents, working standards, and samples were prepared

as outlined in the manufacturer’s guidelines. Next, 100 mL of assay

diluent RD1-88 were added to each well. After this step, 100 mL of

standard, control, or sample were added per well and incubated

for two hours at room temperature. Then, each well was aspirated

and washed four times. 200 mL of a mouse monoclonal antibody

against IL-22 conjugated to horseradish peroxidase were added

and the plates were incubated for two hours at room temperature.

After this, wells were aspirated and washed four times. Next,

200 mL of substrate solution were added to each well. The plates

were incubated for 30 minutes at room temperature to allow

colour development while being protected from light. Next, 50 mL

of stop solution were added to each well and the optical density of

each well was determined within 30 minutes, using a microplate

reader set to 450 nm. IL-22 serum levels (pg/ml) were calculated

from a standard curve of known IL-22 concentrations.

Statistical analyses
Each genetic marker was tested for Hardy-Weinberg equilib-

rium in the control population. Single-marker allelic tests were

performed with Fisher’s exact test. All tests were two-tailed,

considering p-values,0.05 as significant. Odds ratios were

calculated for the minor allele at each SNP. For multiple

comparisons, Bonferroni correction was applied where indicated.

rs4754 deviated from the Hardy-Weinberg equilibrium in the

control population (p = 0.0005) and was therefore excluded from

the haplotype analysis. Haplotype analysis was conducted with

PLINK (http://pngu.mgh.harvard.edu/,purcell/plink/) and the

–hap-logistic option using a sliding-window approach with 2 up to

8 included SNPs. Interaction between different polymorphisms

were also tested with PLINK and the –epistasis command. For

analyzing potential differences of IL-22 serum levels between the

carriers of the different OPN gene variants, the mean IL-22 serum

level of carriers of the wildtype allele of each SNP was compared

with the mean IL-22 serum level of carriers of the minor allele

( = combined group of heterozygous and homozygous carriers)

using Student’s t-test.

Results

Frequency distribution of OPN gene variants and their
role in IBD susceptibility

For all three subgroups (CD, UC, and controls), the minor allele

frequencies of the nine OPN SNPs (rs2728127, rs2853744,

rs11730582, rs11739060, rs28357094, rs4754 = p.Asp80Asp,

rs1126616 = p.Ala236Ala, rs1126772 and rs9138) are summarized

in Table 2. With the exception of rs4754, no significant differences

in the allele frequencies were observed comparing CD and UC

patients to healthy controls (Table 2). Our analysis revealed a weak

association of SNP rs4754 (p.Asp80Asp) with CD susceptibility

(p = 1.2861022; OR (95% CI) 0.85 [0.74–0.96]). Similar to CD,

rs4754 (p.Asp80Asp) decreased susceptibility to UC, although this

association did not reach significance in univariate analysis

(p = 5.2561022; OR (95% CI) 0.85 [0.70–1.00]) (Table 2).

Moreover, both associations of rs4754 (regarding CD and UC

susceptibility) were not statistically significant after Bonferroni

correction, suggesting that these OPN variants are not major

contributors to IBD susceptibility on their own. In addition,

rs4754 deviated from the Hardy-Weinberg equilibrium in the

control population (p = 0.0005) and was therefore excluded from

the haplotype analysis. However, several OPN haplotypes

were associated with CD susceptibility. As shown in table 3,

the strongest association was found for a haplotype consisting of

the 8 OPN SNPs rs2728127-rs2853744-rs11730582-rs11439060-

rs28357094-rs112661-rs1126772-rs9138 with an omnibus p-value

of 2.0761028 (Table 3); if rs4754 would be included into this

haplotype block, the omnibus p-value would increase further to

OPN Variants in IBD Susceptibility
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p = 3.67610212. In contrast, there were no associations of certain

OPN haplotypes with UC susceptibility (Table 4).

Analysis for gender-specific differences in OPN variants
Previous studies demonstrated significant gender-specific effects

of OPN variants in systemic lupus erythematosus (SLE) and type 1-

diabetes, particularly in male patients [43,50]. Considering the

deviation of rs4754 from the Hardy-Weinberg equilibrium, we

therefore investigated potential gender-specific effects in IBD

susceptibility. For four OPN SNPs (rs4754, rs1126616, rs1126772

and rs9138), we observed significantly different distributions

between male and female CD patients. Interestingly, for these

SNPs, there was an opposite direction of the association results for

males and females (rs4754: p = 0.0004, OR = 0.69 [95% CI: 0.56–

0.85] (males), p = 0.7693, OR = 1.03 (females); rs1126616:

p = 0.1187, OR = 0.85 (males), p = 0.2676, OR = 1.12 (females);

rs1126772: p = 0.1679, OR = 0.85 (males), p = 0.0893, OR = 1.21

(females); rs9138: p = 0.1256, OR = 0.85 (males), p = 0.0864,

OR = 1.19 (females)). Given that the most pronounced difference

between male and female CD patients was found for rs4754,

which deviated from the Hardy-Weinberg equilibrium in the

control population, we next investigated if the deviation from

Hardy-Weinberg equilibrium is based on a gender-specific effect.

This analysis revealed that there was significant deviation from

Hardy-Weinberg equilibrium in male controls (n = 917;

p = 0.0018), but not in female controls (n = 547; p = 0.1347),

confirming the gender-specific effect of this OPN SNP found in CD

patients.

Analysis for epistasis between OPN variants and IL23R
variants

To investigate if OPN variants modify IBD susceptibility by

epistastic interaction with other Th17-related IBD susceptibility

genes, we next analyzed for potential epistasis of OPN variants with

main IBD-associated IL23R variants. We found evidence of weak

epistasis between the OPN SNP rs28357094 with the IL23R SNP

rs10489629 (p = 4.1861022) and between OPN SNP rs1126616

and IL23R SNP rs2201841 (p = 4.1861022) but none of these

associations remained significant after Bonferroni correction

(Table 5).

Correlation between OPN variants and IL-22 serum levels
in CD patients

Based on the recent data of Heilmann et al. [39] demonstrating

decreased blood levels of IL-22 in acute colitis in Opn2/2 mice,

we next investigated a potential association of OPN variants and

IL-22 serum levels in a subcohort of CD patients. No correlation

was found between OPN SNPs and IL-22 serum levels (Table 6).

However, overall the IL-22 serum levels tended to be lower in the

carriers of OPN minor alleles, which was statistically significant

when the mean IL-22 expression level of carriers of the 9

investigated OPN SNPs minor alleles (homo- and heterozygous

carriers) were compared to the homozygous carriers of the

wildtype allele (p = 3.661025). Interestingly, for 7 out of 8 OPN

SNPs forming the haplotype rs2728127-rs2853744-rs11730582-

rs11439060-rs28357094-rs112661-rs1126772-rs9138, which was

strongly associated with CD susceptibility (omnibus p-value

2.0761028), the IL-22 serum levels were nominally lower in CD

carriers of the minor allele than in wildtype carriers, although

these differences were for each SNP only small and statistically not

significant (Table 6).

Discussion

The presented study represents the first detailed analysis of OPN

gene variants in IBD patients. In this study, there were no

significant associations of single OPN SNPs with CD or UC

susceptibility after Bonferroni correction for multiple testing;

however, several OPN haplotypes were associated with CD

susceptibility. The strongest association was found for a haplotype

consisting of the 8 OPN SNPs (rs2728127-rs2853744-rs11730582-

rs11439060-rs28357094-rs112661-rs1126772-rs9138; omnibus p-

value 2.0761028). However, considering the strength of the

association signals found for a number of other recently identified

IBD susceptibility genes [56,57], this argues against a major role

for OPN in the genetic susceptibility for IBD. Given the strong

association of osteopontin with Th1- and Th17-mediated diseases,

the finding of an association of OPN haplotypes with CD, a Th1-

and Th17-mediated disease, but not UC susceptibility is not

surprising. In contrast, UC has been associated with a predom-

inantly modified Th2 response but partially also with a Th17

immune response. The results of our haplotype analysis suggest

Table 2. Associations of OPN/SPP1 gene markers in CD and UC case-control association studies.

Cohort Crohn’s disease Ulcerative colitis Controls

Number of individuals n = 841 n = 473 n = 1505

Gene marker Minor allele MAF p value OR [95% CI] MAF p value OR [95% CI] MAF

rs2728127 G 0.295 0.841 0.98 [0.86–1.12] 0.274 0.162 0.89 [0.75–1.05] 0.298

rs2853744 T 0.071 0.520 0.92 [0.73–1.16] 0.080 0.725 1.05 [0.80–1.38] 0.076

rs11730582 C 0.503 0.125 1.09 [0.97–1.24] 0.495 0.430 1.06 [0.92–1.23] 0.479

rs11739060 insG 0.290 0.815 0.98 [0.86–1.12] 0.274 0.266 0.91 [0.77–1.07] 0.294

rs28357094 G 0.223 0.437 1.06 [0.92–1.23] 0.198 0.358 0.91 [0.76–1.10] 0.213

rs4754 = p.Asp80Asp C 0.281 0.013 0.85 [0.74–0.96] 0.282 0.053 0.85 [0.70–1.00] 0.316

rs1126616 = p.Ala236Ala T 0.279 0.892 0.99 [087–1.13] 0.285 0.804 0.97 [0.82–1.14] 0.281

rs1126772 G 0.220 0.852 1.01 [0.87–1.17] 0.213 0.783 0.97 [0.81–1.17] 0.218

rs9138 C 0.278 0.919 1.01 [0.88–1.15] 0.280 0.868 1.02 [0.86–1.20] 0.276

Minor allele frequencies (MAF), allelic test P-values, and odds ratios (OR, shown for the minor allele) with 95% confidence intervals (CI) are depicted for both the CD and
UC case-control cohorts. rs4754 deviated from the Hardy-Weinberg equilibrium (HWE) in the control population (p = 0.0005) and was therefore excluded from further
analysis.
doi:10.1371/journal.pone.0029309.t002
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that certain rare haplotypes significantly contribute to the genetic

risk of CD. This is in agreement with recent results of the

International IBD Genetics Consortium which identified a total of

71 CD susceptibility loci [56]. These 71 susceptibility loci explain

only slightly more than 20% of CD heritability. Therefore, it is

assumed that a number of rare SNPs and haplotypes contribute to

the overall CD risk such as recently shown by us for PXR gene

variants [58]. In addition, most likely a high number of common

CD risk genes with small effect size are still unidentified but for

their identification very large cohorts would be required.

So far, genetic variants in the OPN gene have shown to be

involved in susceptibility to other immune-mediated diseases such

as SLE [59,60], oligoarticular juvenile idiopathic arthritis [61] and

sarcoidosis [51]. Despite promising functional data, previous

genotype analyses could not confirm OPN as significant disease-

modifying gene in classical Th17-mediated diseases such as

multiple sclerosis [62,63] and rheumatoid arthritis [64]. Investi-

gating the role of OPN as a susceptibility gene in SLE, a recent

study demonstrated a significant association in male patients [50] –

a phenomenon also seen in a study investigating OPN variants in

type-1 diabetes, implicating a potential gender-specific mechanism

acting in the autoimmune process [43]. Similarly, our analysis

demonstrated gender-specific effects for four OPN SNPs, partic-

ularly for rs4754 which deviated from the Hardy-Weinberg

equilibrium in male controls. Moreover, there was a significant

association of this SNP with CD in male but not in female patients.

While osteopontin is closely involved in the Th1- and Th17-

mediated immune response associated with CD [31,32,33,34], its

role in murine colitis models is controversially discussed. In one

study, osteopontin deficiency protected mice from DSS-induced

colitis [38], while in another study, osteopontin administration in

Opn2/2 mice reduced the disease activity index, improved red

blood cell counts, and reduced gut neutrophil activity compared

with the DSS-treated wildtype mice [37]. Interestingly, a recent

study demonstrated that Opn2/2 mice showed decreased blood

levels of IL-22 [39]. Since we recently demonstrated that IL-22

serum levels are increased in CD and correlate with disease

activity and the IL23R genotype [55], we next analyzed a potential

association between OPN genotypes and IL-22 serum levels in CD

patients. Overall, we observed lower IL-22 serum levels in the

carriers of OPN minor alleles (homo- and heterozygous carriers),

which was statistically significant when the mean IL-22 expression

level of carriers of the 9 investigated OPN SNPs minor alleles was

compared to the mean IL-22 serum level of the carriers of the

Table 3. Haplotypes of OPN SNPs in Crohn’s disease (CD) case-control sample (846 cases and 1510 controls) and omnibus p-values
for association with CD susceptibility.

Haplotype combination Omnibus p-value

rs2728127-rs2853744 9.0961021

rs2853744-rs11730582 2.7461021

rs11730582-rs11439060 6.8761022

rs11439060-rs28357094 2.2561021

rs28357094-rs1126616 6.1161021

rs1126616-rs1126772 1.8161021

rs1126772-rs9138 4.7161021

rs2728127-rs2853744-rs11730582 1.9561021

rs2853744-rs11730582-rs11439060 1.3461021

rs11730582-rs11439060-rs28357094 5.3761022

rs11439060-rs28357094-rs1126616 2.7261021

rs28357094-rs1126616-rs1126772 3.7261021

rs1126616-rs1126772-rs9138 6.4561021

rs2728127-rs2853744-rs11730582-rs11439060 2.1561022

rs2853744-rs11730582-rs11439060-rs28357094 1.6261021

rs11730582-rs11439060-rs28357094-rs1126616 1.3561021

rs11439060-rs28357094-rs1126616-rs1126772 2.7461021

rs28357094-rs1126616-rs1126772-rs9138 6.7761021

rs2728127-rs2853744-rs11730582-rs11439060-rs28357094 3.7761022

rs2853744-rs11730582-rs11439060-rs28357094-rs1126616 1.9861021

rs11730582-rs11439060-rs28357094-rs1126616-rs1126772 6.9561022

rs11439060-rs28357094-rs1126616-rs1126772-rs9138 3.8461021

rs2728127-rs2853744-rs11730582-rs11439060-rs28357094-rs112661 5.0361022

rs2853744-rs11730582-rs11439060-rs28357094-rs1126616-rs1126772 6.8661022

rs11730582-rs11439060-rs28357094-rs1126616-rs1126772-rs9138 5.7561022

rs2728127-rs2853744-rs11730582-rs11439060-rs28357094-rs112661-rs1126772 1.4461027

rs2853744-rs11730582-rs11439060-rs28357094-rs1126616-rs1126772-rs9138 2.7661025

rs2728127-rs2853744-rs11730582-rs11439060-rs28357094-rs112661-rs1126772-rs9138 2.0761028

Significant p-values,0.05 are depicted in bold. All significant p-values remained significant after 10.000 permutations.
doi:10.1371/journal.pone.0029309.t003
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Table 4. Haplotypes of OPN SNPs in ulcerative colitis (UC) case-control sample (501 cases and 1510 controls) and omnibus p-
values for association with UC susceptibility.

Haplotype combination Omnibus p-value

rs2728127-rs2853744 5.6261021

rs2853744-rs11730582 3.7261021

rs11730582-rs11439060 7.0161021

rs11439060-rs28357094 9.5461021

rs28357094-rs1126616 8.0861021

rs1126616-rs1126772 2.8061021

rs1126772-rs9138 2.6561021

rs2728127-rs2853744-rs11730582 5.2461021

rs2853744-rs11730582-rs11439060 6.8661021

rs11730582-rs11439060-rs28357094 8.6261021

rs11439060-rs28357094-rs1126616 7.2861021

rs28357094-rs1126616-rs1126772 3.8661021

rs1126616-rs1126772-rs9138 3.0261021

rs2728127-rs2853744-rs11730582-rs11439060 8.2661021

rs2853744-rs11730582-rs11439060-rs28357094 4.9861021

rs11730582-rs11439060-rs28357094-rs1126616 8.3961021

rs11439060-rs28357094-rs1126616-rs1126772 1.9761021

rs28357094-rs1126616-rs1126772-rs9138 5.2461021

rs2728127-rs2853744-rs11730582-rs11439060-rs28357094 5.0261021

rs2853744-rs11730582-rs11439060-rs28357094-rs1126616 8.2561021

rs11730582-rs11439060-rs28357094-rs1126616-rs1126772 5.0761021

rs11439060-rs28357094-rs1126616-rs1126772-rs9138 3.0161021

rs2728127-rs2853744-rs11730582-rs11439060-rs28357094-rs112661 7.2761021

rs2853744-rs11730582-rs11439060-rs28357094-rs1126616-rs1126772 5.8561021

rs11730582-rs11439060-rs28357094-rs1126616-rs1126772-rs9138 5.3661021

rs2728127-rs2853744-rs11730582-rs11439060-rs28357094-rs112661-rs1126772 5.8661021

rs2853744-rs11730582-rs11439060-rs28357094-rs1126616-rs1126772-rs9138 5.9561021

rs2728127-rs2853744-rs11730582-rs11439060-rs28357094-rs112661-rs1126772-rs9138 5.0061021

None of the haplotypes was significantly associated with UC susceptibility (p.0.05).
doi:10.1371/journal.pone.0029309.t004

Table 5. Analysis for epistatic interactions between OPN SNPs and IL23R SNPs regarding CD susceptibility (based on 1510 controls
and 704 cases).

OPN SNPs rs2728127 rs2853744 rs11730582 rs11439060 rs28357094 rs1126616 rs1126772 rs9138

IL23R SNPs

rs1004819 5.4561021 1.3461021 3.0061021 8.8361021 5.9361021 3.6961021 2.8661021 4.5261021

rs7517847 4.5261021 7.9461021 2.5361021 5.9661021 3.9861021 8.5761021 4.9761021 5.7961021

rs10489629 1.9061021 3.3161021 5.5461021 2.3261021 4.1861022 8.0561021 4.3161021 6.2861021

rs2201841 2.4961021 2.1861021 2.4361021 1.7461021 5.9161022 4.7161022 6.4661022 8.1061022

rs11465804 8.0261021 5.9761021 5.9861021 7.4561021 9.8661022 6.1961021 4.5461021 6.1861021

rs11209026 = 6.7161021 8.05661021 2.46661021 6.6461021 5.1761021 8.8761021 6.2961021 9.7661021

p.Arg381Gln

rs1343151 6.6561021 2.2561021 9.6861021 7.3461021 1.2361021 9.9861021 3.3261021 8.7961021

rs10889677 2.4961021 3.0961021 3.2961021 1.5361021 6.0561022 5.8861022 8.5161022 9.7361022

rs11209032 4.4661021 2.9261021 2.7161021 3.5861021 2.7161021 1.9161021 3.4661021 3.7561021

rs1495965 1.7961021 2.7761021 9.5261022 1.3461021 1.1161021 1.9461021 2.8261021 2.3961021

Significant p-values,0.05 are depicted in bold. However, these associations did not remain significant after Bonferroni correction.
doi:10.1371/journal.pone.0029309.t005
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homozygous wildtype alleles (p = 3.661025). In 7 out of 8 OPN/

SPP1 SNPs forming the haplotype rs2728127-rs2853744-

rs11730582-rs11439060-rs28357094-rs112661-rs1126772-rs9138,

which was strongly associated with CD susceptibility, the IL-22

serum levels were nominally lower in CD carriers of the minor

allele than in homozygous wildtype carriers, although these

differences were for each SNP only small and statistically not

significant. Similarly, there were no significant associations with

CD or UC susceptibility with single OPN SNPs after Bonferroni

correction, suggesting that only the combined effect of certain OPN

SNPs and haplotypes leads to decreased basal IL-22 levels and

increased CD susceptibility. We therefore hypothesize that certain

OPN variants may increase the CD risk via decreased basal

expression of IL-22, for which we and others demonstrated strong

epithelial-protective properties [65,66,67,68]. However, given the

multitude of functions mediated by osteopontin, other disease-

modulating properties of OPN haplotypes are likely and need

further functional investigation.

In addition to increased wound healing, IL-22 mediates also

early host defense against attaching and effacing bacterial

pathogens [69,70]. In line with the data of Heilmann et al. [39]

demonstrating a dual role of osteopontin in intestinal inflamma-

tion, one might therefore hypothesize that carriers of OPN minor

alleles with lower IL-22 serum levels are at high risk of developing

intestinal inflammation due to the lack of IL-22-induced mucosal

protection. Interestingly, Opn2/2 mice demonstrated altered

wound healing [71], which may be also related to decreased

expression of IL-22, which is a strong enhancer of intestinal wound

healing [65].

Recent studies in mice showed that osteopontin is involved in

Th17 cell differentiation [72] and Opn-expressing DCs induce IL-

17 production in T cells [21]. On the other hand, osteopontin

expression in DCs is repressed by IFN-a and IFN-c [73,74]. This

decreased osteopontin expression is associated with high produc-

tion of IL-27, a Th17 cell-inhibiting cytokine that favors regulatory

T cell development [75]. We recently demonstrated that IL-27 is

also a protective factor for the intestinal epithelial barrier [76]. IL-

27 induces anti-inflammatory and antibacterial responses in

intestinal epithelial cells and increases cell restitution after

wounding [76]. In mice with Opn-deficient DCs, substantially

elevated levels of IL-27 are produced and Opn2/2 mice develop

delayed experimental autoimmune encephalitis with a Th1 rather

than Th17-dominated response [73]. Opn2/2 mice display a

stronger Th1-mediated proinflammatory response during chronic

inflammation while a reduced Th17 response during acute colitis

protects them from mucosal inflammation [39], further strength-

ening the dual role of osteopontin in intestinal inflammation.

In summary, our study identified certain OPN haplotypes to be

associated with CD susceptibility. OPN variants may modulate

IL-22 secretion which is consistent with data in Opn2/2 mice, in

which low levels of the epithelial-protective cytokine IL-22

predispose to intestinal inflammation. However, the rather weak

association signals found in this study argue against a significant

role for OPN as major IBD susceptibility gene which is consistent

with the recent IBD meta-analyses [56,57]. Further functional

analysis of large cohorts and detailed fine mapping is required to

clarify the role of OPN variants in the genetic susceptibility to

IBD.
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Table 6. OPN gene variants modulate IL-22 serum levels in CD patients.

OPN SNP IL-22 serum levels IL-22 serum levels p-value

in OPN wildtype in OPN minor allele

carriers [pg/ml] carriers* [pg/ml]

rs2728127 39.72 37.28 0.537

rs2853744 38.24 39.54 0.854

rs11730582 42.07 37.18 0.341

rs11439060 39.72 37.28 0.537

rs28357094 39.23 37.36 0.614

rs4754 = p.Asp80Asp 40.19 36.78 0.380

rs1126616 = p.Ala236Ala 40.19 36.59 0.357

rs1126772 41.04 34.96 0.106

rs9138 40.35 36.59 0.333

Mean 40.08 37.06 3.6661025

The mean IL-22 serum level was analyzed for each OPN variant in a subgroup of 151 CD patients for which DNA for genotyping and serum for ELISA analysis was
available. P values are given for the comparison of the mean IL-22 serum levels of carriers of the minor allele (*homozygous and heterozygous) compared to cytokine
levels in homozygous wild-type carriers.
doi:10.1371/journal.pone.0029309.t006
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