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Abstract

Sexual selection has been proposed as the driving force promoting the rapid evolutionary changes observed in some
reproductive genes including protamines. We test this hypothesis in a group of rodents which show marked differences in
the intensity of sexual selection. Levels of sperm competition were not associated with the evolutionary rates of protamine
1 but, contrary to expectations, were negatively related to the evolutionary rate of cleaved- and mature-protamine 2. Since
both domains were found to be under relaxation, our findings reveal an unforeseen role of sexual selection: to halt the
degree of degeneration that proteins within families may experience due to functional redundancy. The degree of
relaxation of protamine 2 in this group of rodents is such that in some species it has become dysfunctional and it is not
expressed in mature spermatozoa. In contrast, protamine 1 is functionally conserved but shows directed positive selection
on specific sites which are functionally relevant such as DNA-anchoring domains and phosphorylation sites. We conclude
that in rodents protamine 2 is under relaxation and that sexual selection removes deleterious mutations among species
with high levels of sperm competition to maintain the protein functional and the spermatozoa competitive.
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Introduction

The idea that genes involved in reproductive processes evolve

rapidly has gained widespread acceptance [1,2]. However, recent

evidence suggests that the evolutionary pattern of reproduction-

related proteins is more heterogeneous than previously assumed

[3]. Rates of molecular evolution vary according to different

components of the reproductive process, different timing of gene

expression, and the tissue or organ in which genes are expressed

[4–7]. Heterogeneity in evolutionary rates is even found in mature

sperm cell proteins, so that only a small proportion evolves rapidly

[8]. Thus, most reproductive proteins seem to be under strong

evolutionary constraints and only a small subset seems to evolve

rapidly.

Since sexual selection is known to drive the rapid evolution of

reproductive traits which make sperm more competitive, it has

been proposed that it could also drive rapid evolution among

genes related to such processes [1,2,3]. Sperm competition occurs

when females mate with more than one male, and ejaculates from

rival males compete within the female tract to fertilise the available

ova [9]. An almost universal response to increased levels of sperm

competition is an increase in sperm numbers, which is achieved by

an increase in relative testes size [9,10]. Relative testes size has

been found to be associated to levels of sperm competition in many

taxa [9–11], has been shown to be related to levels of genetic

paternity [12], and it is available for a large number of species, so

it is widely used as a reliable index of levels of sperm competition.

Sperm competition also favours improvements in sperm quality

[13], increases in size and swimming speed [14–16], and sperm

with elongated heads that offer a lower degree of resistance to the

medium in which they swim (less drag) [16]. Finally, sperm

competition selects a larger proportion of sperm ready to fertilise

and sperm which are more sensitive to the signals emitted by the

ovum [17].

It has been widely assumed that such changes in phenotypic

traits would be linked to rapid divergence in the coding sequences

of proteins underlying such reproductive processes [1,2]. However,

despite the popularity of this hypothesis the evidence is extremely

limited. Only three studies have found positive associations

between rates of divergence in coding sequences of reproductive

genes and levels of sperm competition: two genes coding for

proteins in the seminal fluid related to coagulum or copulatory

plug formation (SEMG2 [18], SVS2 [19]), and proteins expressed

in the sperm surface (ADAMs 2 and 18 [20]). A recent study has

found the opposite pattern, i.e. more rapid evolution among

seminal fluid proteins in monandrous taxa, leading to the

suggestion that relaxed selective constraint may also be responsible

for fast evolutionary rates [21].

It has been claimed that protamines are the fastest evolving

reproductive proteins and that this is a consequence of sexual

selection acting on them [22]. Evidence of positive selection has

been detected for protamine 1 in primates [22,23]. However,
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recent studies on protamines have revealed a different scenario. A

study on a group of closely related species of Mus (Rodentia) found

links between the degree of divergence in the promoters of

protamine 2, levels of sperm competition, and sperm swimming

velocity [24]. This study concluded that in the early stages of

speciation only weak positive selection is detected, while major

changes occur in promoters, which increase the efficiency of DNA

condensation within the sperm head, leading to changes in sperm

head shape which presumably make it more hydrodynamic

resulting in an increase in sperm swimming speed [24].

Protamines are a diverse family of small, arginine-rich nuclear

proteins that replace histones and transition proteins during the

process of sperm nucleus condensation in spermatogenesis [25].

The high charge density of these arginine-rich proteins allows

them to bind DNA with high affinity and to more efficiently shield

the charges on the DNA phosphate backbone than histones. Such

charge neutralization results in a genetically inactive state of the

spermatid genome and in a major reduction of the size of the

sperm nucleus [26].

Expression of protamines is specific to testis and protamine

mRNAs are exclusively detected in postmeiotic spermatid stages

[27,28]. Protamines first appear in elongating spermatids, coinci-

dent with the initiation of the final stage of chromatin condensation.

In some eutherian mammals two types of protamines have been

identified: protamine 1 and protamine 2. While protamine 1 is a

major sperm protamine in all mammals, protamine 2 is present only

in the sperm of primates, most rodents, and a subset of other

placental mammals [27,28].

Protamine 1 is typically 49 or 50 amino acids long and contains

a highly conserved arginine rich DNA-binding domain as well as

multiple serine and threonine residues that may be used as

phosphorylation sites [27]. Protamine 1 is not synthesized as

precursor. In contrast, the protamine 2 gene codes for a protamine

2 precursor (hereafter, ‘‘protamine 2 precursor’’), which is

processed in late-spermatids by proteolytic cleavages in its N-

terminal region resulting in about 40% of the protein being

removed (this removed domain is hereafter referred to as ‘‘cleaved-

protamine 2’’) [25,28]. The fully processed form of protamine 2

(herafter, ‘‘mature-protamine 2’’) is slightly larger than protamine

1 and has 63 amino acids in the mouse. Mature-protamine 2

exhibits similar structural and functional properties to protamine

1, but this is not the case for cleaved-protamine 2.

The aim of this study is to analyse the evolution of the coding

sequences of protamines 1 and 2 in a group of 16 rodent species,

belonging to the family Cricetidae (subfamilies Arvicolinae and

Cricetinae). These species represent a more divergent group,

which split from other members of the Cricetidae about 18 MYA

[29], than the group of Mus species examined in a previous study

(Fig. S1) [24], which emerged about 5 MYA [30]. We therefore

expected to find more changes in the protamine coding sequences

in this group of more divergent taxa. These species also show a

wider range of levels of sperm competition [13]. We tested if sexual

selection is influencing the rate of molecular evolution of

protamines. Since the protamine 2 precursor consists of two

structurally and functionally different parts, namely cleaved-

protamine 2 and mature-protamine 2, we analyse them separately

to investigate the possibility that they may be under different

selective regimes. Analysing cleaved- and mature-protamine 2

separately also allows us to compare protamine 1 with its

functional equivalent, i.e. mature-protamine 2. In order to

improve our understanding of the adaptive meaning of changes

at the molecular level, we carried out a specific analysis of changes

at functionally important sites such as DNA-anchoring domains

and phosphorylation sites.

Materials and Methods

Species
The study includes 16 species of the family Cricetidae, 10 of

which belong to the subfamily Arvicolinae (Arvicola sapidus, Arvicola

terrestris, Clethrionomys glareolus, Chinomys nivalis, Microtus arvalis, Microtus

cabrerae, Microtus agrestis, Microtus gerbei, Pitymys duodecimostatus, Pitymys

lusitanicus), 5 to the subfamily Cricetinae (Cricetulus griseus, Mesocricetus

auratus, Phodopus sungorus, Phodopus campbelli, Phodopus roborovskii), and 1

to the subfamily Sigmodontinae (Sigmodon hispidus) [29]. This group

of species has experienced rapid evolutionary radiation and

diversification [29], and has different levels of sperm competition

(as shown by their differences in relative testes size-see below).

Individuals belonging to the Arvicolinae were trapped in the field

during the breeding season at different locations in Spain [13].

Individuals belonging to the Cricetinae were from laboratory strains

purchased from commercial suppliers and were unrelated. We

obtained the gene sequences of at least 4 individuals per species to

generate a consensus sequence.

Protamine sequences
Protamine 1 (Prm1) and protamine 2 (Prm2) sequences of

Sigmodon hispidus were obtained from NCBI Genebank (Accession

EU980395 for Prm1 and EU980396 for Prm2). Prm1 sequence for

Phodopus sungorus, Phodopus roborovskii, and Cricetulus griseus, and Prm1

and Prm2 sequences for Mesocricetus auratus were obtained from the

literature [19,31]. All other nucleotide sequences were obtained

through PCR amplification and sequencing.

DNA isolation and gene amplification
Genomic DNA was extracted from different frozen tissues using

the E.Z.N.AH Tissue DNA kit (Omega, Madrid, Spain) following

the manufacturer’s recommendations.

Protamine sequences were amplified by Polymerase Chain

Reaction (PCR). PCR mixtures were prepared in a 50 ml volume

containing PCR Gold buffer 16 (Roche, Barcelona, Spain),

2.5 mM MgCl2 (Roche), 0.8 mM dNTPs mix supplying 0.2 mM

of each deoxinucleotide triphosphate (Applied-Biosystems, Barce-

lona, Spain), 0.3 mM of forward and reverse primers (Applied

Biosystems), 2 U of Taq Gold DNA polymerase (Roche), and 20–

100 ng/ml of genomic DNA template. All PCRs were performed

in a Veriti thermocycler (Applied-Biosystems). The conditions of

the thermocycler program consisted of 35–45 cycles with an initial

denaturation of 95uC for 30–40 s, an annealing stage at 52–62uC
(depending on template and primers) for 40 s, and an elongation

stage at 72uC for 30–50 s (depending on gene length).

PCR primers were designed on the basis of protamine genomic

sequences of other closely related rodent species accessible in the

literature or in NCBI GeneBank. All alignments were performed

in Bioedit [32] and most conserved segments within untranslated

regions (UTRs) were chosen. When protamines of one or more

individuals of each closely related group were sequenced, new

specific primers on the basis of these sequences were designed to

ensure efficient PCR performance.

PCR products were purified by using the E.Z.N.A.H Cycle Pure

kit (Omega). In cases in which additional nonspecific bands were

obtained after separation in a 1.5% agarose gel, bands of ,600 bp

size for Prm2 and ,300 bp size for Prm1 were extracted with

E.Z.N.A.H Gel Extraction Kit (Omega). Purified products were

sequenced (Secugen S.L., Madrid, Spain).

Alignments and Trees
The processing of the sequenced fragments was done using the

sequence viewer and alignment editor Bioedit [32]. The fragments
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were reduced to a consensus sequence and trimmed to coding

sequence. These sequences combined with database sequences

were aligned on the basis of their amino acid sequences and

retranslated using ClustalW implemented in Bioedit [32]. We

produced two different input trees. The input tree used for branch

and site analyses includes our chosen range of Cricetidae with

Mus musculus used as outgroup (Fig. S1A). In the clade analysis

Oryctolagus cuniculus was included as outgroup and 12 Muroidea

species were used as a background (Fig. S1B).

The phylogenetic trees were built based on information

gathered from the literature [13,24,33–35] (Fig. S1).

Selective Pressures
The nonsynonymous/synonymous substitutions rate ratio (v=

dN/dS) is an indicator of selective pressure at the protein level, with

v= 1 indicating neutral evolution, v,1 purifying selection, and

v.1 diversifying positive selection [36].

To estimate rates of sequence evolution we used the application

Codeml implemented in PAML 4 [37,38] through the ETE toolkit

[39]. Based on the input alignments and the input tree the v-value

(dN/dS) was generated by different models for all/chosen branches

of the tree (branch analysis) or for each codon site of the alignment

(site analysis). To test for positive selection on branches or sites, the

models (see below) are compared with corresponding null-models

by means of likelihood-ratio-tests. These tests compare twice the

log-likelihoods of the used model (alternative) and the null-model

(conservative) to critical values from a chi-square distribution with

the degrees of freedom equal to the difference in the number of

parameters between the two models. The positive selection on sites

was additionally crosschecked through the program SLR [40]. For

the Codeml codon frequency setting, as well as the setting for

number of categories, we used the setting with the best fit for each

analysis according to the preliminary likelihood-ratio-analysis.

Clade analysis
By computing the clade model comparing Cricetidae as fore-

ground clade against a background of 12 murid species (available

from NCBI GeneBank) we obtained the evolutionary rate of the

foreground clade in contrast to the background (Fig. S1B). Three

models were computed: Model 1 ‘‘one ratio’’ in which all taxa were

constrained to evolve at the same rate; Model 2 ‘‘two-ratio

Cricetidae fixed’’ where the background clade v was let free to be

estimated and the Cricetidae clade v was restrained to a value of

v= 1; and Model 3 ‘‘two ratio’’ model which estimates for both

background and the Cricetidae clade a free and independent v.

True cases of positive selection for Cricetidae are reported if three

conditions are fulfilled: Cricetidae clade and background clade

evolve at a significantly different rates (Model 1 vs Model 3), Model

3 presents a better fit against the Model 2, and the v value esti-

mated is higher than 1. Candidates for relaxation for Cricetidae are

reported if two conditions are fulfilled: Cricetidae clade evolves at a

significantly different omega than the background (Model 1 vs

Model 3), and this omega was not significantly different from 1

(Model 2 vs Model 3) [41]. Comparisons between models were done

by means of likelihood-ratio tests (Fig. S2).

Evolutionary rates and levels of sperm competition
To obtain species-specific v values to analyse the relation

between evolutionary rate and sperm competition levels for each

species, we used the free branch model (PAML 4, Codeml) and

calculated an v value for each species by addition of dN values and

dS values from the root to the terminal species branch and taking

the ratio (dN/dS) of the sum to obtain the v value. By calculating v
in this way we take into account the total accumulated selective

pressures in protamines during their evolution, which is more

suitable for testing relationships against phenotypic data which do

reflect the whole phenotypic evolution [42].

We used the species relative testes mass as a proxy for levels of

sperm competition as in our previous studies [13,16]. This earlier

work has shown that relative testes mass is related to a wide range

of ejaculate traits which improve sperm competitiveness, and is

therefore a reliable indicator of the intensity of post-copulatory

sexual selection. Males (N = 5 for each species) were sacrificed by

cervical dislocation and weighed. After removal the testes where

weighed and relative testes mass was then calculated using the

regression equation for rodents in Kenagy and Trombulak [43].

Animal handling and housing followed the standards of the

Spanish Animal Protection Regulation RD1201/2005, which

conforms to European Union Regulation 2003/65. This study was

approved by the Bioethics Committee of the Consejo Superior de

Investigaciones Cientı́ficas (CSIC, Spain).

Phylogenetic generalized least squares (pGLS) analysis
Species data may not be free of phylogenetic association, since

they may share character values as a result of a common ancestry

rather than independent evolution, and thus may not be truly

independent. To control for this phylogenetic inertia, we used

phylogenetic generalized least squares (pGLS) analyses between

the v-values computed from the root and the species relative testes

mass. We performed the pGLS analysis using the program

COMPARE 4.6b [44].

Site analysis
To test evolution along coding sequences and infer amino acids

under positive selection we applied likelihood ratio tests comparing

a null model that does not allow sites with v.1 with a selection

model that does. We used two likelihood ratio tests. The first

compared a nearly neutral model M1a, which assumes values for

v between 0 and 1, with a model M2a which allows values of

v.1. The second test is more refined and compares two models

assuming a b distribution for v values. In this case, the null model

M7 that limits v between 0 and 1 is compared to the alternative

model M8, that adds an extra class of sites with an v ratio

estimated that can be greater than 1 [40,45]. If the alternative

models showed a significantly better fit in the likelihood-ratio-test

Bayesian statistics were used to identify those codons that have

been subject to adaptive evolution, where posterior probabilities

higher than 0.95 in both M2a and M8 were considered.

Anchoring domains, post-translational modification
motifs and cleaving sites

Possible target areas of post-translational modifications were

determined using the ScanProSite tool of ExPASy Proteomic

Server and verified by Net-Phos server 2.0. Proposed phosphor-

ylation sites in the literature [27,46] were also taken into account.

DNA-anchoring domains were predicted selecting regions

containing 3 or more consecutive arginine or lysine residues

flanked by short peptide segments containing cysteine residues,

following the literature on structural and functional characteristics

of protamines [27,47].

Post-translational processing cleavage sites in the protamine 2

precursor were identified based on previous studies [48].

Results

Degree of similarity between protamines 1 and 2
A pairwise percentage identity analysis of the amino acid

sequences of Mus musculus protamines and their domains using the

Sexual Selection and Protamines
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sequence alignment ClustalW implemented in Bioedit [32] shows

the following amino acid sequence identities: PRM1 and mature-

PRM2, 50.9%; PRM1 and cleaved-PRM2, 16%; and cleaved-

PRM2 and mature-PRM2 15%.

NCBI BLAST (Tool: blastn) [49] searches indicate no sequence

throughout the mouse genome that shows a significant similarity to

cleaved-PRM2 over its whole length. However, it seems to include a

repetitive element (59-AGGAGCAGGGGCAGGGGCAAGGGC-

TGAG-39) approximately between bases 70 and 100. This element

was found in BLAST searches throughout the mouse genome (e.g.

Mus musculus chromosome 11 genomic contig, strain C57BL/6J:

max score = 44.6, e-value = 0.02) as well as in virus genomes (e.g.

Ictalurid herpesvirus: max score = 81.9, e-value = 0.07).

On the basis of the structural and functional similarities between

PRM1 and mature-PRM2, as well as the fact that cleaved-PRM2

shows few similarities to either of them and seems to have a

different origin, subsequent analyses were carried out on cleaved-

PRM2 and mature-PRM2 separately.

Clade analysis
In the evolutionary analysis of the Cricetidae clade, in contrast

to other rodents, the likelihood-ratio-test comparing the two ratio

model and the one ratio model in codeml (PAML 4) suggests a

significant difference in the selective constraints of the Cricetidae

clade and the rodent background for both Prm1 and the two Prm2

domains (Table 1). The likelihood-ratio-test comparison between

the Model 2 ‘‘two ratio, Cricetidae fixed’’ and Model 3 ‘‘two ratio’’

suggests positive selection for the Cricetidae clade for Prm1, while

mature-Prm2 and cleaved-Prm2 show evidence of relaxation

(Table 1).

Evolutionary rate of divergence and relative testes mass
To test for a relationship between the evolutionary rates of

protamines and levels of sexual selection we correlated the v value

with the species-specific relative testes mass. To correct for

phylogenetic effects we used the pGLS tool of the program

COMPARE 4.6b [44]. v values of Prm1 showed no significant

relationship with relative testes mass although there is a weak

negative relationship (a= 1.42, CI 95% (slope) = 20.18 to 0.08,

correlation = 20.194) (Table 2). In contrast, v values of mature-

Prm2 and cleaved-Prm2 showed significant negative relationships

with relative testes mass (cleaved-Prm2: a= 15.50, CI 95%

(slope) = 211.54 to 22.40, correlation = 20.69; mature-Prm2:

a= 8.17, CI 95% (slope) = 21.98 to 20.21, correlation = 20.574)

(Fig. 1, Table 2).

Site analysis
To test selective pressures influencing protamine sequences at

the site level, we set a Bayesian Empirical Bayes (BEB) that

classifies all sites in three classes in terms of its posterior mean v.

The class differentiation is computed by model 2a or 1a depending

on which model shows the best fit (likelihood-ratio test). Class 1

contains sites with v values between 0 and 1 and therefore subject

to purifying selection. Class contains 2 sites evolving neutrally with

an v value close to 1. In class 3 (just in model 2a) sites with v
greater than 1 are indicative of positive selection or functional

relaxation. The percentage of sites in each class is shown in

Table 3. In PRM1 most sites are evolving neutrally (site class

2)(51%) or are under purifying selection (site class 1) (41%) (Fig.

S3). The selection models (M2a and M8) explained the

evolutionary influences on PRM1 significantly better (P,0.01

for M2 and P,0.05 for M8) than the neutral models (M1a and

M7). Three positively selected sites (33C, 38T, 39V) were detected

by model M2a and two sites (33C, 39V) by the more stringent

model M8 (Table 3). In the case of cleaved-PRM2 it was not

significantly better explained by the selection models. The best fit

was shown by the neutral models. In addition, according to the site

class distribution 63.02% of sites are under purifying selection, and

36.98% are evolving neutrally (Fig. S4) with 10 sites under

significant relaxation. In contrast, mature-PRM2 is under lower

selective constraints, with only 13.32% of sites under purifying

selection and 86.67% belonging to site class 2 with v values

close to one, although only 14 sites are under significant relaxation

(Fig. S5). The selection models were not accepted in the likelihood-

ratio-test. The SLR analysis supported these results. Codeml

(PAML 4) output files for the selection model M2 have been

included in the supplementary material (Figs. S6–8).

Evolutionary profile of functional domains
The two protamines contain several putative DNA-anchoring

domains composed of three or more consecutive arginine and

lysine residues [27]. For PRM1, most sites involved in DNA-

anchoring domains are subjected to purifying selection with low v
values (70% of sites of class 1 after BEB analysis), but there is also

a substantial proportion falling into site class 3 (positive selection)

(13.3%) (Table 3, Fig. S3). Moreover, one out of three positively

selected sites (33C) falls into the flanking region of a DNA-

anchoring domain (Figs. 2 and S3). DNA-anchoring domains in

mature-PRM2 seem to be evolving neutrally with 100% of sites

showing v values close to 1 (class 2) (Table 3, Fig. 3).

Table 1. Clade analysis for protamines.

Protamine 1 cleaved-Protamine 2 mature-Protamine 2

Foreground clade Background clade v Selection v Selection v Selection

Cricetidae Muroidea 2.44 Positive 2.75 Relaxation 1.66 Relaxation

Clade analysis of a Cricetidae foreground clade against a murid background.
doi:10.1371/journal.pone.0029247.t001

Table 2. Protamine evolution and relative testis mass.

95% CI
(slope)

Set N CI2 CI+ lnL alpha correlation

Protamine 1 15 20.18 0.08 214.951 1.42 20.194

cleaved-Protamine 2 14 211.54 22.95 22.40 15.5 20.69*

mature-Protamine 2 14 21.98 20.21 23.59 8.17 20.574*

PGLS analysis results. N indicates number of taxa analyzed, CI2 and CI+ the
confidence intervals for the regression slope, lnL the maximum likelihood
estimate of alpha, and alpha the measure of evolutionary constraints acting on
phenotypes (COMPARE 4.6b). Asterisks indicate statistically significant
relationships.
doi:10.1371/journal.pone.0029247.t002
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Both protamines undergo post-translational modifications

through phosphorylation of several motifs containing typically

serine and threonine residues. This could regulate the interaction

with DNA [27]. In PRM1, 57.1% of sites within phosphorylation

motifs were found under constraints of purifying selection after

BEB analysis (Table 3). The rest of the residues were evolving

neutrally (28.6% class 2) and a substantial proportion under

positive selection (14.3% class 3). Furthermore, two out of three

sites under positive selection (38T and 39V) are located within

phosphorylation sites, specifically in phosphorylation targets for

protein kinase C, and one affecting directly a threonine/serine

residue (Fig. 2).

Table 3. Site analysis. Selective pressures and Likelihood-ratio-tests in protamine 1 and protamine 2 sequences.

Protein
(domain) N Lc

Selective
pressures:

% class 1
(v,1)

% class 2
(v = 1)

% class 3
(v.1)

Best fit
model 2Dl parameter estimates PSS

All sites 41 51 8 M2a
(selection)

9.71** p0 = 0.41, p1 = 0.50993,
p2 = 0.07950, v0 = 069,

33C*, 39V

Protamine1 16 153 Anchoring domains 70 16.6 13.3 M8
(beta and v)

7.34* p0 = 0.58495, p = 0.0050,
q = 0.04910, p1 = 0.41505,
v= 2.65844

33C*, 38T*,
39V**

Phosphorylation
sites

57.1 28.6 14.3

All sites 63.02 36.98 M1a
(neutral)

2.64 p0 = 0.63016, p1 = 0.36984,
v1 = 1.00

not allowed

cleaved-
Protamine 2

16 165 Cleaving sites 57.14 42.86 M7 (beta) 3.57 p = 0.09398, q = 0.13753 not allowed

Phosphorylation sites 100 0

All sites 13.32 86.67 M1a (neutral) 2.12 p0 = 0.13325, p1 = 0.86675,
v1 = 1.00

not allowed

mature-
Protamine 2

16 162 Anchoring domains 0 100 M7 (beta) 2.52 p = 35.58178, q = 0.00500 not allowed

Phosphorylation sites 0 100

Parameter estimation and likelihood scores under models of variable v ratios among sites for protamine 1, cleaved region of protamine 2 and the mature form of
protamine 2. The data have N sequences, each of Lc codons after alignment gaps are removed. Differences between log-likelihood values of models with 99% statistical
significance level for 2 d. f. are indicated in ** and with 95% of statistical significance in *. The proportion of sites under positive selection (p1), or under selective
constraint (p0) and parameters p and q for the beta distribution are given. Positively selected sites (PSS) with a posterior probability .0.95 (*) and .0.99 (**) in a Bayes
Empirical Bayes are indicated. Selectives pressures are shown as proportion of amino acid sites for different classes of selective regimes. Class 1: sites under purifying
selection (0,v,1); Class 2: sites neutrally evolving (v= 1); Class 3: sites subject to positive selection or relaxation (v.1). Proportions of sites in each selective class were
also calculated for DNA-anchoring domains, phosphorylation motifs and cleaving sites.

Figure 1. Evolutionary rate of protamine 2 evolution and sexual selection in rodents. Relationship between evolutionary rate (v) and
relative testes mass for A cleaved region of protamine 2, and B mature-protamine 2.
doi:10.1371/journal.pone.0029247.g001
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Phosphorylation sites in cleaved-PRM2 seem to evolve under

high selective constraints showing 100% of sites with a low v value

(class 1). Moreover, evidence of positive selection was not found for

any site (Table 3). In the case of mature-PRM2, all sites involved

in post-translational phosphorylation showed v values close to 1

(class 2). Thus, it can be assumed that phosphorylation sites in

mature-PRM2 are evolving neutrally, following the evolutionary

trend of the whole sequence (Figs. 3 and S4–5).

Precursor-PRM2 is processed after translation by several

specific cleaving sites distributed along the cleaved-PRM2 region

by a proteolytic process [27]. A total of 8 out of 14 cleaving sites in

cleaved-PRM2 were estimated to be under selective constraints

(57.14% of sites in class 1) and the rest of the sites were evolving

neutrally with v values close to 1 (42.86%) (Table 3).

Protamine 2 pseudogene in Cricetulus griseus
We compared the Prm2 sequence of Cricetulus griseus with that of

P. sungorus, A. terrestris and M. musculus, representing Cricetidae and

non-Cricetidae respectively. The coding sequence of C. griseus

Prm2 reveals a complete divergence in relation to its orthologue,

suggesting that Prm2 in this species has accumulated successive and

defective mutations through evolution thus becoming a dysfunctional

gene or pseudogene (Fig. 4). Cricetulus griseus was therefore excluded

from Prm2 analyses due to its degeneration and its null expression in

this species [31].

Discussion

The results of this study show that, among rodents, protamine 1

and the two domains of protamine 2 evolve under different

selective regimes, and are influenced by sexual selection to

different extents. Clade tests show that protamine 1 is under

positive selection, but no relationship between the rate of

divergence and relative testes size (a proxy for levels of sperm

competition) was found. In contrast, cleaved-protamine 2 and

mature-protamine 2 are under relaxation, and there is a negative

relationship for both between rate of divergence and relative testes

size, suggesting a strong influence of sperm competition.

Previous studies on the influence of sexual selection on the

evolution of protamines found only weak evidence of positive

selection on the protamine 2 precursor in a group of closely related

species of Mus [24], but a high degree of divergence in promoters

which was associated with levels of sperm competition and sperm

function. The latter study concluded that in the early stages of

Figure 2. Phosphorylation sites and anchoring domains in protamine 1. A - Alignment of Cricetidae species indicating predicted
phosphorylation sites. Highlighted in blue: Phosphorylation motifs by Protein Kinase C (PKC) according to ScanProSite and NetPhos. Highlighted in
red: Phosphorylation motifs by Protein Kinase A (PKA) according ScanProSite and NetPhos. Arrows indicate positively selected sites (Codeml M2a/M8).
B - Alignment of Cricetidae species indicating DNA-anchoring domains. Highlighted in green: Arg and Lys residues directly implicated in DNA
binding. Highlighted in yellow: Flanking uncharged residues that stabilize DNA-Arg/Lys interactions. Arrows indicate positively selected sites (Codeml
M2a/M8).
doi:10.1371/journal.pone.0029247.g002
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speciation few changes in coding sequences are found, whereas

further changes are likely to be present between species that

have diverged to a greater extent. The results presented here

support this claim, since we find evidence of positive selection

and relaxation in a group of more distantly related species of

rodents.

It is generally assumed that post-copulatory sexual selection

promotes positive selection by driving rapid changes in reproduc-

tive genes which result in adaptive advantages [1–3], although it

has also been shown that seminal fluid proteins show faster

evolutionary rates among monandrous species due to relaxation of

selective constraints [21]. No association was found between levels

of sperm competition and rate of divergence in protamine 1 in this

and previous studies [19], suggesting that positive selection in this

protein is not driven by sexual selection. In contrast, a negative

relationship was found between rate of divergence of both cleaved-

and mature-protamine 2 and levels of sperm competition, in

agreement with studies on seminal fluid proteins in buttlerflies

[21]. Since both domains are under relaxation, this suggests that

the role of sexual selection in this case is not to promote rapid

changes, but rather to halt the degree of relaxation of protamine 2

by removing deleterious mutations. Since protamines 1 and 2 are

very similar and seem to perform the same function, it is possible

that protamine 2 is under relaxation due to functional redundan-

cy. In this scenario, the role of sexual selection may be to remove

deleterious mutations which diminish sperm competitiveness

among species with high levels of sperm competition, so it will

act as a force ‘‘opposing’’ further degeneration in order the

maintain the protein fully functional.

It is noteworthy that sexual selection has only been shown to

influence proteins belonging to families such as SEMG2 [18], SVS

2 [19] and ADAMs 2 and 18 [20], and protamine 2 (this study).

This evidence suggests that the effects of sexual selection may be

particularly pronounced among families of proteins, which share

many functional similarities and may play complementary roles. In

this scenario, it is possible that the protein which performs the

main function will remain conserved, while other proteins of the

same family may be ‘‘free’’ either to change rapidly under the

influence of sexual selection to evolve competitive traits, or may be

under relaxation due to functional redundancy and in this latter

case sexual selection prevents deterioration beyond a certain level

in order to preserve its functionality.

Figure 3. Phosphorylation sites, anchoring domains and cleaving sites in protamine 2. A - Alignment of Cricetidae species indicating
predicted phosphorylation sites. Highlighted in blue: Phosphorylation motifs by Protein Kinase C (PKC) according to ScanProSite and NetPhos.
Highlighted in red: Phosphorylation motifs by caseine kinase II according ScanProSite and NetPhos. B - Alignment of Cricetidae species indicating
DNA-anchoring domains and cleaving sites. Highlighted in green: Arg and Lys residues directly implicated in DNA binding. Marked in yellow: Flanking
uncharged residues that stabilize DNA-Arg/Lys interactions. Highlighted in grey: Cleaving sites.
doi:10.1371/journal.pone.0029247.g003

Figure 4. Protamine 2 of Cricetulus griseus. A - Coding sequence of the protamine 2 gene of C. griseus. Underlined is a region with null homology
to any protamine sequence. B - Comparison between protamine 2 protein sequences of Mus musculus, A. terrestris, P. sungorus and C. griseus.
doi:10.1371/journal.pone.0029247.g004
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The idea that protamine 2 in this group of rodents may suffer

from relaxation of selective constraints and degeneration is

supported by the fact that one of the species studied (Cricetulus

griseus) has a protamine 2 sequence which is highly divergent and

mature-protamine 2 is not expressed in sperm. Similarly, other

species of this family (Cricetidae) do not present mature-protamine

2 in sperm [31,50]. Thus, among hamsters, species belonging to

the genera Cricetulus and Cricetus, do not have mature-protamine 2

in fully-differentiated spermatozoa, while those belonging to the

genera Mesocricetus and Phodopus do. Furthermore, among the latter

species the proportion of mature-protamine 2 in sperm ranges

between 33 and 50%, which is lower than the proportion found in

other rodents such as Mus [50]. This evidence suggests that

protamine 2 in Cricetulus griseus has become a dysfunctional gene or

a pseudogene, supporting the idea that the role of protamine 2 is

secondary in this group and that protamine 1, which is present in

all species, performs the main function of DNA compaction.

Interestingly, all mammalian species have protamine 1 but

protamine 2 is present only in primates and some rodents [27,28],

and among the latter the proportion of protamine 2 in mature

sperm varies widely between species [31,50], but the significance

of this interspecific level of variation is not well understood. The

high degree of similarity between protamine 1 and mature-

protamine 2 supports the idea that they may share a common

origin [51]. In contrast, the region of protamine 2 that is cleaved

shows a very low degree of similarity with protamine 1, and may

be of retroviral origin [51].

Site analysis revealed that protamine 1 is evolving under

selective regimes, while the two domains of protamine 2 are

evolving neutrally. For protamine 1, we detected robust evidence

of positive selection acting on two sites (positions 33 and 39) and

weaker evidence for one additional site (position 38), in agreement

with previous findings on rodents [19]. Strong evidence of positive

selection in protamine 1 was also detected comparing human and

mouse sperm-specific orthologues [52], but was not found when

closely related species were analysed [24]. Our data show that

while most sites are under purifying selection or evolving neutrally,

which helps to maintain a conserved structure and ensures that the

protein remains functional, selection targets a few sites which may

be of particular functional relevance.

In contrast, cleaved-protamine 2 and mature-protamine 2 seem

to evolve neutrally. Among cleaved-protamine 2 most sites are

under purifying selection, while among mature-protamine 2 most

sites are evolving neutrally. No positively selected sites were

detected. So far, few studies have analysed the evolution of

protamine 2 and they have analyzed the entire precursor protein

without distinguishing its two regions [24,52]. Torgerson et al. [52]

did not find evidence of positive selection driving the evolution of

the protamine 2 precursor comparing human and mouse

orthologues, thus supporting our results. On the other hand, a

study of a group of closely related species of Mus found evidence of

one site under positive selection [24]. This site in our analysis was

not detected as positively selected but showed a high v value.

Among protamines, functionally important sites include DNA-

anchoring domains, phosporylation sites and cleaving sites. DNA-

anchoring domains are only present in protamine 1 and mature-

protamine 2, phosphorylation sites are present in both protamines,

and cleaving sites are by definition only present in the section of

protamine 2 which is sequentially cleaved. Most DNA-anchoring

domains are under purifying selection in protamine 1, although a

substantial proportion are under positive selection. In contrast, all

DNA-anchoring domains are evolving neutrally in mature-prot-

amine 2. Similary, most phosphorylation sites are under purifying

selection in protamine 1, although a susbtantial proportion are

under positive selection. Among cleaved-protamine 2 all phospor-

ylation motifs are under purifying selection, while all of them evolve

neutrally in mature-protamine 2. It is important to point out that two

positively selected sites detected in protamine 1 (38T, 39V) are

located in phosphorylation motifs, while one (33C) is located in the

flanking region of a DNA-anchoring domain, suggesting that they

are the targets of selection. The functional importance of DNA-

anchoring domains is obvious, while that of phosphorylation sites is

currently less clear. Protamines are phosphorylated as soon as they

are synthesized and phosphorylation is required for protamines to

bind to DNA [27,28], so it is possible that positive selection on these

sites may also result in changes in the degree of condensation of

DNA. Finally, 57% of cleaving sites in protamine 2 are under

purifying selection. Thus, most functionally important sites seem to

be under purifying selection in protamine 1, and cleaved-protamine

2, suggesting that their main functional roles remain conserved.

However, one site in a flanking region of a DNA-anchoring domain

and two phosphorylation sites in protamine 1 are under positive

selection suggesting that adaptive changes take place at specific

functionally important sites which may modify the ability to bind to

DNA. In contrast, functionally important sites in mature-protamine

2 evolve neutrally. This is consistent with the previous findings

suggesting stronger selective constraints acting on protamine 1, and

suggests that such constraints are even greater for functionally

relevant sites.

In conclusion, among rodents protamine 1 and protamine 2 are

under different selective constraints, since protamine 1 is under

positive selection while cleaved and mature-protamine 2 are under

relaxation. The role of sexual selection in rodents seems to be to

halt the degree of degeneration of both domains of protamine 2,

which in some species has even become dysfunctional and is not

expressed in mature sperm. In contrast, protamine 1 is functionally

conserved but shows directed positive selection on specific

functional relevant sites such as DNA-anchoring domains and

phosphorylation sites. While protamine 1 and mature-protamine 2

have many structural similarities, the cleaved region seems to be of

retroviral origin. Our findings suggest that since genes in families

have many structural and functional similarities, their evolutionary

patterns should be studied jointly in order to understand how

selective forces act upon all of them in cases where they may play

complementary roles or have functional redundancies.

Supporting Information

Figure S1 Phylogenetic trees. A - Tree of study species

(Cricetidae). Input tree for branch and site analyses. Mus m. musculus

was used as outgroup. B - Tree of study species (Cricetidae)

including 12 rodent species as a background. Oryctolagus cuniculus was

used as an outgroup. Input tree for clade analyses. Phylogenetic

trees were constructed based on literature (Jaarola et al 2004 Mol

Phylogenet Evol 33: 647–663; Galewski et al. 2006 BMC Evol Biol

6: 80; Neumann et al. 2006 Mol Phylogenet Evol 39: 135–148;

Martı́n-Coello et al. 2009 Proc Roy Soc B 276: 2427; Gomez-

Montoto et al. 2011 PLoS ONE 6: e18173).

(TIFF)

Figure S2 PAML codeml clade analysis. Models and

analysis employed to detect the mode of selection acting on

Protamine 1 and Protamine 2 domains. The employed models

were compared by means of Likelihood-ratio-tests.

(TIFF)

Figure S3 Amino acid sequence alignment of Protamine
1. Study species (Cricetidae) represented by abbreviated code:

Arvicola sadipus (ASA), Arvicola terrestris (ATE), Clethrionomys glareolus
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(CGL), Cricetulus griseus (CGR), Chionomys nivalis (CNI), Microtus

agrestis (MAG), Microtus arvalis (MAR), Mesocricetus auratus (MAU),

Microtus cabrerae (MCA), Microtus gerbei (MGE), Mus musculus musculus

(MMU), Phodopus campbelli (PCM), Pitymys duodecimcostatus (PDU),

Pitymys lusitanicus (PLU), Phodopus roborovskii (PRO), Phodopus sungorus

(PSU), Sigmodon hispidus (SHI). Alignment of Protamine 1 including

a histogram showing v values (red line) estimated under model

M2a in each site with standard error (bars). Arrows in Protamine 1

histogram indicate sites subjected to positive selection according to

Codeml (PaML 4) site analysis (33, 38 and 39). Evidence for

residue 38 was estimated under model M2a and for residues 33

and 39 under M2a and M8. Note that gaps are removed in the

alignment but they were included in analysis.

(TIFF)

Figure S4 Amino acid sequence alignment of cleaved-
Protamine 2 Study species (Cricetidae) represented by abbrevi-

ated code: Arvicola sadipus (ASA), Arvicola terrestris (ATE), Clethri-

onomys glareolus (CGL), Cricetulus griseus (CGR), Chionomys nivalis

(CNI), Microtus agrestis (MAG), Microtus arvalis (MAR), Mesocricetus

auratus (MAU), Microtus cabrerae (MCA), Microtus gerbei (MGE), Mus

musculus musculus (MMU), Phodopus campbelli (PCM), Pitymys

duodecimcostatus (PDU), Pitymys lusitanicus (PLU), Phodopus roborovskii

(PRO), Phodopus sungorus (PSU), Sigmodon hispidus (SHI). Alignment

of cleaved-Protamine 2 including a histogram showing v values

(red line) estimated under model M2a in each site with standard

error (bars). Note that gaps are removed in the alignment but they

were included in analysis.

(TIFF)

Figure S5 Amino acid sequence alignment of mature-
Protamine 2. Study species (Cricetidae) represented by abbre-

viated code: Arvicola sadipus (ASA), Arvicola terrestris (ATE),

Clethrionomys glareolus (CGL), Cricetulus griseus (CGR), Chionomys

nivalis (CNI), Microtus agrestis (MAG), Microtus arvalis (MAR),

Mesocricetus auratus (MAU), Microtus cabrerae (MCA), Microtus gerbei

(MGE), Mus musculus musculus (MMU), Phodopus campbelli (PCM),

Pitymys duodecimcostatus (PDU), Pitymys lusitanicus (PLU), Phodopus

roborovskii (PRO), Phodopus sungorus (PSU), Sigmodon hispidus (SHI).

Alignment of mature-Protamine 2 including a histogram showing

omega values (red line) estimated under model M2a in each site

with standard error (bars). Note that gaps are removed in the

alignment but they were included in analysis.

(TIFF)

Figure S6 Codeml output file (M2) for Protamine 1.
Included species of Cricetidae represented by abbreviated code:

Arvicola sadipus (ASA), Arvicola terrestris (ATE), Clethrionomys glareolus

(CGL), Cricetelus griseus (CGR), Chionomys nivalis (CNI), Microtus

agrestis (MAG), Microtus arvalis (MAR), Mesocricetus auratus (MAU),

Microtus cabrerae (MCA), Microtus gerbei (MGE), Mus musculus musculus

(MMU), Phodopus campbelli (PCM), Pitymys duodecimcostatus (PDU),

Pitymys lusitanicus (PLU), Phodopus roborovskii (PRO), Phodopus sungorus

(PSU), Sigmodon hispidus (SHI).

(PDF)

Figure S7 Codeml output file (M2) for cleaved-Prot-
amine 2. Included species of Cricetidae represented by abbrevi-

ated code: Arvicola sadipus (ASA), Arvicola terrestris (ATE), Clethrionomys

glareolus (CGL), Cricetelus griseus (CGR), Chionomys nivalis (CNI),

Microtus agrestis (MAG), Microtus arvalis (MAR), Mesocricetus auratus

(MAU), Microtus cabrerae (MCA), Microtus gerbei (MGE), Mus musculus

musculus (MMU), Phodopus campbelli (PCM), Pitymys duodecimcostatus

(PDU), Pitymys lusitanicus (PLU), Phodopus roborovskii (PRO), Phodopus

sungorus (PSU), Sigmodon hispidus (SHI).

(PDF)

Figure S8 Codeml output file (M2) for mature-Prot-
amine 2. Included species of Cricetidae represented by

abbreviated code: Arvicola sadipus (ASA), Arvicola terrestris (ATE),

Clethrionomys glareolus (CGL), Cricetelus griseus (CGR), Chionomys nivalis

(CNI), Microtus agrestis (MAG), Microtus arvalis (MAR), Mesocricetus

auratus (MAU), Microtus cabrerae (MCA), Microtus gerbei (MGE), Mus

musculus musculus (MMU), Phodopus campbelli (PCM), Pitymys

duodecimcostatus (PDU), Pitymys lusitanicus (PLU), Phodopus roborovskii

(PRO), Phodopus sungorus (PSU), Sigmodon hispidus (SHI).

(PDF)
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