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Abstract

The Memory-Prediction Framework (MPF) and its Hierarchical-Temporal Memory implementation (HTM) have been widely
applied to unsupervised learning problems, for both classification and prediction. To date, there has been no attempt to
incorporate MPF/HTM in reinforcement learning or other adaptive systems; that is, to use knowledge embodied within the
hierarchy to control a system, or to generate behaviour for an agent. This problem is interesting because the human
neocortex is believed to play a vital role in the generation of behaviour, and the MPF is a model of the human
neocortex. We propose some simple and biologically-plausible enhancements to the Memory-Prediction Framework.
These cause it to explore and interact with an external world, while trying to maximize a continuous, time-varying reward
function. All behaviour is generated and controlled within the MPF hierarchy. The hierarchy develops from a random initial
configuration by interaction with the world and reinforcement learning only. Among other demonstrations, we show that a
2-node hierarchy can learn to successfully play “rocks, paper, scissors” against a predictable opponent.
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Introduction

Adaptive Agents and Reinforcement Learning

In Artificial Intelligence, an adaptive intelligent agent is an
entity (generally, a software program) that continuously learns to
interact with a real or virtual world in such a way that it
increasingly satisfies some internal objectives or optimization
criteria [1]. By this definition, people could be classed as adaptive
intelligent agents because we try to minimize pain and hunger, and
maximize personal comfort.

Agents generally learn to behave in an adaptive way by
interacting with an external world and discovering the conse-
quences of actions. Learning algorithms can be placed into three
classes depending on the type of feedback given during learning.
“Unsupervised” methods learn patterns in data, without guidance
or preference for particular patterns. “Supervised” learning
requires ideal output values to be provided for each set of given
inputs. During learning, a supervised algorithm adjusts its output
to match the ideal values provided. After learning, it is hoped that
the supervised system can generalize beyond its training data and
produce good outputs from unseen inputs. A classic example of a
supervised-learning artificial neural network is the multi-layer
perceptron [2].

A third class of algorithms uses a technique called “reinforce-
ment learning”, that requires an objective measure of output or
world-state quality, called “reward” [3,4]. The objective of
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reinforcement learning is to learn behaviour that maximizes
cumulative reward. Reinforcement learning is often possible in
situations where the ideal output is unknown or difficult to
compute. For example, there may be many complex reasons why
the weather is so cold - but all these scenarios can be improved by
putting on warm clothes. A suitable reward function could be the
difference from optimal body temperature, which is easily
measured. It is then easy to learn that reward increases if you
put on a sweater when you are cold.

The Memory-Prediction Framework

The Memory-Prediction Framework (MPF) is a general
description of a class of pattern recognition and classification
algorithms. MPF describes an unsupervised learning system - there
is no objective except accurate modelling. MPF was developed by
Hawkins and Blakeslee [5] as an attempt to describe the function
of the human neocortex. A successful implementation, known as
Hierarchical-Temporal Memory (HTM), was first produced by
George and Hawkins [6]. An open-source implementation of
MPF/HTM has been produced by Saulius Garalevicius [7]. Both
MPF and HTM are auto-associative memory systems consisting of
tree-like hierarchies of pattern-classifiers. Within each unit of the
hierarchy, data is compressed by the discovery of spatial and
temporal patterns (spatial and temporal ‘“pooling”). Messages
about these patterns are transmitted between levels in the
hierarchy.
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HTM extends MPIF by borrowing belief-propagation tech-
niques from Bayesian Networks [8,9]; the data transferred
between nodes are likelihood or probability mass functions over
a set of states defined within each node [10][11]. The literature
includes many similar cortical simulations using Bayesian Belief-
Propagation in hierarchical networks, such as [12] and [13].

It is important to understand some properties of the MPF/
HTM hierarchy (figure 1). First, raw data is presented at the
“lowest” level. Classifications are extracted at the “higher” level(s).
The hierarchy is traversed in two directions, feed-forward (FF) and
feed-back (IFB). In the feed-forward pass, raw data from the lowest
level is incrementally quantized and compressed at each level, until
it reaches the highest level in the hierarchy. Active “labels” in the
highest level of the hierarchy represent classifications of the raw
input.

In the feed-back pass, activity in the highest levels is transformed
and expanded at each level until it becomes a pattern of raw data
at the lowest level. The MPF/HTM hierarchy is expected to find
patterns in space (between inputs, via spatial pooling) and time
(coincidences and sequences, via temporal pooling). Due to
pooling, data at higher levels in the hierarchy are increasingly
invariant over time and space. The accumulation of invariances is
analogous to the production of increasingly symbolic representa-
tions.

Temporal pooling allows the hierarchy to generate predictions.
This occurs because temporal pooling causes states in higher units
to represent sequences observed in lower units. It means that
higher units can’t represent the state of lower units accurately, but
with the benefit that classification in higher units translates into
sequences of states in lower units. These sequences can be used as
predictions.
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Figure 1. Hierarchic structure of the memory-prediction
framework. Blue (upward) arrows show the flow of data from lower
layers to higher layers in a feed-forward (FF) traversal. Data from
multiple children may be concatenated, giving the hierarchy a tree
structure. Data in higher layers has a greater number of invariances. Red
(downward) arrows show the flow of data in the feed-back (FB)
traversal. The FF pass performs classification; the FB pass generates
predictions. Each unit has two inputs and two outputs. 2° is the FF
input; A! is FF output. 7! is FB input and #° is FB output.
doi:10.1371/journal.pone.0029264.g001
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For example, if a lower unit regularly observes state sequence
A,B, a higher unit will form a model X that represents A,B. When
the higher unit recognizes the current state as X, this message is
translated into states A and B when passed to the lower unit.
Assuming the lower unit is already in state A, the message allows
the lower unit to “expect” state B. In HI'M the feedback data
represent a belief of the state of the unit around the current time,
given all the data available higher in the hierarchy, including
observations from sibling units. In this paper, addition of a
predictor within each unit further biases feedback data towards
future states of the unit. At the lowest levels, data in the FB pass
become a prediction of FF input in the near future. In this way the
hierarchy is capable of both classification and prediction.

More recently, Hawkins, George et al have developed a very
detailed understanding of how HTM could be implemented in
biological neural networks [11] and there have been a number of
successes using HTM for optical character recognition [14,15],
image classification [6,11] and spoken digit recognition [16].
Other impressive HI'M demonstrations include the classification
of observed human motion into categories such as walking and
sitting [17], preliminary studies on human motion classification
and reproduction [18], and music classification and production
[19]. These tasks are generally considered difficult for machines.

A greater variety of literature is relevant if HTM-like methods
are included: For example, Morse [20][21] described ESNGs,
recurrent neural networks that create hierarchical models similar
to HT'M. They used SOMs (see below) to compress data between
levels, and explored the relationships between actions and
perceptual learning. But there has been no attempt to use MPF
or related methods in an adaptive agent.

Exploiting the Hierarchy

A key difficulty in creating an adaptive intelligent agent is that
easily measured internal physical conditions such as pain can have
many causes and require complex sequences of actions to fix.
Often, it is necessary to identify and understand quite abstract
concepts - such as the identities of people with different
personalities - to successfully predict what will be nice or not.
Similarly, some threats or opportunities may not be continually
observable, or may take a long time to develop. The ability of the
MPF/HTM hierarchy to construct increasingly time-invariant
and abstract representations suggests that it would be an effective
perception and prediction system for an adaptive intelligent agent,
whose internal objectives are affected by many complex
relationships with its world.

Since knowledge and understanding of agent-world interactions
m a MPF/HTM model would be distributed throughout the
hierarchy, it is not immediately obvious how MPF/HTM can be
included in an adaptive system. Before learning, it is not possible to
predict what objectively-useful concepts will exist, or where they
will be found in the hierarchy. It would be possible to attach an
entirely separate adaptive control system to specific levels in the
hierarchy, but then behaviour would be generated outside the
hierarchy rather than within it. Since this separate system would
have to duplicate a lot of the knowledge already in the hierarchy, it
would be inefficient. It is also biologically realistic to expect
complex behaviours to be generated within the MPF/HTM
hierarchy, if it is an accurate analogy of the human neocortex.

To generate adaptive behaviour within an MPF/HTM
hierarchy, it is necessary to use information at all levels because
(a) details of the current state are distributed between many levels,
and (b), as activity moves from higher to lower levels, behaviours
are refined and given increasing detail both spatially and
temporally. For example, an abstract behaviour such as “drink”
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must be translated into a series of coordinated movements to
successfully end discomfort caused by “thirst”.
With these points in mind, our objectives are:

e To allow the MPF to perform as an adaptive control system
while simultaneously continuing to perform hierarchical
learning and prediction

® To introduce minimal changes, e.g. not introducing a model to
translate the state of the MPF into another form

® T'o not restrict the organisation of the MPF hierarchy

® To generate and model agent behaviour within the MPF
hierarchy, not in a parallel model

® To effectively exploit information anywhere in the hierarchy,
without prior knowledge of where concepts will exist in the
hierarchy, or what they will represent

® To rely on the MPF discovering and modelling relationships
between complex causes, simplifying the adaptive component
of the system

Hierarchical Reinforcement Learning

In the literature, approaches to hierarchical reinforcement
learning share the same basic approach of defining macro-
operators that represent sequences of simpler actions [4,22]. This
fits neatly into MPF, where increasing temporal pooling will
naturally form states representing sequences of actions from lower
layers.

Skelly [23] describes some of the expected benefits of
hierarchical reinforcement learning: ... using greater abstraction
will be shown to require less experience from state transitions and
rewards in the environment, because the generalization helps
make maximum use of each experience by diffusing the
information from each experience to the local region of the state
and action space where that information is meaningful”. Barto
and Mahadevan offer another advantage, that hierarchies
“combat dimensionality by exploiting temporal abstraction where
decisions are not required at each step, but rather involve
execution of temporally extended activities that follow their own
policies until termination. This leads naturally to hierarchical
control architectures and learning algorithms” [22].

The majority of Reinforcement Learning (RL) problems can be
collectively best understood as the search for optimal solutions to
Markov Decision Processes (MDPs) [4]. A solution is defined as a
“policy” for choosing actions that maximises cumulative future
reward. In the hierarchical case, the Semi-MDP (SMDP)
formalism is adopted [22,24]. SMDP models the time interval
between decisions as a random variable, describing the durations
of macro-actions composed of shorter actions.

Most hierarchical approaches to RL require the hierarchy of
possible actions to be defined in advance [22,25]. In this paper we
allow the MPF to define a hierarchy of state-action pairs, and
allow transition probabilities to be adjusted by reinforcement
learning.

Planning as Inference

A stationary Markov Decision Process (MDP) is one where
states, state transition probabilities and rewards for specific states
do not change over time. Most RL algorithms are only suitable for
finite state/action spaces and stationary MDPs in which the set of
possible actions and consequent rewards are fixed.

A Partially-Observable MDP (POMDP) [4,26] is an MDP in
which the state of the world cannot be known accurately.
Typically, approaches to POMDPs involve assigning probabilities
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to observations and updating a probability distribution over an
underlying set of states.

The stationary MDP criterion means that for most hierarchical
RL algorithms, including HAMs,MAXQ and ALisp, the set of
macro and atomic actions must be defined a priori [22,25]. We
propose instead that unsupervised learning within MPF can define
a MDP of actions and macros, but it will evolve over time due to
unsupervised learning and adaptive bias.

In this case, the problem becomes a POMDP. In general,
finding globally optimal mappings from observations to actions in
POMDPs is NP-hard [27] but some locally-optimal solutions have
been proposed [28]. McGovern and Barto [29] have investigated
the problem of constructing hierarchical representations of actions
based on the frequency of successful “trajectories” (sequences of
tasks). This approach is similar to our correlating method.

More recently, several authors have tried to reformulate
planning by reinforcement learning as an inference problem. This
allows use of a variety of well known inference methods such as
Expectation-Maximization (EM) and Markov-Chain Monte-Carlo
(MCMC) [30]. Attias [31] describes an algorithm with separate
modes for exploration and “exploitation”, the latter meaning using
learned models for goal-directed navigation. Exploration is
necessary to build models of possible action sequences, and is
implemented by sampling from a fixed prior distribution over
possible actions. In exploitation mode, planning consists of finding
an action sequence that maximizes the posterior distribution
conditioned on arrival at a goal with a fixed number of steps. Both
MDP and POMDP results are presented. In the POMDP case, the
posterior is conditioned on initial observations and the final (goal)
state.

Toussaint and Storkey [32] define solving an MDP as likelihood
maximization in a variable mixture model. This permits use of
Expectation-Maximization (EM) to search for mixture models that
maximize discounted expected future reward over an infinite
horizon, avoiding one of the most significant limitations in Attias’
work. They demonstrate both discrete and continuous action-
space MDPs.

Subsequently, Vlassis and Toussaint [30] extended this
approach to POMDPs using an approach called Stochastic
Approximation EM (SAEM), but this only guarantees convergence
to local optima and only in certain conditions. Their methods are
very relevant to solving the POMDP defined by the states and
action-sequences within the hierarchical MPF.

Structure of this Paper

In this paper we describe and demonstrate a way to generate
adaptive behaviour within an MPF hierarchy by modifying
(biasing) inter-unit messages during the feed-back pass through
the hierarchy. The changes cause the MPF to preferentially
predict states where its output causes actions associated with
higher reward from a hidden objective function. Crucially, we
allow associations between hierarchy states and internal reward to
be generated at any or all levels in the hierarchy, wherever a
strong correlation can be found. The remainder of this paper is
presented as Methods, Results and a Discussion.

In “Methods”, we first describe how both sensing and actuation
can be connected to the MPF hierarchy. Next, we describe
additional components required to make a hierarchy adaptive. We
develop the concept of the MPF as part of a reinforcement
learning system, with the impact of external causes being felt
through a single reward function and understood by hierarchical
modelling.

“Methods” also gives a detailed description of our implemen-
tation of an MPF unit. The unit performs both spatial and
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temporal pooling, and internal prediction (sequence learning). We
discuss implementations of both first-order and variable-order
sequence learning. In “Results” we present several demonstrations
of the ideas within the paper.

Methods

Sensor-Motor Interface

We operate our hierarchy iteratively. Each iteration includes a
feed-forward (FF) pass of every unit, followed by a feed-back (FB)
pass of every unit. The units are traversed in such an order that all
units at the lowest level are FF prior to any unit at the next higher
level (breadth-first or level-order traversal). On the FB pass, the
units at the highest level are FB prior to any “lower” units, until
the lowest level is reached. Each iteration therefore consists of a FI¥
and a FB pass of the entire hierarchy (figure 2). Although
synchronous operation of the hierarchy is not biologically realistic,
it should not affect the results of the algorithm described below.

Each unit has 4 data structures for input and output. Let A*%(z)
be the FF input to unit « at iteration #, a vector of real numbers in
the interval [0,1]. In higher layers A*%(7) is a mass function, but in
the lowest layer any values in this range can be provided. Let
Al (f) be the FF output, a matrix containing a normalized
likelihood function over possible classifications of the input X”’O(I)
within u. For the FB pass, let ©!'(f) be a matrix of equal
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Figure 2. Formulation of an adaptive-MPF hierarchy. Messages
between units (U) in different layers are relayed via “reward correlator”
components (RC). FF messages (blue arrows) represent classifications of
the current state of the agent in the world; these are correlated with
objective internal measures of agent state (reward). The same reward
value r(?) is provided to every RC; the hierarchy is tasked with modelling
the separate external causes of changes in reward. FB messages = are
“predictions” of future agent-world state (red arrows). Biased messages
7 are produced by RC components, making the hierarchy more likely to
“predict” states in which it performs actions correlated with high
reward. Sensor data x is concatenated with motor output m to form the
interface to the MPF hierarchy. The FB output of an MPF unit is of the
same form as its FF input. Different data may be presented to each unit
at the bottom of the hierarchy. Sensor inputs and motor outputs may
be mixed within one unit or interfaced to different units.
doi:10.1371/journal.pone.0029264.g002
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dimension to 7»"’1(1) containing a probability mass function over
predicted future classification-states in unit u. Similarly, let 7°(¢)
be the FB output from u, a vector of equal size to the input vector
X"’O(Z) containing a prediction of future input to unit . To form a
hierarchy, FF outputs from multiple lower units uy,us,...,u,, are
concatenated and presented to higher unit[s]. Conversion from
matrix to vector is not important as the classifiers (see below)
assume all input dimensions are independent.

State-Action Pairing

Many reinforcement learning algorithms - such as Q-learning
[3] and SARSA [33] - model the effect of [state,action] pairs on
reward. The state contains both external and internal measure-
ments from the agent in its world. Actions are generated by the
agent. The expected reward of performing actions a when in state
s is the “Quality” of the pair, typically denoted Q(s,a).

Since in MPF the FF and FB data structures are of equal size,
agent sensor values and motor commands must be present in both
A1) and ©*0(7). If X'(7) is a vector of current values from the
agent’s sensors, and m/(f) is a vector of values corresponding to
motor commands, then 2*%(7) = [x/(£) mi(£)]. In other words, the
input/output state to the MPI’s lowest level is a concatenation of
sensor values and motor commands.

However, in an iterative artificial adaptive agent
2O =[x(f) mi(t+1)], meaning that the state is comprised of
current sensor values and consequent actions taken. The agent
must learn which action to choose given that it is in a particular
world/self state, so we must store this combination together.
Imagine the Markov-Graph of this model; we are encoding the
current vertex and outbound edges, rather than the current vertex
and inbound edges (learning how we got into a nasty situation is
not as directly useful as learning how to get out of it!). This is
similar to the state-action pairing seen in SARSA.

We want the MPF to generate behaviour directly. If
200 =[xi(f) mi(t+1)] then 70(r)=[x°(t) m°(1)]. Given the
behaviour of the MPF, x°() will be a prediction of x'(¢+ 1) and
m?(t) will be a prediction/suggestion of motor commands at ¢+ 2;
i.e. when trained, m°(f) x m‘(t+2).

If continuous motor outputs are desired, values in m°(f) can be
used without further processing. Discrete outputs are more
problematic because learning within the MPF unit (within a
SOM in this paper) will cause a feedback loop, pulling motor
outputs towards intermediate values. Instead, discrete outputs can
be produced by sampling from a multinomial of possible actions
with probabilities m°(f). mi(t+2) should represent the action
actually chosen from m°(#). Therefore let mi(t+2)=1 if action k
was chosen, and m}(t42) =0 otherwise.

The different problems of discrete and continuous outputs
(action spaces) are discussed in the Reinforcement Learning
literature. Many RL algorithms (such as Q-learning and SARSA)
cannot handle continuous action spaces. However, approximately
optimal continuous outputs can be learnt by methods such as
CACLA (Continuous Actor-Critic Learning Automaton) [26].
The RL literature does include Monte-Carlo methods to explore
the space of possible actions (policies) [28], similar to our approach
for discrete outputs.

Additional Adaptive Components

Reward Function. The adaptive-MPF system  uses
reinforcement learning rather than supervised learning because
we do not wish to provide “correct” outputs for every conceivable
situation. Instead, we wish to measure impacts of external causes
on properties of the agent, such as pain or hunger. In this paper we
will use the simplest possible reward function, providing a single
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varying scalar value 7(#) such that —1<(#)<1. We use the term
“reward” to imply that this function should be maximized. We will
expect the MPF to build a model of the world that is capable of
understanding the causes of changes in reward. By combining all
possible definitions of things good and bad within a single scalar, it
becomes much harder for the MPF to learn the separate causes of
high and low reward.

Since the agent should be highly motivated to improve a bad
situation, it is more useful to maximize the first derivative of
reward. We also wish to measure changes in reward over a period
of time, because the delays between actions and their consequenc-
es are varying and unknown. However, it is more likely that recent
actions are responsible for changes in reward. Over a few
iterations, this can be approximated simply as an exponentially-
weighted moving average:

_ r(t)—r(t—1)

@y

(@) )

R()=ol()+ (1 —a)R(1—1) 2

, is the maximum possible absolute derivative of reward per
iteration, if known. The o parameter is determines the influence of
historic reward signals. If consequences of actions may take some time
to be reflected in r(#), the value of R(?) should instead be computed
over a window of time. The period should be increased for units at
higher levels in the hierarchy, whose state changes very slowly.

This differs significantly from conventional reinforcement
learning where a “discount” factor allows future reward signals
to be considered when evaluating state-action pairs [4]. Rewards
further in the future have less influence, and are therefore said to
be “discounted”. Many RL algorithms iteratively propagate
discounted rewards backwards in time towards the events that
caused them.

In this paper we rely on the existence of an arbitrarily deep
hierarchy with increasing temporal pooling, to avoid the need to
consider discounted future rewards. We assume that for any event
with delayed reward there will exist a level in the hierarchy that
remains constant for the duration of the event-reward interval. For
example, a state in the hierarchy corresponding to a high-level
plan such as “walk the dog” could be active for long enough for all
relevant rewards to be integrated, despite the existence of other
transient plans during this period. This is unlikely to be an ideal
approach and in future work we will investigate the use of
discounted future reward.

Reward Correlation. Since we have defined that data inside
the MPF hierarchy includes representations both of [sensed world-
state] and [agent motor-actions], it should be possible to correlate
activity patterns within the hierarchy with the reward values that
result from the agent taking specific actions in specific situations.
While it is necessary that concepts with appropriate abstractions
and invariances exist somewhere in the hierarchy, it is not
desirable to have to define where, before learning. We also wish to
preserve the homogeneity of the MPF, therefore it must be
possible to add the adaptive components throughout the hierarchy
without negative effects.

In this paper we suggest that correlation of activity patterns with
reward values could occur between layers of the hierarchy. We
posit a ‘“reward correlator” component that relays messages
between units in different layers, i.e. matrices X“‘l(t) and m*!(f)
are inputs and outputs of a reward correlator above  in FF and
IB passes respectively (figure 3).
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The FF pass through the hierarchy should classify the current
state as accurately as possible. The purpose of the FB pass is to
generate predictions, and as a result, behaviour. We choose to
modify messages between units in the FB pass, causing the MPF to
preferentially “predict” states where its output causes actions
assoclated with higher reward. More specifically, in the FF pass we
correlate matrix A () with scalar R(f) and in the FB pass we
modify matrix ! (¢). Since there is a feedback loop within each
MPF unit (detailed below), an alternative arrangement would be to
correlate A (1) with R() and modify X' (7) prior to relaying it to
higher unit[s].

For every unit u, if ¢ is a correlation 7»"’1(1) matrix of equal
dimension to X"’l(t) and o, is a scalar learning-rate parameter
(gradually decreased over time), then we define a temporary
matrix T to correlate:

() = w25 (1= 1) 3)

c;_(t) =1;(OR(@)+(1— Ii,-(t))c;_(t —1) 4)

This formulation arises because we only want to change the
correlation for active elements in /lg-’l and the influence of R(f) on
any element #j should depend on the probability that SOM model
ij represents the state that caused R(f). ., ensures that the
correlation never changes too quickly, forgetting historic values. If
events happen comparatively quickly compared to the rate of
iterating the hierarchy, a delay of at least 1 iteration should be
applied to the correlating formula as shown above, although
At () should be relayed without delay to higher units. In more
sophisticated implementations, integrals of 7»"’1(1) over time
should be correlated with reward.

Adaptive Bias. In the I'B pass we wish to modify message
X"’I(Z) passed from higher unit[s] to unit u. Since m*!() is a
probability mass function, we wish to increase the value (mass) of
matrix elements associated with increase in reward, and reduce
elements associated with decreases in reward. This can be done
with the following formulas, in which # is a normalizing factor
ensuring constant mass and @, is a global scalar parameter
determining the maximum influence of adaptive bias B(f). Note
that matrix S(¢) is a nonlinear function of the correlation of unit
states with reward, to ensure that weak correlations are rapidly

L correlate]

Reward
Correlator

YNG)

Figure 3. Reward Correlator component. In the FF pass, delayed
lower unit output () is correlated with reward r(¢). The FF message is
then relayed, unaltered. Correlations are stored in matrix C. In the FB
pass, higher unit messages n(f) are modified to bias them towards
states correlated with high reward. The modified message 7' (7) is then
relayed to lower units.

doi:10.1371/journal.pone.0029264.9003

January 2012 | Volume 7 | Issue 1 | e29264



tested and either strengthened or depleted. v is a scalar constant
corresponding to the uniform mass value 1.e. v= 77 if 1,J are the

dimensions of 7! (¢). 7' (¢) is the modified mass function:

. 1
Si= 14 @O+DI=9 -0 &
Bji(1) = max(0,min(1,(Sj(1)-wp) + ) (©)
/ u,1 U
T () =m; (t)~Bl_j(Z)'17 )

SOM-MPF Implementation

Thus far we have described several additions to the Memory-
Prediction Framework to enable it to be used as a complete control
system for an adaptive intelligent agent. In summary, we have
reformulated the input/output data to include sensors and
actuators, and are modifying FB messages between hierarchy
layers, by correlating delayed FF messages with smoothed reward
signals (figure 2).

MPF Unit Structure. Although the above modifications
should be compatible with various implementations of MPF
(including HTM), we will describe our implementation of the MPF
unit. Each unit performs spatial pooling, sequence learning plus
prediction, and temporal pooling. We will discuss each of these
components (figure 4).

Our MPF unit is based on the Kohonen Self-Organising Map
(SOM) [34], and unlike some HTM solutions, is capable of online
learning. The SOM is a biologically-inspired artificial neural
network used for unsupervised classification and dimensionality
reduction. Others have previously used SOMs to build MPF-like
hierarchies, such as Miller and Lommel’s Hierarchical Quilted
SOM (HQSOM) [35]. Pinto [36] extended this to a complete
MPF implementation. Other SOM variants could equally be used.

The chief innovation in Miller and Lommel [35] is use of a
“Recurrent”-SOM (RSOM) that can perform temporal pooling
(clustering) by allowing current classification to be affected by
previous classifications. Therefore, a SOM-RSOM pair can
perform both spatial (SOM) and temporal (RSOM) pooling, as
described in the MPF.

Feed-Forward Pass: Spatial and Temporal Pooling. The
SOM consists of two matrices W and A. W is an I X J matrix of
models of the input vector ku’o(t) such that given N* elements in
A1), the dimensions of W are IxJxN*. I and J are
parameters that determine the number of models the SOM will
contain. In this case the SOM has a 2-d topology, which is usually
sufficient but cannot optimally represent all data. 4 has size I x J
and A;; represents the likelihood of observing the SOM model W;
given the evidence X”’O(t). Each SOM model represents a possible
configuration of A“’(¢) and the models in the SOM learn to
maximize their coverage of the input space observed in A“°(z)
over time. Since the SOM has been thoroughly discussed in many
works, the reader should consult e.g. [35] or [36] for detailed
SOM weight update equations. For our purposes we define the
likelihood function as the inverse of normalized sum of squared
error, giving matrices £ and A4:

N
Ey(=>" (W= 20 ®)
n=1
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Figure 4. Internal structure of a SOM-MPF unit. In the FF pass,
SOM and RSOM components perform spatial and temporal pooling
(compression) by classification of /10(1) in terms of the finite sets of
models W* and W'. FF SOM classification output A4°(¢) is biased by
previous prediction B(¢— 1) resulting in A°(¢). 2’(¢) is the FF input to the
RSOM temporal pooler. RSOM FF output A'() is used as unit FF output
(7). Between the poolers, an internal loop estimates unit state in
terms of SOM models, using both 7%(7) and FB predictions from higher
units via the RSOM. Internal predictor output A(f) is combined with
RSOM FB output #/(7) to give the bias matrix B(¢). Predictions from
higher units indicate the current sequence, as in HTM; predictions
within the unit allow position within sequences to be tracked also. In
the FB pass, roulette selections from 7/(¢) and the combined PMF B(r)
are used to reverse the RSOM and SOM transformations, giving unit FB
output 70(¢).

doi:10.1371/journal.pone.0029264.g004

Ay(=1— ( Ey(0 ) )

max(E(t))

These equations produce a very smooth result, with significant
responses from many models within the SOM. This is desirable
because we wish to bias the FF classification result using a matrix
B(t—1) that was produced in the previous FB pass. B(f—1) is a
probability mass function representing a (biased) prediction of
A"¥(1), the spatial pooler classification:

)ZY(I)ZA,/([)BU(t_ 1)]1 (10)

7 is a normalizing constant such that A"“*(f) becomes a
probability mass function over the classification-states represented
by the spatial pooling SOM models. The superscript ‘s’ indicates
that this is the FI' output of the spatial pooler in unit u.

According to MPF, the FF output of the spatial pooler (SOM)
should be the FF input to the temporal pooler (RSOM). Since the
RSOM and SOM treat all input dimensions independently, we
can rearrange the SOM output matrix to become a vector of
N'=1J elements. However, as discussed in [35], the RSOM input
should be highly orthogonal. This can be achieved by setting the
maximum value in 2“*(¢) to 1 and others to zero. For other details
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of the RSOM, see [35]. The FF output of the unit would typically
be the FF output of the temporal pooling RSOM:

216 = 21 (11)

but in hierarchy layers where a lot of spatial compression is
required (e.g. in the visual cortex) the temporal pooler can be
omitted. In this case the unit FF output is taken from the spatial
pooling SOM:

L) = 2"5(8) (12)

In [37] it is noted that in higher layers of the hierarchy, there is
little or no advantage to further spatial pooling. This is believed to
be represented in biology by the absence of neocortical layer 4
[37]. To reproduce this effect, in these units the spatial pooling
SOM can be omitted.

The classification process in the RSOM is similar to the SOM
but functions as a “leaky-integrator” so that classification outcome
changes slowly. A matrix D of equal dimension to W is needed:

2
Dty =a(Wy,—7°0) +(1=2Dy(=1)  (13)

N
El()="_ Dy(1) (14)
n=1

It is not necessary to bias the RSOM classification result, either
using a prediction or for adaptive purposes. This asymmetry is
because in the FF pass, active RSOM sequences become spatial
patterns in a higher unit, where they can be predicted. In the FB
pass, adaptive selection between RSOM sequences translates into
preference for sequences containing better spatial patterns. Hence:

}LZ”(I):A;(Z)-W (15)

n!(¢) is therefore a normalized likelihood function if an RSOM is
used, or a probability mass function otherwise.

Prediction and Sequence Learning. The SOM-MPF units
used in our experiments include either first-order or variable-order
Markov prediction. The MPF framework does not require a
prediction feature, as temporal pooling generates predictions of
proximate future and past states in the FB pass. However, our
prediction module predicts only future states, which reduces
uncertainty within the system. It also allows units to track position
within sequences. For prediction and sequence learning, an MPF
unit should do three things: identify the set of observed temporal
sequences, classify the current temporal sequence, and predict
future sequences.

Both first-order and variable order variants of HT'M have been
developed. The benefit of variable-order prediction can easily be
illustrated: A 2nd (or higher) -order model can distinguish between
B in sequences A—»B—C and C—»B—D, whereas a 1st order
model cannot. In [17], Hawkins et al use a Variable-order Markov
Model (VMM) to implement the temporal pooling stage of HTM.
However, they note that even with a VMM, the hierarchy must be
used to distinguish between longer intersecting sequences. (The
hierarchy allows assembly of longer sequences from shorter ones).

@ PLoS ONE | www.plosone.org
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The difference is flexibility and efficiency; a VMM-hierarchy can
distinguish longer sequences using fewer layers.

In our SOM-MPF implementation we present a first-order
Markov Model to predict future classification outcomes. Later, we
also show how using the biologically-inspired technique described
in [17], we can adjust the first-order model to behave as if it were a
variable-order model.

First-Order Prediction. The input to the prediction module
is 2*(¢) and the output is a matrix A(?) of the same size. Both are
probability mass functions. A(¢) is a prediction of A**(z+1). A(¢) is
generated from a matrix M of size (1J) x (1J) (i.e. each model in
the SOM is treated independently and regardless of SOM
topology). M is updated using A**(f) and A"“'(t—1) and
approximates the conditional probability of SOM model
0<k <(IJ) being active at #+ 1 given that model 0<h<(1J) is
active at time 7. The sum of each column of M is normalized to 1.

My~ PO+ 1)=1] 21 =1) (16)

Mg (t+ 1) = (Mn(t) + (wp01-02))'n (17)

where @), is the learning rate (typically 0.99 initially and reduced
to around 0.01 over time) and:

81 =max(A(1— 1) — 7(),0) (18)

8y =max(A4 (1) — 2“5(t—1),0) (19)

Equations 17, 18 and 19 increment the conditional probabilities
in M if 2;" is observed to decrease while 4 is increasing (a
transition between A and k). Since A"’ is a probability mass
function, a reduction in mass at 4;" is interpreted as the exiting of
state /. Similarly, an increase in mass at A, represents entering
state k. These equations are best understood as approximating
transition probabilities by computing the relative frequency of
transitions between states. The relative frequency of an event
becomes closer to the probability of an event as the number of
trials increases. However, in this case the approximation is biased
towards recent events by w,. Since the underlying system is
continually changing (due to SOM learning), frequency-based
approximation biased towards recent data is simple and effective.

A first-order prediction can be obtained from A"*(¢) and M by:

1J
A =n" " My2y (1) (20)
h=1

Matrices 1*(f) and A(?) are treated as vectors in equation 20.
is a normalizing constant giving a total mass of 1:

- (21)

Yo
k=1"*

Feedback Pass. In MPF, the purpose of the FB pass is to
generate a prediction of the next FF pass. MPF proposes that FF
classification be combined with FB prediction, yielding more
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accurate models of the world given noisy, indeterminate or
msufficient data. Feedback also improves state estimation between
sibling units, via higher units. In this paper, the purpose of the B
pass is also to generate adaptive behaviour.

The FB pass through the unit starts with ©!(¢), a prediction
from higher units in the hierarchy. (For the highest layer ! (¢)
can be a uniform distribution). 7*!(f) is a probability mass
function over the set of models in the RSOM. “Roulette” selection
is used to select an element i,j from 7! (¢) (i.c. the probability of
the selection of any element i,j is proportional to the value of
nl’]l(t)) The corresponding weights from this RSOM model are
then copied to a matrix 7/(Z).

The use of Roulette selection for the selection of a FB model
from the (R)SOMs is unique to this paper and has some useful
properties. If there are multiple modes in ! (¢) the FB pass will
test them individually, until one fits. When a mode in n*!(f)
accurately predicts reality, it will rapidly be reinforced by the
feedback loops within the unit and hierarchy, and the mass of the
other modes will decrease. More importantly, there is no
guarantee that interpolating between the models in the SOM
generates viable patterns, therefore a weighted-sum of the models
in is m!(f) not effective given high variance modes or a
multimodal case (in practice, multi-modal distributions are quite
common). Using clustering techniques to find a single mode in
m!(¢) is more expensive and in our experiments gave no
noticeable improvement. Over time, the series of selections from
7! (¢) can be interpreted as a probability mass function because
the normalized likelihood functions represented by the SOM
models are conditioned on the distributions in 7! (). The kurtosis
of the distribution in 7! (¢) balances the conflicting demands of
exploration and exploitation; if the distribution is flat chosen
actions will be more random (i.e. exploratory).

We wish to generate all behaviour within the MPF hierarchy
and not require any external module to help control the agent.
However, the MPF must explore the gamut of possible action-
sequences, motor outputs etc. and learn their consequences. This
objective is achieved both by using Roulette selection of individual
SOM models, and by adding random noise to the models in the
FB pass. Let n™/(f) represent the roulette-selected model from the
RSOM. To add noise:

T8 (0) =7 (1) + (2 — 0.5) 200" (22)

The magnitude of the noise is scaled by !, a parameter that
should initially be 1 and decreased over time to a low value
(=0.01). All results are clamped to unit range. The schedule for
reducing noise magnitude should consider the location of the unit
within the hierarchy; higher units inputs’ are not well defined until
lower units have learned. n; is a uniformly distributed random
value from the interval [0,1), as produced by most software
random number generators. .

n:}t(t) is a mass function of the same random variables as A(7).
They are both predictions of the outcome of the next IF
classification from the SOM. We combine them using the element-
wise product and add a small uniform mass v to every element,
giving us the bias matrix B:

By(1)= (1) () +v (23)
B(#) will be used in iteration 7+ 1. The uniform mass serves to

introduce some plasticity and uncertainty into the system even
when it has modelled predictable data very accurately. It also
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prevents numerical instability when predictions from higher layers
do not agree with predictions within the unit, or when the final
bias does not agree with observed reality. There is a fundamental
conflict between the objectives of accurate prediction and adaptive
bias; by definition, adaptive bias disrupts - damages - the
prediction process. It is also important that biased classification
in the FF pass does not become locked into an internal loop,
ignoring observations from below.

The final step in the FB pass is to transform B(¢) into so that the
message can be passed down the hierarchy. This is achieved by
using “Roulette” selection to pick a SOM model 7,j from B(#) and
adding noise:

me0(t) = Wi+ ((ny — 0.5) 2wl (24)

Variable-Order Prediction. To increase the
representational flexibility of the hierarchy, we will describe a
modification to the first-order prediction component that exploits
the 2-d topology of the SOM. The technique is inspired by
Hawkins et al’s article on Sequence Memory [17]. They describe
two levels of organisation for cells in the neocortex: A “region” is a
group of cells receiving the same input. “Clusters” or “columns”
are groups of cells within a region, that respond to the same input
patterns.

They suggest that within each column of cells there is a
“winner” that locally-inhibits other cells. The winning cell is
(typically) pre-activated by connections from other columns. These
connections allow the encoding of sequences. Although each cell’s
response is not unique in terms of input pattern, it is unique in
both pattern and sequence. Hawkins’ example uses letters; having
several cells that respond to the letter ‘B’, one might respond to ‘B’
in ‘ABC’ and another to ‘B’ in ‘CBD’. This can be most clearly
explained in a diagram (see figure 5).

These groups of “cells” are analogous to clusters of similar
models in the SOM weights matrix . The topological constraints
in the SOM weight update equation ensure that models
responding to similar input patterns are located together. Within
each cluster, we can use local inhibition to ensure that only one
SOM model responds. We can simulate the connections from
other columns by inhibiting models with strong first-order
relationships, whose priors were not activated.

These modifications can all be made within the prediction
module, because prediction affects FF classification outcome via B.
(This is the same biasing process that allows the SOM-MPF
hierarchy to be adaptive). In addition to modifying predictions to
become adaptive, they will be modified to encourage the
formation of variable-order sequences within each unit. This
reduces predictive accuracy in the short-term, but once variable
length sequences are learnt it can lead to superior predictive ability
within a single unit. This result is shown in one of our experiments,
described later.

Variable-order prediction is implemented by adding prepro-
cessing and postprocessing steps to the first-order prediction
system described above. Preprocessing consists of a local inhibition
around the global maximum in the input matrix A"%(¢),
implemented using a Difference of Gaussians (DoG) function
centred on the maximum value. This ensures a clear winner within
the “column’:

d,j(l) = \/(l - iinzl,x)z + (] 7jmax)2 (25)
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BinABC
BinC,B.D o

SOM model
Cluster of models

Figure 5. Variable-Order prediction. This figure shows two
views of the models within a SOM. Each small square represents
one SOM model. Clusters of models (indicated by dashed-circles)
respond to the same input pattern, in this case the letters A,B,C or D.
The clusters are implicit; they are a consequence of models’ content. If
several models respond to each letter we can individually specialize
them to respond to occurrences of the letter in specific sequences. This
is achieved by developing strong first-order edges between individual
models (blue arrows). For example, a high weight on the edge i—k
represents 4— B. Assignment of SOM models to specific occurrences of
letters occurs by inhibiting unpredicted neighbours of predicted
models. In the right panel, activation of SOM model i at time ¢
promotes k via the first-order edge i—k and inhibits x and other
nearby models at 7+ 1. The neighbourhood of inhibition is indicated by
the red circle.

doi:10.1371/journal.pone.0029264.g005

) )
1 . 202 1 . 2062 Lus

\/2—7.[—1;1' ! - \/2—7.[—1;2' 2 )'l'max Jmax (t) (26)

@y @y

Hy(t)=

Values djj(f) are temporary scalar quantities to improve readabil-
ity. Hjj(?) is a matrix of size I xJ. The values of g1 and o, are
related to the SOM’s weight-update o. If online SOM learning is
used,

g1=0S0M (27)

oy=01"Ag (28)

where Ag is a parameter greater than 1 such that in all cases:

01 <0 (29)

The values in H(f) are linearly scaled to occupy the range [0,1],
and then the element-wise product gives the inhibited predictor
input:

JHP (1) = 2% (8)-H (f) (30)

A*P(f) must be renormalized to have a total mass of 1.

Postprocessing involves two steps. First, elements for which a
strong first-order prediction exists are inhibited if that prior
element was not active in the previous iteration. Second, around
inhibited elements, neighbouring elements are promoted. This is
because SOM topology ensures that these will respond to similar
input patterns, and are viable alternatives.
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Intuitively, the inhibition is a nonlinear (log-Sigmoid) function
of the product of first-order weights M and preprocessed
prediction input; it is maximized when the prior values for high-
probability Markov Graph edges are small (“if A implies B and A
is not observed, inhibit B”). Again we treat the matrices as vectors
to simplify indexing, and compute 6(f), a matrix of equal
dimension to A7 (7).

J " 1 1
0= (1 - (1 — (1) max(z“*’(z)))' 1+e*<Mnk'1°*5’> 31)

h=1

The values in 0(¢) are linearly scaled to occupy the range [0,1],
then using the element-wise product:

7 (=000 (32)

We compute a matrix L(#) of equal dimension to 0(f) containing
the mass lost by inhibition:

Ly(1)=max(0,2;(t) — (1)) (33)

L(?) is used to construct a “local-promotion” matrix ¥(¢) which
increases the activation of neighbours of inhibited elements. The
promotion matrix is computed using a Difference of Gaussians
(DoG) function:

d(i,[,ll1,;1)2 d(i,/"m,n)2
— Sl _ . mn)”

20 1 202
2 — 1 34
V2no, ¢ (34)

J
lpmn(t): Z .

e
== V2no,
where d(i,j,m,n) is the Euclidean distance between coordinates i,j
and m,n. () is linearly scaled such that:

>

i=1j

1 J
Y=> > L (35)
i=1 =1

1

and then added to j/(t):
V=3 0+y@) (36)

These modifications cause the modified prediction to interfere
with the FF classification process, forcing individual SOM models
respond to patterns only at specific points in variable length
sequences.

Results

To demonstrate the methods described in this paper, it is
accompanied by open-source code and a compiled program that
can run 4 separate demos. The code and program can be
downloaded from:

http://code.google.com/p/ adaptive-memory-prediction-framework.

The code is provided as a toolkit, enabling interested readers to
develop their own tests. The software is written in Java, and
requires the JDK or JRE to be installed. To run the demos,
download the jar file and execute with the following command:
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java -jar ampf.1.0.1.jar n [r]

where 1 <n <4 is the number of the demo and r’ is optional. If ‘r’
is omitted, the random number generator uses a fixed seed. The
first demo exhibits the SOM and first-order predictor components.
The second demo is a reproduction of the moving-line recognition
program from Miller et al [35], which uses a SOM-RSOM pair.
Third, we show that a SOM-MPF unit comprising SOM, RSOM
and variable-order prediction can distinguish words such as ‘dad’
and ‘bab’ - the classic variable-order problem described in
Hawkins et al [17]. The fourth demo uses a very simple hierarchy
of 2 SOM-MPF units connected via a reward-correlator. This
hierarchy can be seen to successfully play “rocks, paper, scissors”
against a predictable software opponent.

Demo 1: RGB-SOM-1MM

The first demo provides an intuitive visualisation of the SOM.
The input vector X”’O(I) is a 3-tuple in RGB space (ie.
NO(1)=[r.g.b)"), and the SOM constructs a 2-dimensional
representation of this 3-dimensional space (visible in figure 6,
panel (a)). Each successive input colour is classified by the SOM,
with the resultant activation matrix A(#), shown on screen (figure 6,
panel (c)). The SOM weights matrix W is also displayed (figure 6,
panel (a)) to allow the reader to view the unsupervised learning
process. The input is a series of samples from a stochastic process
in [r,g,b]. Each colour channel ¢ is a scalar updated with:

c(t)=c(t—1)+b.+(n.—0.5)-0.1 (37)
in which n are normally distributed random variables and b are
biases b, =0.2, by =0.5, by = —0.1. The colour values wrap at 0
and 1. A first-order Markov Model (IMM) is used to predict
A(t+1) given A(?). The output of the predictor during the
previous iteration B(f—1) is shown in figure 5, panel (d). Roulette
selection from the classification-prediction matrix i(t) enables the
next colour to be predicted and shown. After 3000 iterations of
simultaneously training SOM and 1MM, these components are
able to classify the current colour and accurately predict the next
colour-classification. Euclidean distance between the predicted
RGB colour and the next observed colour is <0.15. Figure 6,
panel (b) shows the current FF input colour and the roulette-
selected FB output colour from the previous iteration (these
colours should therefore be similar).

Demo 2: SOM-RSOM Pair

The second demo is simply a reconstruction of the moving-line
recognition problem given in Miller et al [35]. The problem will
be described only briefly here. The purpose of the problem is to
show that a SOM-RSOM pair can perform both spatial and
temporal compression, by learning to recognize sequences of visual
patterns. In this case, there are 3 sequences to discover:

® No features (blank image)
® A horizontal line that moves from top to bottom of the image

® A vertical line that moves from left to right of the image

The two ‘line’ sequences are interspersed with variable-length
sequences of blank images. After 10,000 iterations, the RSOM
does indeed develop models that correspond to the two moving
line sequences, and a blank-image sequence (figure 7). The SOM
has formed models of the visual patterns it receives; the RSOM
has associated visual patterns that occur close together in time.
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Figure 6. Screenshot, Demo 1. (a) SOM weights matrix W*; each of
the 10 x 10=100 SOM models has r,g,b values. (b) Upper box shows
input colour. Lower box shows colour predicted during previous FB
pass, so it should be similar to the colour of the upper box. (c) SOM
activation A*(¢) (shown scaled to full greyscale range). Matrices are
displayed such that brightness indicates mass or value (i.e. white=1).
The best-matching SOM model is outlined in green. (d) A(z—1), the
output of the predictor in the previous pass. Since the external RGB
process is stochastic and classification quantizes FF input, prediction is
not precise.

doi:10.1371/journal.pone.0029264.g006

Figure 7. Screenshot, Demo 2. This is a demonstration of a SOM-
RSOM pair. A SOM with 5 x 5=25 models performs spatial pooling. An
RSOM with 2 x 2 =4 models allows temporal pooling. Panel (a1) shows
the hierarchy’s FF input, currently mid-way through the horizontal line
sequence. (b1) shows the SOM models that have been learnt. (c1)
shows the A4°(z), the activation of SOM models given the current FF
input. Note that matrices are displayed such that brightness indicates
mass or value (i.e. white =1). (d1) shows the 3 possible input sequences,
being pictures of horizontal or vertical lines and a blank image.
(@2),(b2),(@3) and (b3) show the four RSOM models. RSOM models
represent coincidences of active SOM models and are displayed by
outlining significantly (2 x chance) active SOM models in green. After
learning, one RSOM model corresponds to horizontal lines (b2) and one
to vertical lines (a2). (a3) responds to blank images. Panels
(€2),(d2),(c3),(d3) show /11(1), the activity of the RSOM models. The
high value in (d2) shows that the RSOM model (b2) is most active,
meaning that the hierarchy recognises that it is seeing a moving
horizontal line.

doi:10.1371/journal.pone.0029264.g007
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Software Interface Details. We will briefly describe the
software interface for this demo. A screenshot is included (figure 7).
The interface is comprised of a grid of four columns (labelled
a,b,c,d) and three rows (1,2,3). Panel al shows the FF mput to the
unit. Panel bl shows the SOM weights matrix W?. Panel c1 shows
the SOM activation matrix A4°(f). Panel dl shows the three
possible input sequences (horizontal or vertical moving lines and a
blank sequence). Panels a2:b3 are arranged in a 2x2 grid and
show the state of the RSOM weights matrix W’. Since each
RSOM model represents a distribution of activation of the SOM,
we outline SOM models that are significantly active in the
corresponding RSOM model. For easy reference, the state of the
SOM is shown within each RSOM model. Panels ¢2:d3 represent
A'(1), the activation of the grid of 2 x 2 RSOM models. White cells
are most active; black cells least active.

Demo 3: SOM-VMM-RSOM “Words”

The objective of this demo is to demonstrate variable-order
sequence learning and prediction within the SOM-MPF unit. The
problem is inspired by Hawkins et al’s paper on sequence memory,
[17], in which they describe trying to distinguish the sequences
‘A,CE” and ‘B,C,E’. We create a SOM-MPF unit with a variable-
order Markov Model (VMM) predictor. We present sequences of
noisy images to the unit, each image representing a letter from a
word (figure 8). The available words are:

dad
bab

mad

dam

A random (small) number of blank images are inserted between
words. The ordering of words is also random. Eventually, the unit

d mad
d mEd

Adaptive Memory-Prediction Framework

produces RSOM models corresponding to each of the words (and
other models corresponding to sequences involving blanks). We
measure the ability of the unit to predict each letter. Each
iteration, we present the current letter and perform FF and IB
passes through the unit. The result of the FB pass is an image of
the predicted letter. The normalized distance between the
predicted letter and the actual next letter is computed as an error
metric.

After 10000 iterations, a mean error of 0.20<e<0.23 is
achieved (averaged over 500 iterations). If a first-order model is
used instead, mean error does not decrease below 0.25<e<0.27
(see figure 9). Error does not reduce to zero because it is impossible
to predict that ‘da’ will become ‘dam’ rather than ‘dad’, and
because we can’t predict when a word will start or which one it will
be.

Examination of the SOM models shows that the VMM
successfully biases the SOM classification process to produce
multiple models corresponding to the same letter, exactly as
Hawkins et al anticipated. This also demonstrates the principle for
adaptive control, that the FF classification can be deliberately
disrupted to achieve secondary objectives without compromising
accurate classification (the VMM-biased classification is eventually
more accurate than 1MM classification, despite the latter
attempting to be as accurate as possible).

The chosen words deliberately include many duplicate letters.
By forming separate models for ‘a’, the unit is able to predict that
‘ba’ will not be followed by ‘d’ and ‘ma’ will not be followed by ‘b’.
In contrast, the first-order predictor cannot determine which letter
will follow ‘a’.

Software Interface Details. A screenshot of the software
mterface for this demo can be seen in (figure 8). The interface is
comprised of a grid of seven columns (labelled a,b,...,g) and four
rows (1,2,3,4). Matrices are displayed as grids with value 1 being

Figure 8. Screenshot, Demo 3. This is a demonstration of first-order versus variable-order prediction. The interface is organised as a 7 x4 grid of
panels Matrices are displayed such that brightness indicates value (i.e. white=1). Panel (a1) shows the set of input image sequences (words). (b1)
shows the current input ‘d’ and its sequence ‘mad’. The unit’s previous predicted letter and sequence are immediately below; these images are simply
a copy of the FB output. The unit's SOM has 6 x 6 =36 models that are shown in (a3). (a2) shows A4°(¢), the activation of these models given the
current FF input. The RSOM has 3 x 3 =9 models displayed in panels (c2:e4) by outlining significant SOM models that form each RSOM sequence. The
outlines are green, and brightness indicates significance. Note that variable-order bias has created 4 SOM models of ‘a’, representing that letter in
different words. The RSOM model in panel (d4) represents ‘mad’. (d1) shows activation of SOM models in response to FF input. Note that the model
displayed in (d4) is active. (a4) shows the bias matrix B(7). (b2) shows FF SOM classification after biasing, i.e. /°(¢z). The bias has shifted the best
classification from the model outlined in yellow to the model outlined in green, which is the correct ‘d’ for ‘mad’. (b3) shows the FB distribution B(z)
and the roulette-selected model is outlined in red. It predicts all the letters ‘d’, ‘b’, ‘m’ (that start words) and the blank image, because the sequence
has finished and the next word is unpredictable. Panels (f1:g4) show internal state of the variable-order predictor including local inhibition (f2) and
unpredicted-inhibition (g2).

doi:10.1371/journal.pone.0029264.9g008
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Figure 9. Impact of Variable-Order prediction. These series show prediction error from “Words”, Demo 3. The black series was generated by
first-order prediction, the grey series from variable-order prediction. Divergence after 1000 iterations is due to superior predictive ability in the
variable-order case. Peaks in the grey series represent periods of “re-modelling” where one or more SOM models are pulled towards participation in
two or more sequences, before settling into a local minima. The Y-axis is error, i.e. the Euclidean distance between predicted (FB) and actual (FF) input
images. The X-axis shows iterations.

doi:10.1371/journal.pone.0029264.9g009

white and 0 as black. Panel al shows the five possible input generated within the hierarchy, not using external learning
sequences, these being the four words and a random image. Panel systems. A pair of units connected via a reward-correlator (RC)
bl shows FF input to the unit (top row) and FB output from the form the simplest possible adaptive hierarchy, because the RC
previous iteration (bottom row). The FB output is shown by needs valid messages to promote or suppress.
inverting the SOM and RSOM models to get the expected letter “Rocks, paper, scissors” is a game popular with children. Each
and word respectively. time it is played, two players simultaneously make one of three
Panel a2 shows the SOM activation matrix A*(¢). Panel a3 gestures representing rocks, paper and scissors. The combination
shows the SOM weights matrix W*. Panel a4 shows B(t—1), the of gestures determines the winner: rock beats scissors, paper beats
predicted FF input for the this iteration, generated in the previous rock, scissors beats paper, and all other combinations are neutral (a
iteration. Panel b2 shows 2°(¢), the biased FF output of the SOM. tie). Neither player knows what the other will do, but must guess
This is the element-wise product of panels a2 and a4. Panel b3 based on past experience of playing that opponent. In this demo
shows B(t), a prediction of the next FF input. we make an adaptive-MPF hierarchy play against a predictable
Panel cl shows previous RSOM FB output, which was used to computer opponent.
produce B(#—1). Panel el shows current RSOM FB output, The game is played many times. The hierarchy is iterated once
which contributed to B(f). Panel d1 shows RSOM FF output every time the game is played. Each iteration consists of a FF and a
A'(t). Since in this demo the RSOM is a grid of 3 x 3 models, FB pass of the entire hierarchy. Prior to each iteration, gestures

A'(¢) has the same dimension. RSOM weights matrix W' is shown from the previous play are presented to the lower unit u; as FF
in panels c2:e4. Each RSOM model represents a distribution of input. After each iteration, the FB output at u; includes both a

activation in the SOM, so to illustrate each RSOM model we predic[ion Of the opponen[’s move, and a move genera[ed by the
display all the SOM models, and outline significantly active hierarchy. The latter is compared to the opponent’s actual move,
models in green. and the winner is decided. In this demo, the opponent is restricted

Panel {1 displays the variable-order predictor (VMM) FF input  to a predictable strategy of cycling through all three gestures in
after preprocessing. Panel gl shows VMM FF output A(?) after order.
postprocessing. Panel {2 shows VMM local inhibition around the Adaptive Components. The reward function for this game is
winning model. Panel {3 shows raw VMM FF input, i.e. 2°(¢) also very simple. If the hierarchy won the latest game, r(f)=1. In the
shown in panel b2. Panel g2 shows inhibition caused by lack of case of a tie, r(f)=0.5. If the hierarchy lost, r(f)=0. Note that at

prediction when a strong first-order edge exists. Panel g3 shows any iteration ¢ the hierarchy is “perceiving” the previous result
local promotion around models inhibited in panel g2. Finally, and generating the next result.

panel g4 shows VMM FF output before postprocessing. The sensor-motor interface for this problem is a concatenation

of an image and a discrete control output (figure 10). The images

Demo 4: “Rocks, Paper, Scissors” are 4 x 4 matrices depicting a gesture made by the opponent. The

The objective of this demo is to demonstrate that an MPF hierarchy observes these gestures. The discrete control output

hierarchy can be used for adaptive control. All control outputs are determines the gesture made by the hierarchy. (The hierarchy has
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Figure 10. Hierarchy used for demo 4, “Rocks, Paper, Scissors”’.
Two units are used, with FF and FB messages relayed via a reward
correlator (RC). A discrete-actuator component (DA) is used to produce
discrete outputs, in this case the 3 gestures.
doi:10.1371/journal.pone.0029264.g010

the same interface structure both as input to the FI pass and
output from the FB pass). However, for effective learning, the
hierarchy needs to explore the gamut of possible [sense-act] pairs.
This is difficult with discrete motor outputs, because we rely on
continuous consequences from small changes in distributions. To
ameliorate this problem, a ‘discrete actuator’ (DA) component is
added between the lower unit #; and the motor part of the sensor-
motor interface (see figure 10). The DA maps discrete motor
actions into probability mass functions over the set of possible
actions. Like the SOM-MPF units, the DA has four FF and FB
mputs and outputs. The FF input to the DA is a scalar
representing the previous output:

20 =mi()=m’(1—1) (38)

The FF output of the DA is a PMF over the 3 possible gestures:

250y = [my )

(39)

...1e. m, is equal to the probability the move was Rock. Since the

move is known, )Ld’l(t) always contains a 1 and two zeros. Since
the FB interface vectors are of equal dimension:

n (1) = [mypmy.my) (40)

O =m°()=m'(t+1) (41)

m°(t) is selected from n%!(¢) by roulette selection. By concatenat-

ing the DA interface with the 16 observed gesture pixels go . . . g15,
the interface to the hierarchy at u is:

@ PLoS ONE | www.plosone.org
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MO =10 =[g0.g1, - . . G151y (42)

Hierarchy Configuration. Two units are used, with a single
reward-correlator (RC) between them (figure 10). The hierarchy is
configured without temporal pooling, because we want the
reward-correlator to select moves, not sequences of moves. First-
order predictors are used in both units, because there are no
variable-order patterns to learn. This is the simplest possible
configuration of an adaptive-MPF hierarchy, given the stated
assumptions about how the hierarchy can be used to produce
adaptive behaviour.

Models in the SOM in u; represent the outcome of a single
game, including both hierarchy move and opponent’s move. The
predictor in #; simultaneously predicts both the hierarchy’s next
move and the opponent’s next move. FF messages passed to u; are
of the same form, a probability mass function over the SOM
models in #;. The SOM in u, transforms and compresses these
distributions; the predictor in u, predicts within the transformed
and compressed space.

Since there is no higher unit, predictions within u; are
combined with a uniform distribution during the FB pass of u5.
Roulette selection within u, transforms the prediction from u; into
the a distribution over the SOM models in #;. This is relayed back
to uj via the reward-correlator, where it is biased towards higher
mass for models that are correlated with high reward. In the FB
pass of u; the relayed message is combined with the prediction
from u;. This biases the subsequent FI pass, and is also used to
Roulette-select a model from the SOM in #; which becomes both
a prediction of the next observed gesture, and the probability mass
function given to the discrete actuator component. The latter then
roulette-selects the move made by the hierarchy.

Observations. Within 10000 iterations the SOM in u; forms
recognizable models of the gestures it observes (figure 11). These
models also include indeterminate distributions for the agent’s own
moves. As the neighbourhood of the SOM in wu; shrinks, these
become models of specific combinations of moves from both
hierarchy and opponent. The SOM and predictor in u learn
more slowly, but are successfully able to represent and predict the
sequence of classifications in #;. Without a reward-correlator, the
hierarchy achieves a mean reward of 0.5, averaged over 500
games. The hierarchy is able to predict its opponent, but has no
motivation to do anything about it.

If the messages between units are relayed via a reward-
correlator, other changes occur within the units; both predictors
“predict” with increasing confidence that the hierarchy will make
winning moves (figure 12). A mean reward in the range [0.93,0.98]
1s reached after 20,000 to 60,000 iterations (figure 13). With
random number seed ‘1234°, a mean reward of 0.983 is reached at
iteration 61809. The score does not reach 1.0 because a small
amount of noise is added to SOM models selected in the FB pass,
and 3 Roulette-selections are made before the FB output from up
becomes the hierarchy’s chosen move. The distributions used for
Roulette selection also have a small uniform mass added to them.
The hierarchy forms a stable, oscillating system around a
maximum reward of 0.93, since losing moves increase the
probability of future losing moves, until this trend is reversed by
adaptive pressure.

Software Interface Details. Two screenshots of the software
interface for this demo can be seen in figures 11 and 12. The
interface is comprised of a grid of eight columns (labelled a,b,...,h)
and four rows (1,2,3,4). Matrices are displayed as grids, with value
1 being white and 0 as black. Since both figures 11 and 12 show
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Figure 11. Screenshot, Demo 4. This program shows an adaptive-MPF hierarchy playing “Rocks, Paper, Scissors”. Two units are connected by a
reward correlator. u;’s sensor-motor interface includes observed gestures and motor actions. The latter is a probability mass function (PMF) over the 3
possible gestures. These PMFs can be visualised as RGB values (red is rock, green is paper and blue is scissors). After a little learning, SOM models in u;
respond to specific gestures but are not specific about the hierarchy’s own actions. The motor PMFs are flat (so they appear close to greyscale values).
Panel (a1) shows the sensor values of SOM models in u;. (a2) shows the motor values of SOM models in u;. (a4) shows the FB PMF B(¢) with the
roulette-selected action outlined in red. (b1) displays 4°(¢), the activation of SOM models in u;. (d1) and (e1) show the FF input and output of the RC.
(e4) and (d4) show RC FB input and output respectively. (f1) shows SOM models in u; and (g1) shows 4°(¢) for u,. (c2),(c3) show input and output of
the first-order predictor in u; and (h2),(h3) the same for u,.

doi:10.1371/journal.pone.0029264.g011

World and
Sensor-Motor

Neocortical Unit #1 Reward Correlator
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Interface
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Figure 12. Screenshot, Demo 4. See figure 11 for details of specific panels. After further learning, adaptive pressure from the reward correlator has
changed the FB messages between u; and u; to promote particular SOM models in «;. Promoted models represent specific adaptive actions and u;
now reliably “predicts” that it will make winning gestures. The hierarchy now wins more than 93% of games it plays.
doi:10.1371/journal.pone.0029264.g012
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Figure 13. Impact of adaptive bias playing ““Rocks, Paper, Scissors’’. Values plotted are the inverse of reward averaged over 500 iterations.
Reward is maximized and error is zero when the game is won. A draw results in a reward and error of 0.5. The grey series shows outcomes without
adaptive bias, a random walk. The black series shows outcomes with adaptive bias, approaching zero (ideal) by 60,000 iterations.
doi:10.1371/journal.pone.0029264.g013

the same interface at different times during an experiment, the would generate behaviour using increasingly symbolic or abstract
panels within them are identical. The structure of the hierarchy is reasoning. The MPF paradigm removes any distinct transition
two units connected via a reward correlator (RC). Columns a,b,c between raw, perceptual data and symbolic representation.
show the state of unit #;. Columns d,e show the state of the RC. Adaptively-biased MPF is a homogeneous system for perception,
Columns f,g,h show the state of unit u5. memory, prediction, planning & control. We believe this direction
uy’s sensor-motor interface includes observed gestures and of research holds much promise in attempts to create an
motor actions. Observed gestures are small images and can be anthropomorphic “general intelligence”.
presented as such. Motor actions are a probability mass function Although the work described in this paper has some limitations
(PMF) over the 3 possible gestures. These PMI's can be visualised described below, we have met most of our objectives. We have
as RGB values (red is rock, green is paper and blue is scissors). demonstrated that we can balance the conflicting objectives of
Panel al shows the gesture part of each model in W* in u;. Panel unsupervised learning of an external world (SOM model learning),
a2 shows the motor part of each model in W* in u;. Panel {1 shows and purposeful manipulation of that world via reinforcement
W* in up, where each model is a distribution of activation of the learning. The “Reward” used in reinforcement learning can be
models in u. one or more measurements of anything capable of distinguishing
Panel a4 shows B(¢) for 1 and panel f4 shows B(f) in u,. Panels good and bad impacts on the agent. Physical states such as pain,
bl and gl show SOM activation matrix 4°(¢) for u; and u; hunger, temperature, exhaustion are all good candidates for
respectively. Panels b2 and g2 show B(f—1), used to bias the reward function[s]. One major benefit of our approach is that
current FF output for the two units. Panels b3 and g3 are not in when no correlations exist, only transient bias effects are produced
use. Panels c1 and h1 show A°(7). Panels c¢2 and h2 show first-order (due to noise); therefore, it is possible to include the adaptive
Markov predictor (IMM) FF input and panels ¢3,h3 show 1IMM biasing technique at all levels within the hierarchy and not require
FF output A(7). Panels c4 and h4 show the element-wise product of development of specific abstractions/invariances in predetermined
A(?) and 7'(#), i.e. the bias prior to addition of random noise. layers.

Panel d1 shows the FF input to the RC. Panel el shows RC FF
output (equal to RC FF input). Panel d2 shows reward correlation
matrix C. Panel d3 shows adaptive bias. Panel e4 shows RC FB
input and panel d4 shows RC FB output, after adaptive bias has
been applied.

Constraints and Limitations

The SOM-MPF implementation given in this paper is only an
example of the class of algorithms that are described by MPF. Our
extensions, particularly adaptive bias, could equally well be added
to George et al’s HI'M algorithm [10]. Use of the Kohonen SOM

Discussion has some advantages, notably SOM topology allowing implemen-

We have demonstrated that a hierarchical memory system like tation of the technique described by Hawkins et al [17] to produce
MPF/HTM can generate adaptive behaviour by exploiting variable-order prediction from first-order models. However, the
knowledge encoded within and throughout the hierarchy. Since smoothness of the variation between SOM models also makes it an
higher layers of the MPF encode concepts with increasing ineflicient technique, if intermediate models are not meaningful.
invariances in both space and time, this implies larger hierarchies The Recurrent-SOM (RSOM) is not satisfactory for temporal
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clustering because older classifications become exponentially less
significant, making it difficult to represent longer sequences
accurately. One solution is to decimate the rate of RSOM update,
and smooth its input.

Disrupting hierarchical classification using adaptive bias works,
but can be problematic. If the bias is too strong, reality is ignored.
If the bias is too weak, the system is not adaptive. Use of a single
reward function is difficult but realistic, because the hierarchy
should learn to separate the various causes of low reward, such as
pain, hunger etc. In our experiment the hierarchy is able to learn
that 6 low-reward move-combinations should be avoided. In this
paper we rely on temporal pooling to allow actions to be
correlated with delayed rewards. A better scheme would be to
exploit the discounted future rewards formulation used in
reinforcement learning [4].

We chose to correlate states with reward on the I pass, and
modify the messages in the FB pass. This approach is ideal for
reward correlation, because FF messages from lower layers are
more direct observations of external causes. It is also good for
behaviour selection, because FB actions are immediately applied.
Other arrangements are possible, such as biasing the FF
classification directly.

Biological Relevance

An interesting question is whether these extensions to MPF are
biologically plausible. The answer is beyond the scope of this
paper but our extensions have some specific characteristics we can
look for.

Existing work on Thalamo-Cortical microcircuits [11] describes
messages between hierarchy layers being relayed via the
Thalamus. In HTM it is postulated that these messages encode
probability distributions over the possible states within each
hierarchy node. We proposed to modulate these distributions
using a single reward function, to generate adaptive behaviour.

The biological equivalent of our extensions would therefore be a
central relay with access to measurements of nonspecific internal
states, such as pain or hunger. The relay must be between layers in
the cortical hierarchy. Relayed messages would be internally
correlated with rewards, and would be adaptively biased (in one or
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both directions). As a central relay for many cortical areas, it is
possible that similar modulation could be part of the role of the
Thalamus.

An alternative candidate for our reward-correlating component
is the basal ganglia. These are widely believed to have a role in the
association of reward and behaviour [38,39] and there is evidence
of circuits connecting the cortex, thalamus and basal ganglia
[40,41]. Interested readers can find models of circuits relating the
neocortex and basal ganglia in [42]. Parallels between the function
of the basal ganglia and reinforcement learning can be found in

[38,43].

Future Work

In our next paper we will demonstrate larger hierarchies of 10—
20 units successfully playing arcade computer games by screen-
scraping and pressing virtual keys. We will also show that by
providing an automated commentary in English, the hierarchy is
capable of associating words with abstract events in the games.
The hierarchy then reproduces the relevant words when executing
strategies in the game; in effect, it is able to tell us what it plans to
do.

If the MPF is analogous to the human neocortex, then software
simulations need to use much bigger hierarchies. The software
described in this paper can be used to simulate stable hierarchies of
more than 100 units at 30 Hz on a typical laptop computer. We
plan to port the code to a massively parallel SIMD platform, to
allow realtime simulation of hierarchies of thousands of units. A
much larger hierarchy with a high branching factor would have
the capacity to combine various derivatives and moments of inputs
in many ways, and in consequence the structure of the hierarchy
would need less prior design. Eventually we plan to add a detailed
vision system and use the adaptive-MPF as the control system for a
mobile robot.
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