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Abstract

The developing retinotectal system of the Xenopus laevis tadpole is a model of choice for studying visual experience-
dependent circuit maturation in the intact animal. The neurotransmitter gamma-aminobutyric acid (GABA) has been shown
to play a critical role in the formation of sensory circuits in this preparation, however a comprehensive neuroanatomical
study of GABAergic cell distribution in the developing tadpole has not been conducted. We report a detailed description of
the spatial expression of GABA immunoreactivity in the Xenopus laevis tadpole brain at two key developmental stages: stage
40/42 around the onset of retinotectal innervation and stage 47 when the retinotectal circuit supports visually-guided
behavior. During this period, GABAergic neurons within specific brain structures appeared to redistribute from clusters of
neuronal somata to a sparser, more uniform distribution. Furthermore, we found that GABA levels were regulated by recent
sensory experience. Both ELISA measurements of GABA concentration and quantitative analysis of GABA immunoreactivity
in tissue sections from the optic tectum show that GABA increased in response to a 4 hr period of enhanced visual
stimulation in stage 47 tadpoles. These observations reveal a remarkable degree of adaptability of GABAergic neurons in the
developing brain, consistent with their key contributions to circuit development and function.
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Introduction

During the development of the central nervous system (CNS),

synaptic strength and specificity mature together with, and

influenced by, spontaneous and early sensory-evoked activity

[1,2,3,4]. In addition, synaptic release of c-aminobutyric acid

(GABA), which mediates fast synaptic inhibition in the mature

nervous system [5,6,7], also plays multiple key roles as sensory

circuits undergo functional development [8]. For instance, the

mild disruption of GABAergic neurotransmission found in mice

lacking the 65 KD isoform of the GABA-synthetic enzyme

glutamate acid decarboxylase (GAD65) prevents these animals

from entering the highly plastic critical period for ocular

dominance plasticity in the visual cortex, a deficit that can be

reversed by enhancing inhibitory transmission with benzodiaze-

pines [9,10].

In vivo data obtained in the developing retinotectal system of

Xenopus laevis tadpoles, a important model system for the study of

visual system development, indicate that GABAergic transmission

is required to establish a functional balance between excitatory

and inhibitory inputs which in turn contributes to activity-

dependent maturation of receptive fields [11,12,13,14]. Another

important aspect of the Xenopus laevis tadpole model is that the

developing CNS functions to process sensory information and

motor activity necessary for the survival of the tadpole, even while

extensive neurogenesis and circuit remodeling is occurring

[15,16,17]. This situation creates a dual role for GABA in

regulating both activity-dependent circuit maturation and in

contributing to stable function of the existing network. Such

developmental plasticity in CNS circuits suggests that the

functional and anatomical circuits rearrange as neurons remodel

and establish new sets of connections. Although the distribution

and synaptic connectivity of GABAergic neurons in the tectum has

been described in adult frogs [18,19], little is known about the

anatomical distribution of GABAergic neurons during tadpole

development, or whether the neuroanatomical reorganization of

GABAergic elements occurs during the period of circuit

formation.

Numerous studies have demonstrated homeostatic regulation of

GABAergic synaptic function in response to alterations in sensory

input in vivo or neuronal activity in vitro [20,21,22]. Although

homeostatic regulation of inhibitory function following sensory

deprivation paradigms has been demonstrated during develop-

ment [21,23], the time-course and mechanisms by which

PLoS ONE | www.plosone.org 1 January 2012 | Volume 7 | Issue 1 | e29086



enhanced sensory input affect GABAergic function in the

developing brain are not yet clear.

In this study we examine the anatomical distribution of

GABAergic neurons in the developing Xenopus laevis tadpole brain,

and focus on changes in the visual system that occur as the circuit

becomes functional. We found that the GABAergic cell distribu-

tion in the optic tectum reorganizes between stage 40–42 and stage

47 from an initially clustered to a sparse distribution of somata.

Furthermore, we assayed the effects of brief periods of enhanced

visual stimulation or brief visual deprivation on GABA levels in the

optic tectum. Visual stimulation rapidly increased levels of GABA

in the optic tectum, providing evidence for stimulus-evoked

homeostatic regulation of inhibition in the developing retinotectal

system.

Materials and Methods

Tadpole developmental staging
All animal protocols were approved by the Institutional Animal

Care and Use Committees of Cold Spring Harbor Laboratory

(protocol # 05-02-04) or the Montreal Neurological Institute

(protocol #s 5801 and 5071). Albino Xenopus laevis embryos were

isolated at neurulation, stage 23, and reared at 16uC in a 12 hrs

dark/12 hrs light cycle until the selected developmental stage for

analysis (staging according Nieuwkoop and Faber) [24].

Tissue preparation
For anatomical experiments, tadpoles were anesthetized and

fixed at the same time of day at the end of the dark cycle. Visual

stimulation experiments started at the end of the dark cycle, and

animals were sacrificed immediately after the visual stimulation

protocol. These experiments were performed on tadpoles from

several different clutches.

Animals at stages 40–42 and stage 47 were anesthetized in

tricaine methanesulfonate (0.02% MS 222, Sigma, St. Louis, MO)

in 0.16 Steinberg’s solution or Modified Barth’s Solution H and

rapidly dissected to remove the skin and dura mater to expose the

brain. For cryostat sections, tadpoles were transferred to freshly

prepared 4% paraformaldehyde and 0.1% glutaraldehyde (Electron

Microscopy Sciences, Fort Washington, PA) in phosphate buffer

(PB, pH 7.4), exposed to a 15 sec microwave pulse and allowed to

fix for 2 hr at room temperature. For eye immunostaining, whole

animals were fixed intact by immersion in fixative. After two rinses

in PB, specimens were cryoprotected overnight at 4uC in 30%

sucrose (Sigma), after which they were transferred into Tissue-Tek

O.C.T. Compound (PELCO International, Redding, CA) and cut

into 20-mm horizontal, coronal, or sagittal sections. The combina-

tion of horizontal, coronal and sagittal planes of section were

valuable for revealing the three-dimensional distribution of the

GABA immunoreactivity. For L.R. White-embedded sections, the

tissue was prepared as described by [25] with the following changes.

The fixative used was 4% paraformaldehyde and 0.25% glutaral-

dehyde in 1 M sodium cacodylate buffer. The tadpole was exposed

to an 8 second microwave pulse after which the tissue was left in

fixative for 30 minutes at room temperature. After rinsing in PBS

containing 3.5% sucrose, the tissue was quenched in 50 mM glycine

in PBS and dehydrated in a graded series of ethanols (45 s each at

350 W in microwave). The tissue was infiltrated in L.R. White resin

overnight at 4uC, embedded in gelatin capsules, and polymerized at

50uC. Floating sections were cut at 200 nm with an ultramicrotome

using a Jumbo Histo Diamond Knife (Diatome). The sections were

mounted on subbed glass slides (coated with 0.1% gelatin and

0.01% chromium potassium sulfate) and placed on a hot plate

(,60uC) for 10 minutes.

Electron Microscopy
Electron microscopy studies were conducted as described in

[26]. Briefly described, tadpoles at stage 47 were anesthetized as

described above and fixed in a mixture of 2% paraformaldehyde,

2% glutaraldedyde, and 0.02% CaCl2 in 0.035 M sodium

cacodylate buffer. The brain were postfixed in 2% osmium

tetroxide; dehydrated in an acetone series; and infiltrated with

Epon 812 resin. After sectioning the tectum at 70 nm, we used a

rabbit polyclonal antibody against GABA (Sigma, St. Louis, MO)

at a dilution of 1:500 and a goat-anti rabbit IgG conjugated to

15 nm gold particles (Amersham, Arlington Heights, IL) to reveal

the distribution of GABA [26].

Immunostaining
All antibodies used in this study were obtained commercially.

For all experiments performed in the present study, we performed

control experiments in which the primary or secondary antibody

was omitted. No labeling was obtained under these conditions. In

addition, incubation of tissues with increasing dilutions of the

primary antibody resulted in gradual diminishing and eventual

disappearance of immunochemical staining.

To characterize the distribution of GABA-immunoreactive cells

in the Xenopus laevis tadpole brain, background fluorescence for

antibody labeling on cryostat sections was quenched with 50 mM

ammonium chloride. Sections were permeabilized (1.0% Triton

X-100; Sigma) and pre-incubated in blocking solution containing

5% normal goat serum (NGS; Gibco, Grand Island, NY) in 1%

Triton X-100 for 1 hour, followed by incubation in a monoclonal

rabbit anti-GABA primary antibody (Sigma; A0310) at 1:1000 in

2% NGS in 0.1% Triton X-100 overnight at 4uC. After rinsing

several times in PBS, sections were incubated for 2 hr in secondary

antibody (Alexa Fluor 488, goat anti-mouse, Invitrogen, Eugene,

OR) in PBS with 2% NGS and 0.1% Triton X-100. Slides were

rinsed in PBS and coverslipped in Vectashield Mounting Medium

with propidium iodide (PI; Vector Laboratories, Burlingame, CA)

to counterstain nuclei.

For experiments on activity-dependent regulation of GABA

immunoreactivity, sections were permeabilized (1.0% Triton X-

100; Sigma) and pre-incubated in blocking solution containing 5%

normal goat serum (NGS; Sigma) in 1% Triton X-100 for 1 hour

followed by application of a monoclonal mouse anti-GABA

primary antibody (Sigma; A0310, 1:1000) and a polyclonal

chicken anti-ßIII-tubulin antibody (Millipore, ab9354, 1:500) in

2% NGS in 0.1% Triton X-100 overnight at 4uC. After rinsing

several times in PBS, sections were incubated for 2 hr in secondary

antibodies (AlexaFluor-488, goat anti-mouse and AlexaFluor-555,

goat anti-chicken from Invitrogen, Eugene, OR) in PBS with 2%

NGS and 0.1% Triton X-100. GABA and ßIII-tubulin immuno-

staining were always performed simultaneously. Slides were rinsed

in PBS and coverslipped in Fluoromount G medium (Electron

Microscopy Sciences, Hatfield, PA). Although the sensitivity of

anti-ßIII-tubulin antibody labeling was compromised by the

presence of glutaraldehyde in the fixative [17], it still serves to

normalize the GABA immunoreactivity.

Visual stimulation
For visual stimulation experiments, tadpoles were placed in a

dark chamber (control) or a chamber with a 364 panel of green

light-emitting diodes, with each row turning on and off

sequentially (0.2 Hz cycle: 1 sec per row followed by 1 sec of

darkness) for a period of 4 hr. This simulated motion stimulus has

been previously described in detail [27]. Immediately after

treatment, tadpoles were fixed and processed for GABA and

ßIII-tubulin immunoreactivity as described above.

GABA Immunoreactivity in Developing Xenopus CNS
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Image acquisition
For anatomical analysis, sections were imaged using an

Olympus BX50WI microscope with Olympus Fluoview FV300

confocal unit equipped with a LUMPlanFl/IR 606 water

immersion objective (Olympus, 1.1 N.A.). To measure relative

levels of GABA and ßIII-tubulin immunoreactivity, 20 mm

horizontal sections were imaged on a Zeiss LSM 5 Pascal confocal

mounted on a Zeiss Axioskop 2 FS microscope equipped with a

Plan-Neofluor 256(Carl Zeiss, 0.8 N.A.). Images of corresponding

sections were acquired for each animal as 12-bit stacks of 20 focal

planes (1 mm step). Identical settings were used for all sections for

every animal. To minimize bleedthrough, confocal images of the

AlexaFluor-488 and AlexaFluor-555 staining were obtained

sequentially using an argon laser at 488 nm and a HeNe laser at

543 nm.

Quantification of changes in GABA immunofluorescence
ImageJ software (National Institutes of Health, USA) was used

for image analysis. For each channel we first subtracted

background intensity, and performed a Z-projection summation

of all 20 optical sections. Regions of interest (ROIs) were selected

in the neuropil and cell body regions of the optic tectum and were

analyzed independently. For every ROI, the mean intensities of

GABA and ßIII-tubulin immunofluorescence were measured. For

each animal this analysis was performed on 2 consecutive

horizontal tissue sections, taken at 40 mm and 60 mm, below the

dorsal surface of the brain. To quantify GABA immunofluores-

cence levels, each measurement was expressed as mean intensity

value of the GABA signal normalized by the mean intensity value

of the ßIII-tubulin signal to control for potential differences in

tissue treatment between animals.

ELISA to quantify GABA levels
A commercial enzyme-linked immunosorbent assay kit (GABA

Research ELISA, Labor Diagnostika Nord, Nordhorn, Germany)

was used to measure GABA levels in the midbrain of Xenopus laevis

tadpoles. Immediately following the visual stimulation protocol,

tadpoles (n = 8 for each group) were anaesthetized in solution

containing 0.02% MS-222 and a GABA transaminase inhibitor,

vigabatrin (100 mM; Sigma, V8261). Midbrains were quickly

dissected out, frozen on dry ice and kept at 280 C until analysis.

On the day of analysis, midbrains were homogenized in 0.01 N

hydrochloric acid containing 1 mM ethylenediaminetrtraacetic

acid (EDTA) and 4 mM sodium metabisulfite. Samples were

divided into 4 aliquots and processed in parallel according to the

manufacturer’s instructions.

Results

Immunoreactivity profile of cells in the Xenopus visual
system

The optic tectum is the primary sensory relay for visual inputs

coming from the retina in fish and amphibia. As GABA has been

identified as the principal inhibitory neurotransmitter in the optic

tectum, we examined its distribution in the tectum of Xenopus.

Figure 1A shows 200 nm horizontal LR White-embedded sections

through the tectum of stage 47 tadpoles, which are labeled with

GABA antibodies. The tectal neuropil, where axons of retinal

ganglion cells and other tectal inputs contact tectal neuron

dendrites, is located laterally in the tectum, and can be readily

distinguished from the medial cell body layer, where most of the

tectal somata are densely packed (Fig. 1A). The tectal neuropil is

labeled in a punctuate pattern and GABA-immunoreactive cell

bodies are sparsely distributed in the neuropil. GABA-positive cell

bodies are distributed throughout the tectal cell body layer of the

tectum. Notably, the majority of the cell bodies scattered within

the tectal neuropil are GABA-immunoreactive (Fig. 1A). Electron

micrographs through the tectal neuropil labeled by the post-

embedding immunogold method for GABA (Fig. 1B) reveal that

GABA-immunopositive profiles form symmetric synapses onto

GABA-negative profiles. We also find GABA-positive presynaptic

terminals synapsing on GABA-positive postsynaptic profiles (data

not shown). GABA-positive (n = 12) and GABA-negative (n = 28)

presynaptic terminals are similar in size. In contrast, the profiles

postsynaptic to GABA immunoreactive terminals tend to be

smaller than those postsynaptic to GABA-negative profiles

(Fig. 1C).

The neurotransmitters, glutamate, GABA and glycine contrib-

ute to neuronal activity in the optic tectum at stages 46–48 [28].

Work in embryonic Xenopus tadpoles has suggested that the

neurotransmitter identity of developing neurons may be more

labile than previously believed, such that expression of neuro-

transmitter markers changed in response to different patterns of

activity [29,30]. To establish whether neurons in the optic tectum

of stage 47 tadpoles expressed unique or multiple markers of

neurotransmitter phenotype, we double-labeled sections of retina

and tectum for GABA, glycine and the alpha isoform of the

calcium/calmodulin-dependent protein kinase II (aCaMKII), a

marker of mature excitatory neurons [31]. At stage 47, aCaMKII

immunopositive neuronal somata are located close to the tectal

neuropil (Fig. 1D). GABA-immunoreactive somata were distrib-

uted more broadly throughout the cell body layer (Fig. 1E, F). In

the eye, the most dense distribution of aCaMKII immunopositive

somata was found in the ganglion cell layer (GCL), with fewer

labeled cells in the inner nuclear layer (INL) (Fig. 1G). Staining in

the inner plexiform layer (IPL) was consistent with high levels of

aCaMKII in the dendrites of retinal ganglion cells. We found that

immunostaining for GABA and aCaMKII in neuronal somata in

both optic tectum (Fig. 1D–F) and retina (Fig. 1G–I) was almost

entirely non-overlapping, strongly suggesting that aCaMKII and

GABA immunostaining label distinct populations of neurons.

Interestingly, we found no glycine immunopositive somata in the

optic tectum (Fig. 1J–L), however we did observe a faint punctate

signal in the neuropil and in the interstices of the cell body layer,

consistent with the possibility of glycinergic axons from cells

outside the tectum, or of restricted glycine accumulation in

terminals of glycinergic neurons. In the retina, we found glycine-

immunopositive somata in the INL and IPL (Fig. 1M–O). In the

IPL these are likely to be glycinergic amacrine cells and their

arbors [32,33]. Glycine and GABA-immunoreactivity were non-

overlapping in somata in the INL (Fig. 1M–O). In the spinal cord

we found numerous glycine immunopositive somata, however in

contrast to the retina, many of these appeared to also be GABA-

positive (Fig. 1P–R).

Taken together, these data show that GABA-immunoreactive

cells in stage 47 Xenopus tadpole are broadly distributed across the

entire optic tectum, and are distinct from aCaMKII-expressing

and glycinergic cells. GABAergic cells in the tectum have no

evident stratification or laminar distribution at this stage, although

they are prevalent in the tectal neuopil. Finally GABA-immuno-

reactive tectal cells make synaptic contacts with both GABAergic

and non-GABAergic profiles in the neuropil, forming the main

source of inhibition in the optic tectum.

Shift in distribution of GABA immunoreactivity across
brain regions

The redistribution of neurons from their birthplace to their final

destination is an extremely important step in brain development.

GABA Immunoreactivity in Developing Xenopus CNS
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Between developmental stages 42 and 47, when tadpoles go from

surviving on yolk to scavenging for food and avoiding predators,

the Xenopus CNS undergoes significant structural and functional

reorganization. During this time, synaptic transmission also

matures dramatically [11,34,35]. We compared the GABA-

immunoreactive labeling in stage 40/42 and stage 47 tadpoles.

The pattern of GABA immunoreactivity in a representative stage

42 tadpole is shown in a series of sagittal sections in Fig. 2A.

Medially, GABA immunoreactivity is present in two areas in the

olfactory bulb (OB) which contain clusters of labeled cell bodies

(Fig. 2A, sections 1, 2, arrowheads) and two spatially distinct

populations in the ventral diencephalon (di) and the optic tectum

(OT, Fig. 2A, sections 1–3). The hypothalamus (Hy) contains

anteriorly situated GABA-immunoreactive cell bodies and posi-

tively stained projections at its periphery (Fig. 2A, sections 1–3). A

high density of intensely GABA-immunoreactive neuronal pro-

cesses was present in the posterior commissure (pc, Fig. 2A,

sections 1–3; arrows), tectal neuropil (TN, Fig. 2A, sections 3, 4;

arrows), and lateral forebrain bundle (lfb, Fig. 2A section 3). At the

midbrain-hindbrain boundary, GABA-immunonegative prolifera-

tive cells in the caudal tectum abut a zone of GABA-positive

somata in the rostral hindbrain (HB, Fig. 2A, sections 3 and 4).

The dorsal fibers and the periventricular areas of the hindbrain are

negative for GABA staining (Fig. 2A, sections 1, 2; hollow arrows).

Long range GABA-immunoreactive axons are present in the

ventral spinal cord (SC, sections 1–4, arrows).

Between stages 40/42 and 47, an important anatomical

maturation of the brain has taken place that can be appreciated

in the low magnification images of sagittal brain sections (Fig. 2B).

The rapid proliferation of cells, as well as the expansion of fiber

tracts and neuropil areas, contributes to a massive expansion of the

volume of the brain and various brain regions. With this brain

development, the olfactory bulb, midbrain, including the optic

tectum and tegmentum (teg), and hindbrain show particularly

large increases in GABA immunoreactive cell bodies, neuropil and

projection fibers. As brain areas expand, the relative allocation of

GABAergic neurons between different areas appears to remain

relatively constant. On the other hand, the organization of GABA-

immunoreactive neurons within each region takes on strikingly

different distributions. In the hypothalamus, distinct GABA-

immunoreactive somata and neuronal projection fibers are visible

in the periphery of the hypothalamus (Fig. 2B, sections 1–3;

arrows) as in the younger stages, but in contrast, in the older

animals very few GABA-immunoreactive somata or projection

fibers are located centrally (Fig. 2B, sections 2, 3). This exclusion of

GABAergic somata in the hypothalamus appears to be an

exception to the general developmental trend observed in nearly

all other brain areas in which GABA-immunoreactive cells

become more diffusely distributed with age. We examined this

phenomenon in more detail using the developing midbrain as an

example, where the reorganization of GABA-immunoreactive cells

is particularly striking.

Developmental reorganization of GABA-immunoreactive
neurons in the optic tectum

Patterns of GABA immunoreactivity in the midbrain at stage

40/42 and stage 47 are shown in a series of horizontal sections in

Figure 3. Horizontal sections progressing from dorsal to ventral

(sections labeled 1–5) through the right midbrain are shown in

panels to the right of diagrams of the brain (Fig. 3A,C). Double-

labeling with propidium iodide, to visualize cell nuclei, shows that

GABA immunoreactivity is present in distinct clusters in the cell

body regions and that Pl-labeled cell bodies that are not GABA-

immunoreactive fill the cell body layer. (Fig. 3A). At stage 40/42,

we find GABA-immunoreactive somata in clusters with relatively

few GABA-immunoreactive cells scattered outside of these

clusters, and robust GABA immunolabeling in the tectal neuropil

(TN, Fig. 3A,B). A cluster of cell bodies is positioned rostrally and

medially in the dorsal-most section and extends caudally and

laterally through more ventral sections. GABA-immunoreactive

cells are densely packed within the clusters (arrowheads). The

proliferative zone at the caudal end of the tectum is devoid of

GABA-immunoreactive cells (hollow arrows; Fig. 3A sections 4

and 5). Higher magnification optical sections of the tecto-

tegmental commissure and posterior commissure reveal intense

GABA immunoreactivity of long range projecting axons (Fig. 3B

section 1). The clustered GABA-immunoreactive tectal cells

(Fig. 3B section 2; arrowheads) extend processes with GABA-

positive labeling toward the neuropil (Fig. 3B insets 2a, b; filled

arrows).

In contrast, the sequence of horizontal cryosections of stage 47

animals (Fig. 3C), from dorsal to ventral, exemplifies the more

scattered distribution of GABA-immunoreactive cell bodies within

the optic tectum at this stage. Although there are some clustered

GABA-immunoreactive cells close to the midline within the dorsal

mesencephalon (Fig. 3C, section 1; arrowhead), in more ventral

sections, GABA-positive somata do not appear to be arranged in

tight clusters but rather are dispersed among GABA-negative cells

throughout the cell body region (Fig. 3C, sections 2–5;

arrowheads). In addition, by stage 47 scattered GABA-immuno-

reactive cells extend further caudally within the tectal cell body

layer (Fig. 3C, sections 2–5), with caudolateral parts of the optic

tectum containing a scattered population of tectal cells that are

strongly GABA-immunoreactive (Fig. 3D, section 2). High

magnification images of the tectum show GABA-immunoreactive

cell bodies extending processes toward the neuropil (Fig. 3D,

Figure 1. Immunocharacterization of stage 47 Xenopus laevis visual system. A. GABA immunofluorescent labeling in 200 nm LR White-
embedded horizontal sections of optic tectum. GABA-positive somata are scattered throughout the cell body layer (CBL) and constitute the majority
of neurons in the tectal neuropil (TN). The proliferative cells lining the ventricle (V) and in caudal tectum are not GABA immunoreactive. B.
Ultrastructure of GABAergic synapses identified by post-embedding immunogold labeling in 70 nm sections from epoxy-resin embedded tissue.
Electron micrograph of the tectal neuropil, showing two GABAergic presynaptic profiles forming symmetric contacts with a non-GABAergic
postsynaptic profile (solid arrows). On the right a postsynaptic profile receives an asymmetric, non-GABAergic synaptic input with a prominent
postsynaptic density (hollow arrows). C. Size comparison for GABA-negative (N = 28) and GABA-positive (N = 12) post-synaptic profiles (PSPs) and
presynaptic terminals. D–F. Cryosections through optic tectum immunostained for aCaMKII (D) and GABA (E), and the merge of a CaMKII (red) and
GABA (green) immunolabeling (F). There is little overlap of the CaMKII- and GABA-immunolabeled cells. G–I. aCaMKII (G) and GABA (H)
immunolabeling in the retina. Most RGCs are aCaMKII immunoreactive. Neurons in the INL are predominately GABA-immunoreactive. Double labeling
the retina for aCaMKII (H) and GABA (I) immunopositive cells shows little overlap in the cell body layers. J–L. Immunostaining for glycine and GABA
reveals no detectable glycine label in the tectum (J). M–O. In the retina glycine-positive amacrine cells (M) are prominent in the INL (red in O) and are
distinct from the GABAergic amacrine cells (N), shown as green in O. A few GABA-positive displaced amacrine cell bodies are also found in the
ganglion cell layer (H, I, N, O). P–R. Immunolabeling for glycine (P, red in R) and GABA (Q, green in R) in the spinal cord shows neurons in the spinal
cord can be immunoreactive for both transmitters (R). Scale Bars in A: 150 mm, in B: 500 nm, in D, G, J, M, and P: 50 mm, and apply to all images in the
corresponding row.
doi:10.1371/journal.pone.0029086.g001
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section 2a). At stage 47 the lateral forebrain bundle, which projects

from the rostro-medial forebrain just caudal to the olfactory bulb

into the midbrain (Fig. 3D left section) and serves as a diagnostic

landmark [36], is strongly GABA immunoreactive. The border

between the caudal optic tectum and the hindbrain is also a clear

landmark, where GABA-immunoreactive neurons and processes

in the hindbrain are apposed to GABA-negative proliferative cells

in the caudal tectum (Fig. 3D, panel 3).

The anterior to posterior series of coronal sections through stage

40/42 and stage 47 optic tectum further elucidates the pattern of

GABA-immunoreactive cell bodies and processes in the midbrain

(Fig. 4). At stage 40/42 and stage 47 GABA-immunoreactive cells

are clustered medially in the anterior tectum (arrowheads) and

send processes to the superficial neuropil (solid arrows; Fig. 4A,

section 1). Consistent with the pattern of GABA immunoreactivity

seen in horizontal sections, the cluster of GABA-immunoreactive

neurons in the anterior ventricular region (section 1) extends as a

band posteriorly and laterally within the tectum (Fig. 4A, section

1–3 arrowheads). Coronal sections also reveal a population of

GABA-immunoreactive cells that abut the ventricle in the caudal

midbrain (Fig. 4A, section 4, solid arrow). The coronal sections

clearly demonstrate the large increase in number and change in

distribution of GABA immunoreactive neurons and processes in

the optic tectum and tegmentum at stage 47. The anterior to

posterior sequence of coronal sections further illustrates that

GABA-positive cells are more interspersed throughout the optic

tectum and the tegmentum in the stage 47 animal (Fig. 4B). In

addition, in comparison to the coronal sections in the younger

stages, the distribution of GABA-positive cells tends to extend

further laterally at stage 47. Taken together, these observations

show that a redistribution of neuronal somata, clearly evident in

the optic tectum, takes place during development between stage

40/42 and stage 47.

GABA-immunoreactive cell distribution in the retina at
stage 42 and stage 47

The retina is highly laminated. Retinal ganglion cells (RGCs)

form the inner most cell body layer. The inner nuclear layer

(INL) consists of amacrine cells, horizontal cells and bipolar cells.

The outer nuclear layer consists of photoreceptors. Plexiform

layers are the processes of the cells in neighboring nuclear layers.

In stage 42 tadpoles, we observed abundant GABA-immunore-

active cell bodies in the INL of the retina (Fig. 5A,B,C). GABA-

immunoreactive cells in the INL of the adult frog retina have

been classified mainly as amacrine cells, though rare GABA-

immunoreactive cells resembling bipolar cells have also been

identified [37]. GABA-immunoreactive fibers are present in both

the inner and outer plexiform layers (IPL, OPL). In the stage 42

retina, cell bodies in the ganglion cell layer (GCL) were all

negative for GABA immunoreactivity (open arrow in GCL),

although lightly GABA-immunoreactive fibers were visible (arrow

in GCL; Fig. 5 A, B). At stage 47, the INL remained densely

GABA-immunoreactive (Fig. 5 C, D), however some GABA-

immunoreactive somata can now be seen in the GCL, which may

be displaced amacrine cells [38].

Modulation of GABA levels in the optic tectum by visual
stimulation

Previous studies have shown that visual inputs activate

GABAergic tectal neurons and that GABAergic inhibition plays

an important role in visual information processing

[11,12,13,14,39]. To test whether altered levels of visual input

are able to modulate levels of GABA in the optic tectum, we

exposed stage 47 animals to a simulated motion stimulus produced

by an array of LEDs for 4 hr, as previously described [27]. This

stimulus has previously been shown to drive the maturation of

retinotectal excitatory transmission [40], increase dendritic arbor

growth rates [27], and increase neuronal excitability and signal

detection in the visual system [41]. Control animals were kept in

the dark for 4 hr (see methods). We compared the amounts of

GABA in the tectum by measuring the ratios of GABA and ßIII-

tubulin immunofluorescence intensities in sections 40 mm and

60 mm below the dorsal surface of optic tectum (Fig. 6). We

normalized levels of GABA immunofluorescence against ßIII-

tubulin immunofluorescence to correct for any fluctuations in

staining intensity that may have come from differences in

postmortem treatment of the tissue. All immunostaining was

performed on sections from matched sets of control and visually

stimulated animals using the same solutions. For each section,

regions of interest consisting of the tectal neuropil and the cell

body layer were analyzed separately for immunofluorescence

intensity. Significantly higher levels of GABA immunoreactivity

(whether normalized against ßIII-tubulin or not) were observed

both in the cell body layer and in the tectal neuropil in sections

from animals that had been exposed to enhanced visual

stimulation for 4 hr (N = 5) compared with animals kept in the

dark (N = 4) for 4 hr (Fig. 6, two-tailed Student’s t-test, p,0.05

Table 1).

We also used ELISA to quantify GABA concentration in

homogenates of optic tectum from tadpoles after 4 hours of

enhanced visual stimulation or 4 hours of darkness. These

measurements confirmed our finding of elevated GABA levels in

visually stimulated animals (Fig. 6C, light = 1.6660.21 mg/mL,

dark = 1.3460.08 mg/mL, 8 animals pooled per condition, and

Table 2). Taken together, these results show that 4 hr of enhanced

visual stimulation is sufficient to increase GABA levels in the optic

tectum.

Discussion

This study reports the anatomical distribution of GABA-

immunoreactive neurons and processes in the developing Xenopus

laevis tadpole brain. Interestingly, we find that GABAergic neurons

are subject to significant reorganization during a period of

development when they are actively participating both in sensory

processing and plasticity. The positions of GABAergic neuronal

somata undergo a systematic redistribution from clusters to a more

uniform arrangement in the tadpole brain between stages 40/42

and stage 47. Moreover, we found that the levels of GABA in

neurons of the optic tectum were rapidly increased by a brief

period of enhanced visual stimulation, suggesting that activity-

Figure 2. Distribution of GABA immunoreactivity in stage 42 and stage 47 tadpole CNS. A. Stage 42: Schematic (left) indicating relative
positions of montaged sagittal sections of the tadpole brain. Blue is the cell body area; white is the neuropil area. Sections (1–4) show GABA
immunostaining (green) counterstained with the nuclear label, propidium iodide (PI, blue). GABA staining alone is presented in the right panels (19–
49). In panels 19–49 arrowheads indicate GABA containing somata, filled arrows are GABA-positive axon tracts, and open arrows denote GABA-sparse
zones. B. Sagittal series through a stage 47 tadpole brain. The pattern of GABA-immunoreactivity in the brain is similar to stage 42 except for a
dispersion of the dense clusters of GABA immunoreactive cells seen in younger brains and the vast expansion of the labeled cell body regions,
neuropil and axon tracts in the older tadpoles. Scale bars, 250 mm. See text for details.
doi:10.1371/journal.pone.0029086.g002
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dependent regulation of the GABA synthetic enzyme GAD may

play an important role in the homeostasis of circuit function.

GABA mediates most fast synaptic inhibition in the vertebrate

brain and regulates network activity in the mature nervous system

[5,6,7]. GABA also plays a pivotal role in circuit development,

initially through its putative function as an excitatory neurotrans-

mitter prior to the maturation of the hyperpolarizing chloride

equilibrium potential in immature neurons [8,11,42] and

subsequently by spatiotemporal regulation of neuronal activity as

GABAergic neurons refine their synaptic connectivity [43].

Accordingly impaired GABAergic transmission has been linked

to a number of developmental and neurological disorders such as

epilepsy, schizophrenia, anxiety and drug abuse. Even as these

diverse roles of GABAergic transmission have become increasingly

well-established, the cellular mechanisms controlling the strength

and efficacy of GABAerigic function are only starting to be

clarified. To that end, the present study has examined the

ontogeny and functional regulation of the GABAergic system

during critical developmental stages in the functional maturation

of a well-characterized brain circuit, the retinotectal system in

Xenopus laevis.

The retinotectal system of Xenopus laevis as a model for
circuit development and function

The Xenopus laevis tadpole has proven to be an important

experimental system for the study of vertebrate circuit develop-

ment, owing to its amenability to live cell imaging, whole-cell

electrophysiology, and targeted gene manipulation in the intact

animal. In the developing Xenopus retinotectal circuit, GABAergic

transmission regulates the timing and maturation of excitatory

transmission and helps maintain a critical balance between

excitation and inhibition [8,11,12,13,14,44,45]. Recent studies

exploring the role of GABAergic neurotransmission in visual

receptive field refinement in the Xenopus laevis tadpole optic tectum

have established a requirement for well-regulated GABAergic

transmission in this fundamental developmental process

[12,13,14].

The widespread presence of GABA in the CNS of Xenopus

laevis has been reported by immunohistochemical analysis

[19,46,47,48,49] and by in situ hybridization of both of the GABA

synthetic enzyme isoforms GAD65 and GAD67 [48]. We found

populations of GABA-immunoreactive neurons in most regions of

the brain, consistent with a widespread role of GABA in nervous

system function [46]. GABA immunoreactivity labels neuronal

somata, dendrites and axons and clearly reveal the presence of

long projecting axons of GABAergic neurons, as has also been

reported in other species [50,51,52,53,54,55]. In both stages

examined, GABA immunoreactivity was enriched in the telen-

cephalon at the level of the olfactory bulb, in the preoptic region,

optic tectum, hypothalamus, tegmentum and the spinal cord,

consistent with observations in, among other species, leopard frogs

[18], lamprey [52,56], zebrafish and mouse [36]. In the retina,

GABA-immunoreactive cells were seen in the retinal ganglion cell

layer of stage 47 but not stage 40/42 tadpoles. These are most

probably displaced amacrine cells, as described in the adult retina

[57]. In addition, consistent with findings in other species, GABA

staining was absent in regions that are known proliferative zones

[36,46,47,58]. Although GABA has been shown to have effects

early in cell development and neuronal differentiation (see for

review [59]), these data indicate that the source of GABA is from

cells other than those in the proliferative zone.

Clustered distribution of GABAergic neurons in the
developing tadpole brain

In many instances, populations of GABAergic cells in the stage

40/42 animals occurred in spatially distinct clusters separated

from one another by cells negative for GABA immunoreactivity.

This was particularly prominent in the telencephalon (Fig. 2), but

generally observed across the brain. This is a consistent finding

across species [36,47], and is thought to be related to

regionalization of brain areas [36,49,60,61,62]. It has been

proposed that the forebrain can be divided into six transverse

domains, named prosomeres, defined by morphological or

molecular criteria [63]. One characteristic of forebrain prosomeres

is that progenitor mixing is prevented across boundaries [64], a

contributing element in the subsequent emergence of distinct brain

regions. This has led to the prosomeric model of forebrain

development, a paradigm that emphasizes evolutionarily con-

served topological regions and molecular expression associations in

the neural tube. For example, expression of orthologs of the

Distalless (Dll) family of homeodomain transcription factors

correlates well with GABAergic neuron histogenic regions in

numerous species. Indeed, in many forebrain regions of larval

Xenopus, the expression pattern of GAD67 co-localizes with that of

the Dll4 gene [48], however other regions rich in GABAergic cells

do not express Dll genes, suggesting that there are other

developmental regulatory genes involved in the determination of

GABAergic cells in these regions [65]. This regionalization,

considering the clustered distribution of GABAergic cells in young

animals, may also reflect even more local subdivisions. The

prosomeric model of development has become increasingly

complex as more gene expression patterns continue to be

identified and brain areas are further subdivided [66]. Perhaps

the observation of densely packed clusters of GABAergic cells in

stage 40/42 brains is due to their having been born and

determined based on the expression of neurogenic and proneural

Figure 3. GABA immunoreactivity in optic tectum of stage 42 and stage 47 tadpoles (horizontal plane). A. Stage 42: Left: Schematic
indicating relative positions of horizontal sections through the dorsal midbrain and locations of major brain regions (top left). Schematic of a
horizontal section through the brain with locations of brain regions labeled. Blue is the cell body area; white is the neuropil area. An image of a GABA-
immunolabeled right hemisection is superimposed on the schematic (bottom left). Sections (1–5) show GABA-immunoreactivity (green)
counterstained with PI (blue). B. Schematic of horizontal brain section (left) showing regions of high magnification images, shown to the right. Higher
magnification single optical sections from stage 42 midbrain. B1. Intense GABA immunolabeling of axons in the tecto-tegmental commissure (ttc)
and posterior commissure (pc) (solid arrows). B2. Clustered GABA-immunoreactive neurons in the optic tectum (solid arrows) extend processes
toward the neuropil. B2a, b. Enlargements of boxed regions in B2 showing GABA-immunoreactive processes (arrows) extending from labeled cell
bodies (arrowheads in 2a,b). C. Stage 47: Left. Schematics comparable to A. Sections (1–5) of GABA-immunoreactivity (green) and PI counterstain
(blue). GABA-immunoreactivity becomes more broadly distributed across the optic tectal cell body layer (arrowheads) and neuropil. D. Higher
magnification (single optical sections) showing strong GABA labeling in the lateral forebrain bundle (lfb, D1), and sparse GABA-positive somata in the
caudolateral optic tectum (D2a, arrowheads) extending GABA-positive processes toward the neuropil (D2a, solid arrows). D3. The border between the
caudal optic tectum and the medial hindbrain (HB) shows that the proliferative zone in caudal tectum is negative for GABA immunostaining (arrows),
whereas neuronal cell bodies and processes in the medial HB are GABA-immunolabeled (arrowheads). Scale bars, A, C: 50 mm; B1, 2: 20 mm; B2a,b:
10 mm: D1,3: 30 mm; D2a,b: 20 mm.
doi:10.1371/journal.pone.0029086.g003
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genes that are spatially defined and confined to small regions [67].

These isolated clusters, if based on the combinatorial expression of

genes that confer, or are involved with regional specification, could

constitute clonal expansions of GABAergic subtypes. In this

scenario the progenitors destined to generate GABAergic cells

would expand in number and their differentiated progeny would

remain in tight clusters as they begin to express their transmitter

phenotype. Later in development, the regions may be invaded by

non-GABAergic cells, resulting in the less densely organized

distribution of GABA-immunoreactive cells in stage 47 tadpoles.

While speculative, support for this idea can be drawn from

distributive analysis of markers of interneuronal subtypes.

In the CNS, heterogeneous populations of neurons may be

categorized based on their expression of various marker proteins.

For example, distinct populations of inhibitory neurons can be

distinguished by parvalbumin, calbindin and nitric oxide synthase

(NOS) immunoreactivity [68,69] and robust expression of

aCaMKII is present in excitatory neurons [70,71,72,73,74]. In

stage 47 Xenopus tadpoles, we found that strongly GABA and

aCaMKII immunoreactive sub-populations were mutually non-

overlapping in the optic tectum (Fig. 1D), suggesting that they may

be ontogenetically distinct cell types. Similarly, in the retina the

locations of GABA and aCaMKII immunoreactive somata were

distinct (Fig. 1D), with more aCaMKII immunoreactive cells in

the ganglion cell layer. In addition, in contrast to the spinal cord

where glycinergic and GABAergic profiles are largely intermin-

gled, in the retina these cells are segregated which might account

for the distinct roles of glycinergic and GABAergic amacrine cell

Figure 4. GABA immunoreactivity in optic tectum of stage 42 and stage 47 tadpoles (coronal plane). A. Stage 42: Left: Schematic
indicating relative positions of coronal sections through the midbrain. Right: Sections (1–4) show GABA immunoreactivity (green) with PI counterstain
(blue). Schematics under each section identify major brain regions in the sections. Blue is the cell body area; white is the neuropil area. GABA-positive
cells are clustered medially in the anterior tectum (arrowheads) and send processes to the neuropil (solid arrows; section 1). A cluster of GABA-labeled
neurons extends from the anterior ventricular region posteriorly and laterally within the tectum (sections 1–3, arrowheads). GABA-positive neurons
are dispersed in caudal tectum (section 4, arrowhead). The tegmentum of stage 42 tadpoles has relatively few GABA-immunoreactive neurons (open
arrows, sections 1–4), but extensive GABA-immunoreactivity in the lateral neuropil. B. Stage 47: Schematics shown are comparable to those in A.
GABA-positive cells are interspersed throughout the optic tectum dorsally and in the tegmentum. The labeled neurons are distributed more laterally
than in the younger tadpoles (arrowheads; sections 1–4). The zone closest to the tectal ventricle is largely devoid of GABA-immunoreactivity (section
2, hollow arrow). The tectal and tegmental neuropil regions are intensely GABA immunoreactive. Scale bar, 50 mm.
doi:10.1371/journal.pone.0029086.g004
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types in retinal function [75,76,77] Interestingly, we found no

evidence for glycine-immunoreactive somata in the optic tectum,

although a weak punctate distribution of glycinergic terminals was

observed (Fig. 1E). This is in accord with electrophysiological

recordings showing little or so contribution of glycinergic

inhibition in the optic tectum of Xenopus tadpoles [11,28]. Further

histochemical or genetic [78] categorization of the diverse

morphological classes of cells in the Xenopus optic tectum [79]

remains to be systematically described.

Homeostatic regulation of GABA levels in the visual
system

Attenuation or hyperstimulation of neuronal circuit activity

often leads to the activation of compensatory mechanisms that

maintain the balance of excitation and inhibition within a

functional range [20,22,80,81,82,83]. In intact animals such

compensatory mechanisms engaged in response to changes in

sensory input have been shown to operate through homeostatic

regulation of excitatory and inhibitory synaptic responses

[23,84,85,86,87,88] and neuronal excitability [41], and these

mechanisms result in altered responses to sensory input [41,89].

Mechanisms that contribute to homeostatic regulation of GA-

BAergic inhibition in response to changes in network activity

appear to include both changes in neurotranmission from

GABAergic neurons and changes in neurotransmitter detection

by postsynaptic neurons [20,23,90,91,92,93]. Previous work in the

adult primate visual cortex has shown that monocular deprivation

decreases immunoreactivity for GABA and other proteins

associated with GABAergic neurons in the ocular dominance

bands corresponding to the deprived eye [71,94]. Similarly,

intraocular tetrodotoxin (TTX) and dark-rearing decrease GABA

immunoreactivity and GABAA receptor expression in adult

Figure 5. GABA immunoreactvity in retina of stage 42 and stage 47 tadpoles. A. Stage 42 coronal cryosection of the retina showing GABA
immunoreactivity (green) and propidium iodide (blue) staining in the retina. B. GABA immunolabeling alone. At this stage, GABA immunolabeling is
absent from the ganglion cell layer (GCL, hollow arrow) and outer nuclear label (ONL, hollow arrow). GABA-positive cell somata are densely packed in
the INL and ramify processes into the GCL (solid arrow) and OPL (solid arrow). D. Stage 47 sections through retina showing GABA immunoreactivity
(green) and propidium iodide counterstain (blue). A few GABA-positive somata are now evident in the GCL (arrowheads). GABA immunoreactivity is
present in the IPL, INL and OPL, but absent in the ONL. Scale bar, 25 mm.
doi:10.1371/journal.pone.0029086.g005

Figure 6. Modulation of GABA levels in the optic tectum by visual stimulation. A. Examples of cryosections from stage 47 midbrains
immunostained for GABA and ßIII-tubulin. Tadpoles were either visually stimulated (n = 5) or kept in the dark (n = 4) for 4 hr. Scale bar, 100 mm. B.
Animals exposed to visual stimulation had consistently higher levels of GABA immunoreactivity, normalized to ßIII tubulin, in both the neuropil and
cell body layer compared to animals kept in the dark (*p,0.05, Student’s t-test). C. Elisa measurements of GABA concentrations in homogenates of
optic tectum are significantly higher in animals exposed to 4 hr of visual stimulation compared to animals kept in the dark.
doi:10.1371/journal.pone.0029086.g006
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animals [94,95,96]. In the adult rodent somatosensory system,

whisker trimming leads to decreased GABA and GAD immuno-

reactivity in the corresponding barrels in the somatosensory cortex

[97]. Visual deprivation in adult rats decreases the ratio of GABA

receptors to AMPA receptors, and changes NMDA receptor

properties, characteristic of more plastic juvenile cortex [92].

Homeostatic control of inhibitory transmission may be regulated

differently during development [23]. During critical periods of

sensory system development, when the numbers and strength of

GABAergic synaptic contacts increase significantly [9,98,99,100],

dark rearing prevents the normal increase in GABAergic function

[88,99,100]. Careful quantitative studies demonstrate that the

number of GAD65 immunoreactive perisomatic puncta in layer

2/3 of visual cortex decreases in response to visual deprivation

from birth and that subsequent visual experience increases the

number in GAD65 immunoreactive boutons [101]. In the rodent

somatosensory system, unilateral vibrissa removal in pups

decreases the numbers of GABA-immunoreactive neurons in

contralateral layer 4, but also resulted in changes in inhibitory

circuitry in both ipsilateral and contralateral cortex [102]. Similar

to studies in visual cortex, whisker removal from birth decreased

the number of GABA immunoreactive synaptic inputs in layer 4,

determined by electron microscopy [21,103]. Our study, which

focused on rapid responses to increased sensory input, revealed

that just 4 hr of enhanced visual stimulation was sufficient to

elevate GABA levels in the developing Xenopus optic tectum. This

finding is consistent with a mechanism for rapid homeostatic

regulation of GAD activity that that could function to constrain

neuronal activity in the optic tectum, and maintain stable function

over a wide range of circuit excitation levels during a

developmental period when afferent and intrinsic activity may

be experiencing substantial fluctuations as the maturing circuit

undergoes dynamic structural remodeling and synaptic plasticity.

The finding is also consistent with a role for sensory input in

promoting the maturation of neurons and neuronal circuits. At

this point, the mechanistic and functional interactions between

experience-dependent maturation of circuits and experience-

dependent homeostatic regulation of circuit function during

development remain to be resolved.

Two isoforms of GAD are expressed in neurons. The GAD67

isoform is distributed throughout the neuron, is constitutively

active, and accounts for 90% of GABA synthesis in neurons [104].

By contrast, GAD65 enzymatic activity is regulated by neuronal

activity and is located selectively in nerve terminals [105,106,107],

where it may be optimized to respond to activity-dependent

cues to enhance GABA synthesis and vesicular packaging

[108,109,110]. Based on the visual-stimulation mediated increase

in GABA immunoreactivity in both the cell body region and

neuropil of the optic tectum, it appears that the increase in GABA

that we detect could arise from increased activity of both GAD67

and GAD65, consistent with changes in both somatic and

presynaptic GABA immunoreactivity reported in other systems

[21,94,95,96]. In the early developing Xenopus embryo, blockade of

signaling by early non-synaptic GABA or glutamate release has

been shown to impact transmitter fate in spinal neurons, favoring

an increased number of neurons subsequently expressing excit-

atory transmitters over neurons expressing inhibitory transmitters

[29,30]. These spontaneous activity-sensitive modifications of

neuronal transmitter fate are restricted to a very early embryonic

period, prior to functional synapse formation and are therefore

quite different from the homeostatic regulation we observed in

older tadpoles when tectal synapses are both functional and highly

plastic.

Numerous studies have investigated the cellular mechanisms of

homeostatic changes in inhibitory transmission. Chronic activity

blockade in cultured cortical neurons decreases the strength of

inhibition, detected as a decrease in the average amplitude of

miniature inhibitory postsynaptic currents (mIPSCs), by decreas-

ing postsynaptic GABAergic receptors [93]. This may be mediated

by glial release of Tumor Necrosis Factor-a, which causes

internalization of GABA receptors [111]. On the other hand,

intense afferent stimulation in hippocampal area CA1 increased

the strength of inhibitory connections by increasing GABAergic

mIPSC amplitudes through what appeared to be an enhancement

of presynaptic GABA content [91]. Another means by which the

neurons can modulate the efficacy of GABAergic transmission is

through control of their intracellular chloride concentration and

the chloride driving force [112]. By contrast both visual

deprivation and somatosensory can also lead to potentiation of

specific inhibitory connections in the cortical circuit [88,102],

suggesting that homeostatic regulation of circuit function can be

expressed as specific changes in strength of different types of

connections within the circuit.

Retrograde Brain-Derived Neurotrophic Factor (BDNF) signal-

ing through Tropomycin-Related Kinase receptor type B (trkB)

and subsequent kinase activity at the GABAergic presynaptic site

Table 1. Quantification of immunofluorescence intensity for ßIII-tubulin, GABA and the GABA/ßIII-tubulin ratio, measured in tectal
neuropil and the cell body layer from animals exposed to visual stimulus or dark.

LIGHT DARK

Region ßIIItubulin GABA ratio ßIIItubulin GABA ratio

Neuropil 25.066.1 15.861.6 0.7260.11 21.763.7 8.161.0 0.4060.06

cell body layer 21.563.7 14.162.0 0.7360.11 18.062.8 6.163.9 0.3660.04

Fluorescence intensity values are in arbitrary units.
doi:10.1371/journal.pone.0029086.t001

Table 2. Quantification of GABA levels (mg/ml) by ELISA.

aliquot LIGHT DARK

1 1.47 1.33

2 1.57 1.25

3 1.96 1.44

4 1.64 1.33

average 1.6660.21 1.3460.08

Tissue was collected from animals exposed to visual stimulation or kept in the
dark. A tissue homogenate sample was divided into 4 aliquots and each aliquot
was analyzed separately.
doi:10.1371/journal.pone.0029086.t002
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has been strongly implicated in the developmental and homeo-

static regulation of GABAergic transmission in both developing

and mature systems. In vitro studies in organotypic and acute brain

slices have demonstrated up-regulation of GABAergic inhibitory

synaptic number and strength, as well as increased levels of

GAD65 in response to local BDNF release [113,114] whereas a

single-cell genetic knockout of BDNF causes a local reduction in

inhibitory input [115]. Such rapid, acute control of GABAergic

transmission likely operates in part through regulation of GAD65

activity. On a longer time scale, BDNF-TrkB signaling may

directly regulate GAD65 expression levels through the activity-

regulated CREB-dependent GAD65 transcription [116]. Similar-

ly, the activity-regulated transcription factor, Npas4, appears to

regulate a program of gene expression that controls the

development of inhibitory connectivity [83]. Although BDNF

has been shown to affect several aspects of retinotectal develop-

ment [117,118,119,120,121], a particular role of BDNF in the

development of GABAergic circuitry in the tectum has not yet

been reported.
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