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Abstract

It is well-recognized that vitamin D3 has immune-modulatory properties and that the variation in ultraviolet (UV) exposure
affects vitamin D3 status. Here, we investigated if and to what extent seasonality of vitamin D3 levels are associated with
changes in T cell numbers and phenotypes. Every three months during the course of the entire year, human PBMC and
whole blood from 15 healthy subjects were sampled and analyzed using flow cytometry. We observed that elevated serum
25(0H)D5 and 1,25(0H),D5 levels in summer were associated with a higher number of peripheral CD4" and CD8* T cells. In
addition, an increase in naive CD4"CD45RA™ T cells with a reciprocal drop in memory CD4"CD45RO™ T cells was observed.
The increase in CD4"CD45RA* T cell count was a result of heightened proliferative capacity rather than recent thymic
emigration of T cells. The percentage of Treg dropped in summer, but not the absolute Treg numbers. Notably, in the Treg
population, the levels of forkhead box protein 3 (Foxp3) expression were increased in summer. Skin, gut and lymphoid
tissue homing potential was increased during summer as well, exemplified by increased CCR4, CCR6, CLA, CCR9 and CCR7
levels. Also, in summer, CD4" and CD8" T cells revealed a reduced capacity to produce pro-inflammatory cytokines. In
conclusion, seasonal variation in vitamin D; status in vivo throughout the year is associated with changes in the human
peripheral T cell compartment and may as such explain some of the seasonal variation in immune status which has been
observed previously. Given that the current observations are limited to healthy adult males, larger population-based studies
would be useful to validate these findings.
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Introduction

Vitamin Dj is traditionally associated with bone homeostasis
and calcium metabolism. The extra-renal synthesis of 1,25-
dihydroxyvitamin Ds [1,25(OH)sD3s] by macrophages and other
immune cells has re-invented the role of vitamin Ds. In recent
years, research efforts were also focused on understanding the
immunemodulatory properties of vitamin Ds. 1,25-dihydroxyvi-
tamin D3 has been shown to influence the growth and
differentiation of both the innate and acquired immune cells, as
well as their functions such as cytokine production [1-3]. As such,
there has been much interest to identify its therapeutic potential in
autoimmune or inflammatory diseases.

Sources of vitamin Dj include dietary uptake (primarily fatty
fish and cod liver oil) as well as cutaneous biosynthesis from UVB
exposure causing 7-dehydrocholestrol to form previtamin D5 in
the skin. Vitamin Dj is subsequently hydroxylated into 25-
hydroxyvitamin D3 [25(OH)Ds] by 25-hydroxylase in the liver.
25-hydroxyvitamin Ds is further hydroxylated by lo-hydroxylase
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in the kidney into the biologically active metabolite, 1,25(0OH),D5
[4]. The main source of vitamin Dj derives from UVB-induced
vitamin Ds production, accounting for 80-90% of circulating
vitamin D3 [5].

The seasonal variation in vitamin Dj status in temperate and
cold climates with reduced sunlight exposure during certain
periods of the year is thought to be responsible for the high
prevalence of vitamin Dy insufficiency among populations residing
at higher latitudes [6]. Low wintertime vitamin Dj levels have
been found partly accountable for the seasonal peak in influenza
and URTI occurrence [7-9]. Moreover, reduced sun exposure
and vitamin Dj status have been identified as risk factors for the
development of autoimmune diseases. Epidemiological studies
have implicated seasonality of birth as well as geographical
variation in UV radiation and serum vitamin Ds levels as
contributing factors to the prevalence of multiple sclerosis and
insulin-dependent diabetes mellitus [10-15].

T cells are known targets for 1,25(OH),Dj since they express
vitamin D receptor [16,17]. Upon T cell activation, the expression
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of vitamin D receptor is up-regulated, suggesting an important
functional role for vitamin D3 in adaptive immunity. Both human
in vitro and animal models revealed that vitamin D3 can suppress
pro-inflammatory T' helper (Th)l and Thl7 cytokine responses
[18,19], while enhancing the production of interleukin (IL)-4, IL-5
and IL-10, thereby promoting a Th2 and regulatory T cell (Treg)
phenotype [20,21]. Indeed, accumulating evidence supports the
notion that vitamin Dj could favorably influence the course of
certain autoimmune pathology by increasing the number of Treg
[13,15]. In addition, chemokine receptors expression is a
determining factor in migration and localization of T lymphocytes
during physiological and inflammatory responses [22,23].
1,25(0OH);D3 has been demonstrated to affect the homing capacity
of the peripheral CD4" T cell population iz vitro and in an animal
model [24,25].

Taken together, the involvement of 1,25(OH),Ds; in the
dynamics of T cell compartment warrants further investigation.
Previously, we have found a down-regulation of Toll-like receptor
(TLR)4-mediated proinflammatory cytokines production in asso-
ciation with an elevated vitamin Dj status in summer [26].
However, our current knowledge on the immunomodulatory role
of vitamin D3 conveys limited information on how the adaptive
immune response of healthy individuals varies in response to
physiological changes in vitamin Ds status @ vwo during the
different seasons of the year. Intrigued by the strong epidemio-
logical association between vitamin Dj deficiency and autoimmu-
nity, and the proposed effects of 1,25(OH)oDs3 on Treg, we
investigated whether there is a seasonal variation in the
composition of the peripheral T cell pool and the circulating
Treg. A potential modification in these parameters may provide a
better understanding on how sun exposure and vitamin D3 can act
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as candidate risk-modifying factors in certain autoimmune
disorders.

Materials and Methods
Study subjects

Fifteen healthy male volunteers (median 36 years old, range 28—
60; mean BMI 22.8 keg/m?, range 20.5-26.2) were recruited and
followed up for one year. Body mass index (BMI) has been shown
to be inversely related to vitamin Djs levels [27]. We have
eliminated this confounder from our study since none of the 15
volunteers was obese (BMI>30 kg/m?). Venous blood was drawn
from the subjects every three months, at the end of four
consecutive seasons in 2009; February in winter, May in spring,
August iIn summer and November in autumn. On the rare
occasions that a participant reported on being unwell, the
experiment would be postponed until one week post-recovery.

Ethics Statement

The study was approved by the Ethical Committee on Human
Experimentation of the Radboud University Nijmegen. A written
consent was obtained from all participants in the study.

Flowcytometry

Cells were phenotypically analyzed by five-color flow cytometry
(Coulter Cytomics FC 500, Beckman Coulter, Fullerton, USA)
using Coulter Epics Expo 32 software. PBMC as well as whole
blood (after red cell lysis) were used for flow cytometric analysis.
Peripheral blood mononuclear cells (PBMC) were isolated by
density centrifugation on Ficoll-Hypaque (Pharmacia Biotech,
Uppsala, Sweden). Cells were washed with PBS with 0.2% bovine
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Figure 1. Seasonal variation in serum vitamin D3 levels and the amount of daylight. Median serum A) 25(0H)D; and B) 1,25(0OH),Ds
concentrations of 15 healthy volunteers during each of the four seasons. C) Duration of daylight in the study region in a month prior to serum vitamin
D3 concentration assay (source: the Royal Netherlands Meteorological Institute). * p<<0.05 as compared to winter.
doi:10.1371/journal.pone.0029250.g001
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Figure 2. Peripheral T cell (subset) numbers throughout the four seasons. A) Percentage (of live gate) and absolute numbers of CD4* T cells.
B) Percentage (of live gate) and absolute numbers of CD8" T cells, over time. C) Percentage (within CD4" T cells) and absolute counts, of
CD4"CD45RA™ T cells. D) Percentage (within CD4" T cells) and absolute counts, of CD4"CD45R0O™ T cells. E) Percentage and absolute counts of Ki-67-
expressing CD4"CD45RA™ T cells. Whole blood samples obtained from 15 healthy volunteers during each season were analyzed for the respective
markers using flow cytometry. Ki-67 analysis was performed on PBMC. Data show results of viable cells from 15 healthy donors. * p<<0.05 as

compared to winter.
doi:10.1371/journal.pone.0029250.g002

serum albumin (BSA) before being labeled with fluorochrome-
conjugated antibodies (mAb). After incubation for 20 minutes at
room temperature, in the dark, cells were washed twice to remove
unbound antibodies and analyzed. For cell surface staining, the
following mAb were used: CD127 PC5- or PC7-labeled (RDRD5;
eBioscience, Uithoorn, The Netherlands), CD25-PE (M-A251),
CD25-APC (2A3) CD45RA-FITC (HI100), CCR4-PC7 (1G1),
CCRG6-PE (11A9), CLA-FITC (HECA-452) (all from BD Biosci-
ences, Breda, The Netherlands), CD3-ECD (UCHT1), CD4 ECD-
or PC7-labeled (SFCI12T4D11), CD4-PC5 (13B8.2), CD8-ECD
(SFCI21Thy2D3), CD8-PC5 (B9.11), CD27-PC5 (1A4CD27),
CD45RA-ECD (2H4LDHI11LDB9) CD45RO-ECD (UCHLI)

CCR7-FITC (150503), CCR9-PE (112509) (both from R&D
Systems, Minneapolis, USA), CD27-FITC (M-T271), CD45-PE
(T29/33), CD45RA-PE (4KB5) (both from Dako, Glostrup,
Denmark) and CD31 Alexa Fluor® 488 (WM59) (BioLegend, San
Diego, USA). Appropriate isotype control mAbs were used for
gate settings. The live gate was set based on the forward angle
light scatter (FSCs) and the side angle light scatter (SSCs), and
Annexin-V/PI staining.

For intracellular staining of FoxP3 and Ki-67, cells were fixed
and permeabilized using Fix and Perm reagent (eBioscience)
according to the manufacturer’s recommendations. The following
mAb were used for staining: anti-FoxP3 FITC- or PE- labeled

(all from Beckman Coulter, Mijdrecht The Netherlands), (FCHI101; eBioscience), anti-Ki-67-FITC (B56, BD Biosciences).
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Figure 3. Seasonal variation in numbers and Foxp3 expression of Treg during the four seasons. A) Percentage (within CD4" T cells) and
absolute numbers of CD4*CD25"CD127~ Treg and B) level of Foxp3 expression (mean fluorescence intensity; MFI). Whole blood and PBMC isolated
from 15 healthy volunteers during each season were analyzed for the respective markers using flowcytometry. Data show results from 15 healthy

donors. * p<<0.05 as compared to winter.
doi:10.1371/journal.pone.0029250.9003
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Figure 4. Skin, lymphoid tissue and gut homing receptor expression on CD4" T cells. Percentage and level of expression (MFI) of A) CCR4,
B) CCR6, C) CLA, D) CCR7 and E) CCR9 by CD4* T cells during the different seasons of the year. Whole blood from 15 healthy volunteers during each
season was analyzed for the respective markers using flow cytometry. Data show results from 15 healthy donors. * p<<0.05 as compared to winter.

doi:10.1371/journal.pone.0029250.g004

Intracellular staining of cytokines was performed after 4 hours
stimulation with PMA (12.5 ng/ml) and ionomycin (500 ng/ml) in
the presence of Brefeldin A (5 pg/ml; Sigma, Zwijndrecht, The
Netherlands). Cells were fixed and permeabilized using Fix and
Perm reagent (eBioscience) according to the manufacturer’s
recommendations. The following mAb were used for staining:
anti-IFNy-PC7 (4S.B3), anti-IL-17-Alexa Fluor® 647 (eBIO64-
DEC17) (both from eBioscience), and anti-IL-2-PE (MQ1-17H12)
(BD Bioscience).

Vitamin D; measurement

Serum 25(OH)D3 was determined using high-performance
liquid chromatography (HPLC) with ultraviolet (UV) detection,
after prior extraction on small SepPak columns as previously
described [28]. Tritiated 25(OH)Ds, collected from the HPLC
system during passage of the UV peak, was used to correct for
procedural losses. Serum 1,25(OH),Ds was measured using a
radioreceptor assay (RRA) with prior extraction and chromato-
graphic pre-purification with correction for recovery as previously
described [29]. For 25(OH)Ds, the within run precision was 2.6%
at 69 nmol/] and between run precision was 6.2% at 69 nmol/L
For 1,25(OH)yDj, the within run precision was 10.6% at
115 pmol/l and between run precision was 17.2% at 69 nmol/l.

Statistical analysis

Results were pooled and analyzed using SPSS 16.0 statistical
software. Data given as means+SEM and the Analysis of Variance
(ANOVA) was performed to assess overall variation. Where the
ANOVA indicated a significant difference (p<<0.05), the Friedman
test using Graphpad PRISM software (Graphpad Prism Inc., version
4, CA, USA) was used to compare differences between groups (unless
otherwise stated). The level of significance was set at p<<0.05.

Results

Serum 25(0OH)Ds and 1,25(0H),Ds levels are increased
during summer

First, we determined serum concentrations of both 25(OH)Dj5
and 1,25(OH)yD3 in 15 healthy volunteers (median 36 years old,
range 28-60) through winter (December to February), spring
(March to May), summer (June to August) and autumn (September
to November). The median concentration of 25(OH)Dj varied
between the four seasons and was doubled from 43 nmol/l in
winter to 89 nmol/l in summer (Figure 1A). Also, the median
serum concentration of 1,25(OH);Ds raised significantly from
219 pmol/] in winter to 237 pmol/] in summer (Figure 1B). These
observed trends paralleled the amount of sunlight in the study
region. Likewise, there is considerable seasonal difference in
ultraviolet B (UVB) radiation in the study region [30]. The total
duration of daylight in a month prior to vitamin D5 measurement
were 103 hours and 240 hours in winter and summer respectively,
which worked out to an average daily duration of 3.3 hours in
winter and 7.7 hours in summer (Figure 1C).

Seasonal variation in peripheral blood T cell subset
numbers associated with vitamin D3 levels

Next, we investigated whether seasonal variation in vitamin Dj
status was associated with changes in the peripheral T cell pool, by

@ PLoS ONE | www.plosone.org

performing flowcytometric analysis on blood samples obtained
during the different seasons of the year (Figure S1). In spring and
summer months when serum vitamin Djg levels were elevated, the
percentage as well as the absolute CD4" T cell counts were
significantly raised as compared to winter (Figure 2A). For CD8*
T cells, this effect was less outspoken (Figure 2B).

The composition and size of the naive and memory T cell pools
are regulated by cytokines and T cell receptor (TCR) signalling
from contact with major histocompatibility complex (MHC).
Naive T cells predominately express CD45RA and memory T cell
express CD45RO. Interestingly, during spring and summer, we
observed a relative increase in the percentage of GD4"CD45RA*
T cells (Figure 2C), with a corresponding drop in CD4*CD45RO*
T cell percentage (Figure 2D). Also, absolute CD4"CD45RA* T
cell counts were increased in spring and summer months, while the
number of CD4*CD45RO" T cells was not significantly changed.
To investigate whether the increase in peripheral GCD4*CD45RA*
T cells as observed in spring and summer could be attributed to
recent thymic emigration or a higher proliferative capacity; we
stained cells with Ki-67 and CD31. Ki-67 is a nuclear protein
associated with cellular proliferation, while CD31 has been used as
a marker for recent thymic emigrants [31]. In spring and summer,
an increased Ki-67-expressing population was found within the
CD4"CD45RA" T cells (Figure 2E). On the other hand, there
were no significant differences in both the frequency of
CD4"CD45RA* T cell expressing CD31 as well as their level of
expression between winter and summer (data not shown).

The increase in vitamin Dj levels found in summer, as
compared to winter was paralleled by a reduction in the
percentage of CD25"CD127~ Treg within the CD4" T cell
population (Figure 3A), however the absolute Treg numbers were
not associated with the variation in vitamin Djg levels. Of note, the
level of expression (mean fluorescence intensity, MFI) of Foxp3 by
the peripheral regulatory T cell population was increased in
summer (Figure 3B).

Seasonal variation in homing potential of peripheral
blood CD4" T cells

Peripheral T cell trafficking is regulated by specific chemokine
receptors which are selectively expressed by the various T cells
subsets. As 1,25(OH);D3 has been demonstrated to affect the
homing capacity of the peripheral CD4" T cell population i vitro
and i vivo, we wondered if we could detect seasonal variation in
homing receptors expression. We looked at the expression of
homing markers on CD4" T cells, as well as more specifically on
the Treg population, and included chemokine receptors associated
with migration to the skin (CCR4, CCR6 and CLA), gut (CCRY)
and lymphoid tissues (CCR7).

In summer, an increased skin homing potential of CD4" T cells
was observed compared to winter, given that the percentage of
CD4" T cells expressing CCR4 and CCR6 (Figure 4A,B) was
significantly increased together with elevated expression levels
(MFI) of CCR4, CCR6 and CLA (Figure 4A-C). Also, the
percentage of CD4" T cells expressing the gut homing marker
CCRY was increased in summer, as well as the level of expression
(Figure 4D). Similar observations were seen in the expression level
of the chemokine receptor associated with lymphoid tissue

homing, CCR7 (Figure 4E).
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Figure 5. Skin, lymphoid tissue and gut homing receptor expression on CD4'CD25"CD127 regulatory T cells. Percentage of Treg
(within CD4" T cells) and their level of expression (MFI) of A) CCR4, B) CCR6, C) CLA, D) CCR7 and E) CCR9 during the four seasons of the year. Whole
blood from 15 healthy volunteers during each season was analyzed for the respective markers using flow cytometry. Data show results from 15

healthy donors. * p<<0.05 as compared to winter.
doi:10.1371/journal.pone.0029250.g005

The skin homing potential of the regulatory T cell subset
mirrored that of the whole peripheral CD4" T cell population.
Notably, in especially in summer Treg displayed a heightened skin
homing potential as seen by a significantly increased frequency of
CCR4-expressing Treg (Figure 5A), and higher expression levels
of CCR4, CCR6 and CLA (Figure 5A-C), when compared to
winter. The level of expression (MFI) of chemokine receptors
mvolved in gut homing, CCRY (Figure 5D) and lymphoid tissue
homing, CCR7 (Figure 5E) were also increased in summer.

Reduced proinflammatory cytokine production by
peripheral blood T cells in summer

Intrigued by the increased CD4* T cell numbers in spring and
summer, we also looked at functional characteristics of the cells by
examining the cytokine-producing capacity of CD4" T cells using
intracellular cytokine staining for interferon (IFN)y, IL-2 and IL-
17. There was no significant effect on the percentage of IFNy-
producing CD4" T cells (Figure 6A), but the level of expression
was lowered in summer (p<<0.05). The percentages of IL-2 and IL-
17- secreting CD4" T cells were reduced in summer (Figure 6B
and 6C), with unchanged levels of production on a per cell basis.

Also for CD8" T cells we found lowered levels of IFNy
production from spring to autumn (Figure 6D). The percentage of
CD8" T cells producing IL-2 was significantly reduced from spring
to autumn (Figure 6E); expression levels were increased during

spring.

Discussion

There 1s growing evidence that vitamin D3 plays a pivotal role
in infections and autoimmune diseases. Whilst UV-induced
vitamin D3 production serves as the main source of vitamin Dj
in the body [5], it is not apparent whether seasonal variation in
vitamin D3 can impact T cell immunity. We show for the first time
that physiological elevation in vitamin D3 concentrations during
summer is paralleled by changes in the peripheral T cell
composition, with a notable shift in the naive and memory
CD4" T cell balance as a consequence of increased proliferation of
naive CD4"CD45RA™ T cells.

By virtue of its stability and long half-life, 25(OH)D3 is the
vitamin D metabolite that best reflects the vitamin D status [32].
Here, we found a significant difference between winter (December
to February) and summer (June to August) 25(OH)D; levels.
Serum 1,25(OH);D3 concentrations were also higher in summer as
compared to winter. In our cohort of 15 subjects residing at 52°N
from the Equator, this variation correlated with the amount of
sunlight and ultraviolet B radiation received in the study region.
Vitamin Dj insufficiency at high latitudes has been implicated in
the prevalence of autoimmune diseases such as multiple sclerosis
and insulin-dependent diabetes [33,34]. Therefore, we investigat-
ed whether the peripheral T cell compartment might vary with
physiological changes in vitamin D status throughout the year.

We found higher percentages of peripheral CD4* and CD8" T
cells concomitant with a heightened vitamin Dj status during
summer. Of note, we observed a higher proportion of
CD4"CD45RA" naive T cells in the spring/summer months with
a corresponding drop in the percentage, but not in the absolute
number, of CD4*CD45RO" memory T cells. When investigated
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further, the expansion of CD4"CD45RA" naive T cells resulted
from an increased proliferative capacity as seen by a higher
absolute cell count and an increased population expressing the
proliferative marker, Ki-67. One of the key targets of 1,25(OH),D5
are the CD4" T cells. In vitro, 1,25(OH);Ds inhibits T cell
proliferation [35,36]. Though few studies examined the differential
effects on naive and memory T cells, the inhibitory effect has been
found to be more pronounced in the memory T cell compartment
[37].

1,25(0OH),D5 exerts a marked inhibitory effect on cells of the
adaptive immune system and it has been consistently described
that 1,25(OH),D3 inhibits cytokines such as IFNy [21,38] and IL-
17, as well as IL-2 [19,39], both under @ vitro conditions and in
animal models. Our data reveal that in healthy adult males
residing at 52°N from the Equator, the percentages of IL-17- and
IL-2-producing CD4* T cells were down-regulated in summer and
the IFNy expression levels in both CD4" and CD8" T cells were
also reduced.

Regulatory T' cells are characterized by a constitutively high
expression of the transcription factor, Foxp3. We observed that,
although the percentage of peripheral Treg was lower in summer
as compared to winter, there was no correlation between absolute
numbers of Treg and vitamin Ds levels. This is in concert with
findings of Smolders et al, who failed to detect a correlation
between Treg numbers and serum 25(OH)Dj levels in patients
with multiple sclerosis [40]. Of note, they did find that higher
25(OH)Ds levels were associated with improved suppressive
function. This fits our data on increased expression of Foxp3 in
the Treg during summer. Morales-Tirado et al reported that i
vitro, 1,25(OH)9D3 enhanced Treg function by increasing the
expression of Foxp3 and that this was shown to be associated with
modulation of cell cycle progression by vitamin Dg [41].

T cell migration is determined by the presence of specific
selectins, chemokine receptors and integrins. Homing receptors
are selectively expressed and regulated in different T cell subsets
[23,42]. Our results are suggestive of a vitamin-Dj3 associated up-
regulation of skin, gut- and lymphoid tissue- homing expression on
CD4" T cells, including Treg. Although not previously described
in the context of physiological variation, 1,25(OH);D3 has been
reported to influence certain skin homing markers in human T
cells. In witro, it has been shown that addition of 1,25(OH),Ds
resulted in induction of CCR 10, inhibition of CLA, but not CCR4
and CCR6 expression [38,43]. In our study, we found that during
summer an increased frequency of CCR4-expressing cells as well
as an increased level of expression (mean fluorescence intensity;
MFI) of CCR4, CCR6 and CLA. These data suggest that in
summer CD4" T cells, including Treg, are better equipped to
migrate to the skin. Also, we observed higher levels of CCR9 and
thus heightened potential to migrate to the gut. Previously,
1,25(OH);D5 was described not to affect gut-homing markers [25].
However, it should be appreciated that the physiological up-
regulation of vitamin D3 levels by UV light through the skin is
likely to yield distinct effects from those obtained through
supraphysiological doses employed in these i vitro studies.

In the present study, we assessed a homogenous study
population (healthy, adult males of normal BMI) to establish if
and how the human peripheral T cell compartment varies with the
season. Unique to previous i vitro and i vive studies examining the
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Seasonal Changes in Vit Ds Linked to Immune Status

Figure 6. Seasonal variation in cytokine profile of CD4* and CD8" T cells. Percentage and the level of production on a per cell basis (MFI) of
A) IFNy, B) IL-2 and Q) IL-17 by CD4" T cells; and of D) IFNy and E) IL-2 by CD8" T cells analyzed by flow cytometry. PBMC isolated from 10 healthy
volunteers and intracellular staining for cytokines was performed after the cells were stimulated with PMA plus ionomycin in the presence of
brefeldin A. CD4" T cells were defined as CD3*CD8". Data show results from 10 healthy donors. * p<0.05 as compared to winter.

doi:10.1371/journal.pone.0029250.g006

role of 1,25(OH)9D3 on T cells, our current results suggest that
physiological variation in serum vitamin Dj levels throughout the
four seasons might influence CD4* and CD8" T cell homeostasis
and homing behavior. Given that serum 25(OH)Dg levels can be
affected by various factors, our observations warrant future
validation in a larger and more diverse population cohort to
identify any possible differences in adaptive immune responses
among the extreme of ages and different genders. Nevertheless,
our data provide insight on previous epidemiological findings
regarding the prevalence of certain autoimmune diseases and
infections, which have been attributed to seasonal variation in sun
exposure and serum 25(OH)Dg levels [10-12],[44]. Although not
as extensively reported as vitamin Dj status, certain hormones and
corticosteroids such as catecholamine and aldosterone seem to
vary with seasons as well [45,46]. It would be of interest to find out
if these factors are associated with changes in immunological
characteristics of T cell.

In conclusion, we have demonstrated for the first time the
existence of variations in adaptive immunity throughout the four
seasons of the year in association with physiological changes in
serum 25(OH)Djg levels @ vivo. These novel findings further our
understanding on the seasonal variability between vitamin D5 and
human peripheral T cell composition, and support the basis for
conducting larger population-based studies to investigate the
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