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Abstract

Intracellular transport of cholesterol contributes to the regulation of cellular cholesterol homeostasis by mechanisms that
are yet poorly defined. In this study, we characterized the impact of dynasore, a recently described drug that specifically
inhibits the enzymatic activity of dynamin, a GTPase regulating receptor endocytosis and cholesterol trafficking. Dynasore
strongly inhibited the uptake of low-density lipoprotein (LDL) in HeLa cells, and to a lower extent in human macrophages. In
both cell types, dynasore treatment led to the abnormal accumulation of LDL and free cholesterol (FC) within the
endolysosomal network. The measure of cholesterol esters (CE) further showed that the delivery of regulatory cholesterol to
the endoplasmic reticulum (ER) was deficient. This resulted in the inhibition of the transcriptional control of the three major
sterol-sensitive genes, sterol-regulatory element binding protein 2 (SREBP-2), 3-hydroxy-3-methyl-coenzymeA reductase
(HMGCoAR), and low-density lipoprotein receptor (LDLR). The sequestration of cholesterol in the endolysosomal
compartment impaired both the active and passive cholesterol efflux in HMDM. Our data further illustrate the importance of
membrane trafficking in cholesterol homeostasis and validate dynasore as a new pharmacological tool to study the
intracellular transport of cholesterol.
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Introduction

Membrane trafficking contributes to cell cholesterol homeostasis

through the control of intracellular cholesterol levels and

compartmentalization. Little is known about the transport

pathways involved in cholesterol trafficking and the associated

molecular machinery [1]. The level of cellular cholesterol results

from the tight control of both cholesterol neosynthesis and low-

density lipoprotein (LDL)-derived cholesterol uptake. The uptake

of LDL-derived cholesterol at the plasma membrane occurs

primarily through clathrin-dependent endocytosis of the low-

density lipoprotein receptor (LDLR), as shown in the seminal

studies by Brown and Goldstein [2]. This process delivers

lipoprotein-associated cholesterol esters (CE) first to the early

endosome (EE) and then to the late endosomal/lysosomal

network. At this stage, the acid hydrolases de-esterify CE into

free cholesterol (FC), which will leave the endolysosomal network

to reach the endoplasmic reticulum (ER) either directly or

indirectly after transiting through the Golgi apparatus and the

plasma membrane [3]. ER membranes, which are characterized

by a poor content in cholesterol, are home to the principal

effectors of cellular cholesterol homeostasis. Key of this regulation

is a family of membrane-bound transcription factors, sterol

regulatory element binding proteins (SREBPs). Under low sterol

concentration, SREBP is transported to the Golgi complex where

it is activated by proteolytic processing. This cleavage releases the

active form of SREBP, which is translocated to the nucleus where

it regulates the transcription of sterol responsive genes involved in

cholesterol synthesis (3-hydroxy-3-methyl-coenzymeA reductase

(HMGCoAR)) or uptake (LDLR) [4]. Cholesterol transport to the

ER is therefore a key element of the cholesterol homeostasis

machinery. The levels of cholesterol are constantly monitored by

the two chaperone proteins SCAP (SREBP cleavage activating

protein) and INSIG (insulin-induced gene protein). SCAP is a

SREBP Golgi escort protein while INSIG is an ER anchored

protein. Binding of cholesterol or oxysterols to SCAP or to INSIG,

respectively, promotes the interaction between SCAP and INSIG.

The formation of this complex masks the binding site on SCAP

that is recognized by the vesicular coat transport complex COPII,

thereby blocking SREBP transport from the ER to the Golgi

apparatus and the release of the cleaved SREBP active form [5,6].

Another important actor of this tight regulation is the acyl
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CoA:cholesterol acyltransferase (ACAT) enzyme localized in the

ER [7]. ACAT rapidly esterifies FC in CE to be stored in

cytoplasmic lipid droplets, in response to an increased concentra-

tion of cholesterol in the ER. ACAT activity is therefore required

for decreasing the amount of cytotoxic FC and for maintaining a

low level of cholesterol in the ER membranes, such that minimal

variations of sterol concentrations can be sensed. In some cases,

ER-derived vesicular structures that are positive for ACAT can

also be involved in this process. It has been proposed that these

structures, which are distinct from the conventional ER, may

protect the non-fragmented ER from being overloaded with

cholesterol [8].

The GTPase dynamin is a mechano-chemical enzyme required

for the pinching and release of a completed clathrin-coated pit

from the plasma membrane. In HeLa cells expressing the K44A

inactivated form of dynamin, we have revealed a new role for

dynamin in the delivery of endolysosomal FC to the ER [9]. The

inactivation of dynamin led to a Niemann-Pick type C-like

phenotype (NPC) with the accumulation of swollen late endo-

somes/lysosomes (LE/LS) engorged with FC. Dynamin inactiva-

tion was also associated with a strong reduction of sterol-sensitive

genes regulation and a decrease of the esterification of the

intracellular pool of cholesterol by ACAT. If K44A HeLa cells are

an easily amenable cell model, we sought to study the role of

dynamin in more physiologically relevant cell types such as

macrophages, which play a key role in atherosclerosis. However

there are technical limitations to obtain macrophages expressing

the inactivated form of dynamin. We therefore took advantage of

the membrane permeant chemical compound, dynasore, a

recently described noncompetitive inhibitor of the GTPase activity

of dynamin [10,11]. Dynasore presents also the advantage to act

within minutes and to have a completely reversible activity. To

validate the use of this new drug, we studied the impact of

dynasore on critical steps of cholesterol trafficking in both HeLa

cells and HMDM. We show here that dynasore rapidly inhibits the

egress of free cholesterol from the endolysosomal network in these

two cell types. As a result, the sterol-sensitive gene regulation of

cholesterol homeostasis is inhibited. Dynasore is therefore a new

drug that will be useful for further understanding cholesterol

endosomal trafficking, a key step in cholesterol homeostasis.

Materials and Methods

Cells and reagents
HeLa cells were cultured in Dulbecco modified Eagle’s medium

(DMEM) with 10% heat-inactivated fetal calf serum (FCS)

(Invitrogen, Cergy-Pontoise, France), 2 mM glutamine, 100 UI/

ml penicillin, 100 mg/ml streptomycin (Sigma-Aldrich, St Louis,

MO). Cells were treated with dynasore (Sigma-Aldrich) at 80 mM

in the presence of 1% lipoprotein-deficient serum (LPDS) medium

to avoid inactivation of dynasore by serum proteins. U18666A

(Sigma-Aldrich) was used at 3 mg/ml in 1% LPDS medium.

Monocytes were isolated from human blood of normolipidemic

donors by ficoll density gradient (Eurobio, les Ulis, France) and

subsequently differentiated into human monocytes-derived mac-

rophages (HMDM) by adhesion on plastic Primaria plates (Falcon

BD, Franklin Lakes, NJ,) for 7 days in RPM1640 medium,

supplemented with 10% heat-inactived FCS, 2 mM glutamine,

100 UI/ml penicillin, 100 mg/ml streptomycin, and 20 ng/ml

hM-CSF (human macrophages colony-stimulating factor) (AbCys,

Paris, France).

HeLa cells expressing a GFP tagged M6PR were described in

[12]. Cells were cultured in Dulbecco modified Eagle’s medium

(DMEM) with 10% heat-inactivated fetal calf serum (FCS)

(Invitrogen,), 2 mM glutamine, 100 UI/ml penicillin, 100 mg/ml

streptomycin (Sigma-Aldrich,) completed with geneticin. They

were treated with dynasore the same way that HeLa cells.

Antibodies
The mouse anti-human Lamp-1 antibody was from BD

Transduction Laboratories. Primary antibodies were revealed by

incubation with Alexa FluorH488 donkey anti-mouse IgG

(Invitrogen).

Cholesterol delivery to the cell
Human LDL (d = 1.019–1.063 g/ml) were separated from fresh

plasma by sequential ultracentrifugation as described previously

[9]. HeLa cells deprived of sterols for 48 h in 10% LPDS medium

were incubated for the indicated times with LDL (200 mg/ml),

supplemented with 50 mM pravastatin and 50 mM sodium

mevalonate. HMDM were incubated with 50 or 100 mg/ml of

acetylated LDL (AcLDL) prepared using the standard acetic

anhydride-sodium acetate solution on ice as described [13].

LDL and AcLDL labeling
LDL were labeled with DiI (1,19-dioctadecyl-3,3,3939-tetra-

methyl-indocarbocyanine) as described previously [14]. Briefly,

DiI were added to LDL to a final ratio of 300 mg for 1 mg LDL

protein. After incubation for 18 h at 37uC under nitrogen and

light protection, DiI-labeled LDL were isolated by ultracentrifu-

gation and extensively dialyzed at 4uC against PBS (Eurobio). For

DiI-AcLDL production, AcLDL were first labeled with DiI and

acetylated.

LDL uptake assay
LDL uptake was described in [9]. Briefly, cells grown in LPDS

medium during 48 h were washed in PBS and incubated at 37uC
with increasing concentrations of DiI-LDL (HeLa cells) or DiI-

AcLDL (HMDM) as indicated. After 4 h, cells were treated by

trypsin to remove cell surface bound fluorescent LDL. Cells were

detached and washed twice in PBS at 4uC. The fluorescence of

internalized DiI-LDL or DiI-AcLDL was measured by flow

cytometry (emission at 585 nm) and expressed as mean fluores-

cence intensity.

Measurement of cellular cholesterol
After 48 h of culture in LPDS medium, cells were incubated for

6 h with 200 mg/ml LDL (HeLa cells) or 50 mg/ml AcLDL

(HMDM) and then lysed in 0.2 M NaOH. Total cholesterol was

extracted with methanol (2.5 ml) followed by hexane (5 ml). About

4.5 ml of the hexane phase was evaporated under vacuum and

dissolved in mobile phase. Separation of FC and CE including

cholesteryl docohexanoate (CDH), cholesteryl arachidonate (CA),

cholesteryl linoleate (CL), cholesteryl myristate (CM), cholesteryl

oleate (CO) and cholesteryl stearate (CS) was done by reverse

phase HPLC on a C-18 column (2560.46 cm length, 5-mm pore

size, Sigma-Aldrich) by measuring the 205 nm absorbance after

elution with acetonitrile/isopropanol (30/70, v/v) [15,16]. The

amount of proteins present in cell lysates and LDL preparations

was measured using the bicinchoninic acid (BCA) method [17].

ACAT activity
120 mM sodium myristate (Sigma-Aldrich) was added during

cholesterol delivery to the cells. The ACAT enzyme activity was

evaluated by quantifying the incorporation of myristate into

cholesteryl myristate by HPLC as described above. The ACAT

inhibitor Sandoz 58-035 (Sigma-Aldrich) (10 mg/ml) was added to
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the cholesterol loading medium. When ACAT activity is inhibited,

CE are provided by pre-existing pools such as endocytosed LDL.

Therefore, the difference in cholesterol esterification measured by

HPLC with and without Sandoz 58-035 represents the specific

amount of cholesterol esterified by ACAT.

Cellular cholesterol mass efflux to apoA-I and HDL in
cholesterol-loaded macrophages

After treatment with dynasore or U18666A, HMDM were

equilibrated in RPMI1640 0.2% BSA for 16 h in the presence or

not of 5 mg/ml 22-hydroxy-cholesterol (22OH-C) and 10 mM 9-cis

retinoic acid (9cRA) (Sigma-Aldrich). Cellular cholesterol efflux to

either 1 mg/ml methyl-b-cyclodextrin (MbCD), 10 mg/ml lipid-

free apoA-I (Sigma-Aldrich) or 15 mg/ml high-density lipoprotein-

phospholipids (HDL-PL isolated from normolipidemic human

plasma by preparative ultracentrifugation) was measured during a

4 h chase period. Drugs were maintained during the equilibration

and efflux periods. At the end of the efflux, the medium was

collected and the cells lysed in 0.2 M NaOH. Cell and media were

extracted and analyzed for free and esterified cholesterol mass by

HPLC as described above. HDL samples were separately analyzed

to allow correction for HDL cholesterol present in relevant media

samples. Mass cholesterol efflux is expressed as the percentage of

efflux (medium cholesterol over total cholesterol-medium and cells)

[18].

Immunofluorescence
Analysis of LDL-derived cholesterol trafficking was performed

by immunofluorescence as described [9]. Briefly, HeLa cells and

HMDM were grown on cover slips for 48 h in LPDS medium. To

monitor LDL trafficking, cells were incubated with fluorescent

LDL for indicated times. Cells were incubated with 200 mg/ml

LDL or 50 mg/ml AcLDL and then stained with filipin (50 mg/ml)

to detect FC as described [19]. Cells were fixed in 4%

paraformaldehyde (PFA) in PBS. For immunolocalization studies,

cells were incubated with primary and secondary antibodies

diluted in PBS/BSA with saponin. Cover slips were mounted in

MOWIOL, and cells were imaged with an epifluorescent Leica

microscope.

RNA extraction, RT-PCR and real time quantitative PCR
Total RNA was extracted from HeLa cells using the RNeasy

Mini kit (Qiagen, Courtaboeuf, France). One microgram of total

RNA was transcribed to cDNA using random hexamers

(Amersham, Orsay, France) and SuperScriptII reverse transcrip-

tase (Invitrogen). Specific primers were described previously [9].

Figure 1. Effect of dynasore on LDL uptake and total cholesterol in HeLa cells and HMDM. Cells were incubated for 4 h with 0–200 mg/ml
DiI-LDL (A) or 0–100 mg/ml DiI-AcLDL (C) at 37uC with 0.4% v/v DMSO (control) or 80 mM dynasore. The total amount of endocytosed DiI-LDL or DiI-
AcLDL was measured by flow cytometry. Values represent the mean 6 SD of triplicate experiments. Total cholesterol was quantified in HeLa cells (B)
and HMDM (D) after 4 h of LDL uptake with 0.4% v/v DMSO (control) or 80 mM dynasore. Each value is the mean 6 SD of triplicate experiments and
expressed as nanomoles per mg of cell proteins.
doi:10.1371/journal.pone.0029042.g001
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Real-time quantitative PCR analyses were performed using the

SybrH Green reagents kit (Applied Biosystems, Courtaboeuf,

France) with an ABI PRISM 7900HT Sequence detector

instrument (Applied Biosystems) according to the manufacturer’s

instructions. Amplification was carried out in a final volume of

10 mL with 20 ng of reverse transcribed total RNA, 150 nM

(HMGCoAR, LDLR) or 300 nM (UBC and SREBF-2) of both

sense and antisense primers (Eurogentec, Liège, Belgium) in the

SybrH Green PCR Master Mix (MESA GREEN qPCR,

Eurogentec). The cycling conditions comprised 40 cycles at

95uC for 15 s and 60uC for 1 min. Relative quantification for a

given gene, expressed as fold-variation over control at T0, was

calculated after normalization to a reference gene (UBC) and

determination of the CT (cycle threshold) difference between

conditioned cells and control cells at T0 using the comparative CT

method [20]. Efficiencies of the target and control amplification

were very similar.

Dynamin 2 RNAi Treatment
Non targeting siRNA (si scramble) and siRNA against

dynamin2 (si Dyn2) (GGA CAU GAU CCU GCA GUUdTdT)

were described in [21]. Briefly, HeLa cells were transfected using

RNAiMAX (Invitrogen) according to the manufacturer’s instruc-

tions. Knockdown of Dyn2 was observed 48 h post-treatment.

Cells transfected with scramble siRNA were used as a control.

Western Blotting
Cells were lysed in 1% triton 6100 in PBS containing protease

inhibitors. Proteins (30 mg per lane) were separated on a 3–8%

NuPAGE in Tris acetate gels (Invitrogen) and transferred to a

PDVF membrane (Bio-Rad, Hercules, CA). The membrane was

incubated for 1 h in blocking solution (5% nonfat dry milk, 0.1%

Tween 20 in PBS). Dynamin 2 was detected using mouse

monoclonal anti-dynamin 2 (Invitrogen). A rabbit anti-b-actin

polyclonal antibody was used as loading control (Sigma).

Development was performed with chemiluminescent detection

kit (ECL, Amersham Life Science).

Results

Dynasore inhibits the uptake of LDL cholesterol in HeLa
cells and human macrophages

We tested the effect of dynasore on HeLa cells, where dynamin

was first reported to control CT trafficking [9]. Dynasore was

tested at 80 mM, the concentration shown to efficiently block the

internalization of the transferrin receptor [10]. We measured the

uptake of fluorescently labeled human LDL by flow cytometry.

Dynasore treatment led to a strong inhibition of LDL uptake at

10 mg/ml with less than 10% of the uptake level measured in

untreated cells (Figure 1A). For comparison, the uptake of LDL

was decreased by about 50% in our previous study with HeLa cells

expressing the K44A inhibitory mutant of dynamin [9]. The

continuous uptake of LDL for 6 hours in sterol-starved cells led to

a 2.5 fold increase of the total amount of cellular cholesterol – free

and esterified – as measured by HPLC in control cells. Despite the

strong inhibition of LDL uptake, there was still an increase albeit

more moderate in dynasore-treated cells (50615 and 4368 nmol/

Figure 2. Effects of dynasore on the intracellular distribution of
FC and LDL in HeLa cells and HMDM. (A) Hela cells were loaded
with 200 mg/ml LDL for 24 h. Cells were then treated for 6 h with 80 mM
dynasore or without (control) and stained with filipin to detect FC. (B)
Cells were treated as described above with 200 mg/ml DiI-LDL. (C)
HMDM were incubated for 6 h in LPDS medium containing 50 mg/ml
DiI-AcLDL with 80 mM dynasore or without (control). (D) HMDM were
loaded with 50 mg/ml DiI-AcLDL for 24 h and then treated for 6 h with
80 mM dynasore or without (control). Images were obtained using wide-
field epifluorescence microscopy. Scale bars, 10 mm.
doi:10.1371/journal.pone.0029042.g002

Figure 3. Dynasore treatment results in the endolysosomal
accumulation of FC and LDL in HeLa cells. Cells were treated for
6 h with 80 mM dynasore or without (control) in medium containing
200 mg/ml LDL (A) or DiI-LDL (B) and processed for filipin staining (A) or
DiI-LDL detection (B). Left panels present Lamp1 staining. Merge of
Lamp1 with FC (A) or with DiI-LDL (B) is shown in the right panel. Scale
bars, 10 mm.
doi:10.1371/journal.pone.0029042.g003
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mg cell protein, respectively; Figure 1B). This is in agreement with

our findings in HeLa cells that cholesterol can enter cells through

other dynamin-independent endocytic pathways [9]. We next

characterized dynasore in HMDM since they play a central role in

the formation and progress of atherosclerotic plaques [22]. The

uptake of AcLDL in HMDM was twice as much less efficient than

the uptake of LDL in HeLa cells (Figure 1C). The effect of

dynasore was less important in HMDM since the uptake of

AcLDL uptake was decreased by 50% at 10 mg/ml and by 17% at

100 mg/ml. However, the absolute amount of endocytosed

cholesterol was similar in HeLa cells and HMDM treated by

dynasore. In agreement with the lower inhibition of AcLDL

uptake, the measure of the total amount of cholesterol revealed no

difference between control and dynasore-treated HMDM

(Figure 1D).

Dynasore blocks the egress of free cholesterol from the
late endosomal network in HeLa cells and human
macrophages

We examined the intracellular distribution of FC derived from

endocytosed LDL using filipin, a naturally fluorescent antibiotic

that binds selectively to the FC fraction present in cellular

membranes. We also visualized the intracellular distribution of

DiI-LDL since we showed previously that DiI-LDL undergo the

same endocytic and degradative processes than unlabeled LDL

[9]. Cells were incubated with LDL for 24 hours to allow their

distribution within the different endosomal compartments along

the endocytic pathway. In control cells, FC was found into small

endosomal structures within the cytoplasm of the cell (Figure 2A).

A similar pattern was found for DiI-LDL (Figure 2B). Upon

dynasore treatment, we could observe the accumulation of FC and

Internalized DiI-LDL into numerous enlarged endosomes

(Figures 2 A and B). We also examined the intracellular

distribution of DiI-AcLDL in HMDM after 6 hours of internal-

ization. Dynasore treatment led also to an increase of both the

number and the size of the endosomal structures loaded with DiI-

AcLDL (Figure 2C). This effect was enhanced when cells were first

incubated with DiI-AcLDL for 24 hours before the addition of

dynasore (Figure 2D). These endosomes were part of the late

endosomal network since they were positive for the lysosomal

associated membrane protein 1 (Lamp1), a marker of late

endosomes and lysosomes (Figures 3 A and B). Thus, dynasore

which blocks the GTPase activity of dynamin, causes the

accumulation of endocytosed LDL-derived cholesterol in the late

endocytic compartment and prevents its egress from this

compartment in both HeLa and HMDM cells. This is in

agreement with our previous study showing that dynamin controls

the delivery of cholesterol from late endosomes to the ER in HeLa

cells [9]. The abnormal endosomal accumulation of LDL was

already observed after 15 min of dynasore treatment indicating

that dynasore acts at the endoslysosomal level in the same order of

time that it requires to inhibit the uptake of transferrin and LDL at

the plasma membrane (data not shown) [10].

Down-expression of dynamin results in the inhibition of
free cholesterol egress from the late endosomal network

To confirm the specificity of dynasore treatment, we depleted

endogenous dynamin 2, the major dynamin isoform expressed in

HeLa cells using specific siRNA. Dyn2 siRNa treatment led to a

strong down-expression of dynamin 2 as assessed by real time

quantitative RT-PCR (data not shown) and western blot analysis

(Figure 4A). Under this treatment, there was an accumulation of

swollen endosomal structures loaded with LDL or FC, and positive

for Lamp1 (Figure 4 B and C). These results faithfully reproduce

the phenotype observed with dynasore treatment and therefore

exclude dynasore side effects at the endosomal interface.

Dynasore prevents the down-regulation of sterol-
sensitive genes induced by exogenous LDL-derived
cholesterol

The delivery of FC from the late endolysosomal compartment

to the ER is a key process in the transcriptional regulation of

sterol-sensitive genes [1,7,9]. We therefore studied whether

dynasore had an impact on this regulation. In contrast to the

conditional K44A HeLa cell line that requires 48 hours to express

the K44A dynamin mutant [9], dynasore is active within a few

minutes. We thus determined the minimal amount of time

required to measure an effect of dynasore on the expression of the

LDLR gene, one of the major actors of the transcriptional control

Figure 4. Dynamin silencing leads to endolysosomal accumu-
lation of FC and LDL in HeLa cells. HeLa cells were transfected with
Dyn2 siRNA or scramble siRNA (control) for 48 h in LPDS medium
(LPDS) or LPDS medium and 200 mg/ml LDL (LDL). Dyn2 and actin levels
were determined by western blot (A). Cells were loaded for 6 h with
200 mg/ml LDL and stained with filipin to detect FC (C). Cells were
treated as described above with 200 mg/ml DiI-LDL (B). Images were
obtained using wide-field epifluorescence microscopy. Scale bars,
10 mm.
doi:10.1371/journal.pone.0029042.g004
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of cholesterol homeostasis [2]. After 48 hours of sterol starvation,

cells were incubated with LDL in the presence or in the absence of

dynasore. The kinetics of expression of the LDLR gene were

monitored by real time quantitative RT-PCR analysis in HeLa

cells (Figure 5A). As expected in cells that are in excess of

exogenous cholesterol, a potent repression of the expression of the

LDLR gene was measured as early as 5 hours after the addition of

LDL and for as long as 24 hours in control cells. In contrast, no

down-expression of the LDLR gene could be measured in cells

treated with dynasore at similar times, and LDLR expression levels

were similar to those observed in cells not supplemented with

LDL. Seven hours after LDL addition, however, the effect of

dynasore decreased progressively and the level of LDLR gene

expression resumed to control values at 24 hours. Thus, we chose

to analyze the effects of dynasore after 6 hours of LDL addition,

which corresponds to a strong repression of the sterol-sensitive

transcriptional response in control cells and to the maximal

inhibition by dynasore. At 6 hours, dynasore also strongly

inhibited the LDL-induced repression of another major sterol-

sensitive gene, HMGCoAR, whereas the repression on SREBF-2

gene expression was not observed at this time in HeLa cells

(Figure 5B). Similar results were obtained in dynasore-treated

HMDM, with a strong inhibition of the down-regulation of sterol-

sensitive genes (LDLR, HMGCoAR and to a lesser extent,

SREBF-2) induced by AcLDL (Figure 5C). These data are in

agreement with the accumulation of LDL and AcLDL in enlarged

Figure 5. Dynasore blocks sterol-sensitive genes regulation in HeLa cells and HMDM. (A) Kinetics of LDLR expression analyzed by RT-PCR.
HeLa cells were grown in LPDS medium for 48 h and further incubated for the indicated times with medium containing either LPDS, 200 mg/ml LDL,
or 200 mg/ml LDL with 80 mM dynasore. (B) The expression level of sterol-sensitive genes (LDLR, HMGCoAR and SREBF-2) was quantified after 6 h in
HeLa cells grown in LPDS, with 200 mg/ml LDL or 200 mg/ml LDL with 80 mM dynasore, as indicated. (C) The same experiment was performed in
HMDM with 50 mg/ml AcLDL. Relative quantification of LDLR, HMGCoAR, and SREBF-2 genes in HeLa cells or HMDM was expressed as fold-variation
over control (LPDS/DMSO) after normalization. All CT determinations were made in triplicate.
doi:10.1371/journal.pone.0029042.g005
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endosomes observed in both cell types (Figure 2) and are likely to

reflect a defect in the delivery of LDL-derived cholesterol to the

ER.

Dynasore prevents the esterification of exogenous LDL-
derived cholesterol

We next measured the fraction of esterified cholesterol by the

ACAT enzyme as a marker of the amount of FC being delivered

to the ER. Indeed, CE are generated from FC by the activity of

the ACAT enzyme [7]. Since this enzyme is strictly localized in the

ER membranes, the amount of cholesterol esterified by ACAT

reflects the amount of FC delivery to the ER [23,24]. Thus, we

measured by HPLC the balance between the pools of free and

esterified intracellular cholesterol. When HeLa cells were grown

under sterol starvation, cholesterol was mainly detected as FC and

esters represented less than 5% of total cholesterol (Figure 6A).

After the addition of LDL, the total amount of CE represented

more than 30% of total cholesterol. Dynasore treatment reduced

this amount by about 15%. This moderate inhibition disagrees

with the complete absence of sterol-sensitive genes repression in

dynasore treated cells as observed above. Thus, we studied

whether a fraction of the measured pool of CE may be

independent from the ER-ACAT activity. Indeed, dynasore

treatment leads to the abnormal endosomal accumulation of

LDL, which are unlikely to be de-esterified by the lysosomal

hydrolases and thus could contribute to the total intracellular pool

of CE. Therefore, we measured the total amount of CE in HeLa

cells in which ACAT activity was pharmacologically inhibited.

Under this condition, we found that the amount of CE generated

by ACAT accounted for only 38% of the total intracellular pool of

CE (Figure 6A). When cells were treated with dynasore, this

amount decreased to about 10%, which represents a 74%

inhibition of LDL-derived cholesterol esterification. We could

confirm this result by measuring the synthesis of cholesteryl

myristate by ACAT, an ester that was not initially present in our

cells. After addition of myristate, we found by HPLC that the

production of cholesteryl myristate was decreased by 80% in cells

treated with dynasore (Figure 6B).

In HMDM, dynasore treatment decreased the total amount of

CE more efficiently than in HeLa cells (Figure 6C). However, the

level of CE was initially lower in HMDM than in HeLa cells (11%

versus 35%, respectively). This could be due to different kinetics of

Figure 6. Dynasore decreases the production of cholesterol esters from LDL- or AcLDL-derived cholesterol. HeLa cells or HMDM were
respectively incubated with 200 mg/ml LDL (A) or 50 mg/ml AcLDL (C) and treated for 6 h with 80 mM dynasore or without (control). The total amount
of CE was quantified and expressed as the percent of the total amount of cholesterol. ACAT-dependent ester formation was measured with 10 mg/ml
ACAT inhibitor (grey bars). The production of cholesteryl myristate was measured in HeLa cells (B) or HMDM (D) treated or not (control) with 80 mM
dynasore. Cholesteryl myristate was expressed in nmol/mg protein. Each value is the mean of triplicate experiments.
doi:10.1371/journal.pone.0029042.g006
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AcLDL uptake and the lower concentration used (50 mg/ml).

Indeed, after 24 hours of incubation with AcLDL, the level of CE

in HMDM was higher and represented 40% of total cholesterol

(data not shown). Again, dynasore treatment led to a strong

decrease (90%) of the amount of CE specifically generated by

ACAT (Figure 6C) and of the incorporation of myristate into CE

(82% inhibition) (Figure 6D). Together these findings demonstrate

that the abnormal endosomal accumulation of LDL induced by

dynasore treatment results in a strong defect of FC delivery to the

ER.

Dynasore decreased cholesterol efflux in human
macrophages

Although reverse cholesterol transport (RCT) is a general

peripheral process, macrophages are the primary cells that are

overloaded with cholesterol in atherosclerotic lesions [25]. The

efficiency of cholesterol efflux, the first step of RCT from

macrophage foam cells, is determined not only by the activity of

cholesterol transporters and extracellular acceptors, but also by the

availability of cholesterol for efflux. It was therefore interesting to

test whether the abnormal sequestration of large amounts of

cholesterol in the endolysosomal compartment could affect the

cholesterol efflux capacity of HMDM. Thus, we measured

cholesterol mass efflux to either lipid-free apoA-I or to HDL

(high density lipoproteins) in HMDM loaded with AcLDL

(Figure 7A). Dynasore treatment resulted in a strong decrease of

cholesterol efflux to apoA-I (40%) and HDL (70%). Similar results

were observed when cholesterol efflux was stimulated with the

natural LXR/RXR agonists, 22OHC/9cRA (Figure 7B). The two

ABC (ATP binding cassette) members of cholesterol transporters,

ABCA1 and ABCG1 have been involved in cholesterol efflux to

lipid poor apoA-I and HDL, respectively [25,26]. We thus

examined the impact of dynasore treatment on ABCA1 and

ABCG1 gene expression. As expected, the addition of AcLDL to

HMDM led to an increase of ABCA1 and ABCG1 mRNA levels

Figure 7. Dynasore impairs cellular cholesterol efflux from HMDM. HMDM were incubated for 6 h with 100 mg/ml AcLDL with 80 mM
dynasore or without (control). The cellular cholesterol efflux to 10 mg/ml apoA-I or 15 mg/ml HDL-PL before (A) and after (B) stimulation of ABCA1 and
ABCG1 expression by the LXR/RXR agonists was quantified. Results are expressed as the percentage of the quantity of released cellular cholesterol
into the medium to the total quantity of cholesterol in cells and medium. Each value is the mean of triplicate experiments. (C) Relative quantification
of ABCA1 and ABCG1 transporter genes levels was expressed as fold-variation over control (DMSO/LPDS) after normalization. All CT determinations
were made in triplicate. (D) Passive cholesterol efflux to 1 mg/ml MâCD was quantified as above.
doi:10.1371/journal.pone.0029042.g007

Figure 8. Dynasore treatment affects M6PR distribution. (A)
Cells expressing GFP-M6PR were treated 6 h with 80 mM dynasore or
without (control). Images were obtained using wide-field epifluores-
cence microscopy. Scale bars, 10 mm.
doi:10.1371/journal.pone.0029042.g008
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(1.9-fold and 3.5-fold, respectively). However, this up-regulation

was completely abolished when HMDM were treated by dynasore

(Figure 7C). Finally, we examined whether dynasore treatment

could affect the amount of cholesterol associated with the plasma

membrane, which is involved in the passive cholesterol efflux

pathway. To address this question, we used MbCD, a high-affinity

acceptor of cholesterol. Short time incubation with MbCD was

shown to remove cholesterol from the plasma membrane [27].

Under these conditions, cholesterol efflux was significantly

decreased (34%) in dynasore-treated cells (Figure 7D). Together,

these results indicate that dynasore, by affecting intracellular

cholesterol trafficking, has a major impact on several pathways

implied in active and passive cholesterol efflux.

Dynasore affects the intracellular distribution of the
mannose 6-phosphate receptor

We tested whether dynasore could affect the trafficking of other

cargos through the late endosomal network. We therefore studied

the cation-independent mannose 6-phosphate receptor (M6PR),

which constitutively recycles between late endosomes and the

Golgi complex [28]. When HeLa cells expressing a GFP tagged

M6PR were treated by dynasore, we observed that the M6PR was

not present at the Golgi complex and was localized instead in

dispersed endosomal structures (Figure 8). This result, in

agreement with a previous study [28], indicates that the effect of

dynasore was not restricted to the block of FC from the late

endosomal network but affected also cargo trafficking at this

interface.

Comparison of dynasore and U18666A treatments on
cholesterol trafficking in HeLa cells and macrophages

These results led us to compare the effects of dynasore with

U18666A, a hydrophobic amine that has been extensively used to

study cholesterol homeostasis, and more particularly cholesterol

intracellular trafficking [29]. In contrast to dynasore, we found

that U18666A treatment led to a respective 20% and 40%

increase of LDL uptake and AcLDL in HeLa cells and HMDM

(Figure 9 A and C). Accordingly, we measured an increase in the

total amount of cholesterol present in HeLa cells and HMDM

after U18666A treatment (Figures 9 B and D). The inhibition of

cholesterol egress from late endosomes and lysosomes is a well-

known effect of U18666A [29,30]. As expected, treatment with

U18666A led to the formation of swollen endosomal structures

loaded with FC in HeLa cells and HMDM (Figure 10). These

structures were part of the endolysosomal network as confirmed by

staining with Lamp1 (not shown). As a consequence, there was no

response of sterol-sensitive genes to the addition of LDL or AcLDL

in U18666A treated cells (Figures 11 A and B). In contrast to cells

Figure 9. Effect of U18666A on LDL uptake and total cholesterol in HeLa cells and HMDM. LDL uptake was measured in HeLa cells (A) and
HMDM (C) after incubation at 37uC for 4 h with 0–200 mg/ml DiI-LDL or 0–100 mg/ml DiI-AcLDL, respectively, with 3 mg/ml U18666A or without
(control). The amount of endocytosed DiI-LDL and DiI-AcLDL was measured by flow cytometry. Values represent the mean 6 SD of triplicate
experiments. Total cholesterol was quantified in HeLa cells (B) and HMDM (D) after 4 h of LDL uptake with 3 mg/ml U18666A or without (control).
Each value is the mean 6 SD of triplicate experiments and expressed as nanomoles per mg of cell proteins.
doi:10.1371/journal.pone.0029042.g009
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treated with dynasore, we observed a slight increase in the

percentage of CE in U18666A-treated cells (Figures 11 C and D).

The measure of CE in cells loaded with cholesterol in the presence

the ACAT inhibitor revealed that the fraction of CE specifically

generated by ACAT was 54% of the total intracellular pool of CE.

When cells were treated with U18666A, the amount of CE

generated by ACAT was decreased by 90%. Likewise the

incorporation of myristate into CE was strongly inhibited by

U18666A (Figure 11 E and F).

Finally, we also measured the effects of U18666A on cholesterol

efflux. As shown in Figures 12 A and D, the cellular cholesterol

efflux to apoA-I, HDL, and MbCD was decreased by 42%, 58%,

and 37%, respectively when macrophages were treated with

U18666A. A similar decrease was measured in AcLDL-loaded

macrophages after stimulation by the LXR/RXR agonists,

22OHC/9cRA (Figure 12B). Like dynasore, U18666A completely

blocked the increase of ABCA1 and ABCG1 mRNA levels in

response to the addition of AcLDL in HMDM (Figure 12C).

Discussion

Dynasore is a small drug that was identified through a chemical

screen designed for inhibitors of the dynamin GTPase activity

[10]. Because of its cell membrane permeability and reversibility,

dynasore has since been extensively used to block in a selective and

powerful manner the different endocytic pathways that rely on the

dynamin GTPase. In a previous work based on the expression of

the K44A inactivated mutated form of dynamin, we could

demonstrate that dynamin activity was also required for proper

sorting of cholesterol in the endolysosomal network of HeLa cells.

K44A dynamin expression led to the inhibition of free cholesterol

endosomal egress to the ER, which instead accumulated into

swollen endosomes of the endolysosomal network. As a result, the

sterol-sensitive gene regulation was inhibited [9].

In this study, we took advantage of the cell permeability of

dynasore to further extend our understanding of cholesterol

intracellular trafficking in human macrophages. We chose to work

on HMDM isolated from peripheral blood since available mouse

or human macrophages cell lines do not entirely reproduce the

characteristics of primary cultured HMDM. The monocytes were

differentiated into macrophages by hM-CSF instead of hGM-CSF

since it favors the expression of cell surface markers that are closer

to those found in macrophages from atherosclerotic lesions [31].

AcLDL were used instead of native LDL since AcLDL uptake is

20-fold higher in human macrophages [32]. Indeed, the class A

macrophage scavenger receptor SR-A accounts for the majority of

AcLDL uptake, a pathway that is unregulated and can lead to the

intracellular accumulation of large amounts of cholesterol and

foam cell formation. In contrast, the uptake of native LDL is

minor and regulated in macrophages [33]. Moreover, Wang et al.

have shown in macrophages that AcLDL-delivered cholesterol is

preferentially transported into the late endosomal network

whereas LDL-derived cholesterol is preferentially transported to

the recycling compartment [34]. In this study, we show that

dynasore recapitulates the effects of the K44A dynamin mutant on

cholesterol homeostasis that we have first described in HeLa cells.

Dynasore, however, was more efficient to block LDL uptake than

the K44A mutant, which probably reflects the more homogenous

cell distribution of the drug. Interestingly, the inhibition of AcLDL

uptake by dynasore was less efficient in human macrophages. This

is in agreement with the lesser inhibition of AcLDL uptake that

was also reported in HMDM after down-expression of clathrin

[35]. Macrophages can use several alternative pathways such as

macropinocytosis or caveolae for the uptake of AcLDL [35,36].

Our data suggest that the dynamin-independent endocytic

pathways are the main contributors to AcLDL uptake in HMDM.

In contrast to dynasore, U18666A leads to an increase of LDL

uptake in both HeLa cells and HMDM. This increase, which is

much higher in HMDM cells, can be inhibited by dynasore (not

shown) indicating that U18666A up-regulates LDL uptake

through the classical endocytic pathways. The increased LDL

uptake is probably due to the known increased expression of LDL

receptors resulting from the inhibition of FC delivery to the ER by

U18666A. Dynasore treatment, which also leads to an increase of

LDL receptor gene expression (Figure 4), does not result however

in increased LDL uptake, because of its inhibitory effect on LDLR

endocytosis through clathrin-coated pits.

We show that dynasore blocks the delivery of exogenous LDL-

derived cholesterol from the endolysosomal network to the ER,

resulting in the inhibition of both sterol-sensitive genes regulation

and cholesterol esterification. Similar findings were found in cells

where dynamin 2 was down-expressed by RNAi treatment

confirming the specificity of dynasore effect at the late endosomal

network. Interestingly, dynasore and U18666A present the same

effects on cholesterol membrane trafficking and sterol-sensitive

genes regulation.

The kinetics of the inhibition of LDL induced sterol-sensitive

genes down-regulation showed that dynasore activity was maximal

at 6 hours. We observed a progressive decrease of dynasore effect

with time, an effect not observed with U18666A. Whether this is

due to an inactivation of the drug with time or to the delivery of

Figure 10. Effects of U18666A on the intracellular distribution
of FC and LDL in HeLa cells and HMDM. HeLa cells and HMDM
were respectively incubated for 6 h with 200 mg/mL LDL (A) or 50 mg/
ml AcLDL (C) with 3 mg/ml U18666A or without (control) and stained
with filipin to detect FC. (B–D) HeLa cells and HMDM were respectively
incubated for 6 h with 200 mg/ml DiI-LDL (B) or 50 mg/ml DiI-AcLDL (D)
with 3 mg/ml U18666A or without (control) and processed to visualize
LDL distribution. Images were obtained using wide-field epifluores-
cence microscopy.
doi:10.1371/journal.pone.0029042.g010
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FC to the ER by alternative pathways has to be documented. In

this context, it is interesting that the inhibition of LDL uptake by

dynasore persisted for 24 hours suggesting that the drug was still

active at this time (data not shown).

Different cholesterol efflux pathways have been described that

occur either by a non regulated diffusive process, or actively

mediated by SR-BI and ABC transporters [26]. Recent studies

indicate that ABCA1 and ABCG1 are the main contributors to the

Figure 11. U18666A inhibits ACAT activity and sterol-sensitive genes regulation in HeLa cells and HMDM. Cells were grown in LPDS
medium for 48 h and further incubated for 6 h with 200 mg/ml LDL (A) or 50 mg/ml AcLDL (B) with 3 mg/ml U18666A or without (control). Relative
quantification of LDLR, HMGCoAR, and SREBF-2 genes in HeLa cells (A) or HMDM (B) was expressed as fold-variation over control (LPDS/DMSO) after
normalization. All CT determinations were made in triplicate. The total amount of CE was quantified HeLa cells (C) and in HMDM (D) and expressed as
the percent of the total amount of cholesterol. ACAT-dependent ester formation was measured with 10 mg/ml ACAT inhibitor (grey bars). Cholesteryl
myristate formation was measured in HeLa cells (E) or HMDM (F) with 3 mg/ml U18666A or without (control). Cholesteryl myristate was expressed in
nmol/mg protein. Each value is the mean of triplicate experiments.
doi:10.1371/journal.pone.0029042.g011
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net cholesterol efflux from macrophages to HDL or serum

[34,37,38]. Our data show that the cholesterol efflux mediated

by ABCA1 and ABCG1 was impaired in dynasore-treated

HMDM, even after stimulation with the LXR/RXR agonist.

Similar results were obtained with U18666A. It has been shown

that the endolysomal sequestration of LDL-derived cholesterol in

NPC2/2 cells altered cholesterol efflux by reducing the amount of

cholesterol substrate available for ABCA1 and by defective

synthesis of LDL-cholesterol-derived side-chain oxysterols

[39,40]. The decreased production of oxysterols, which are

endogenous LXR ligands, results in reduced ABCA1 and ABCG1

expression and lower cholesterol efflux activity [41]. 27 hydro-

xycholesterol is the most abundant oxysterol present in macro-

phages. A key step in 27 hydroxycholesterol synthesis is the

delivery of cholesterol to mitochondria where is present the sterol-

27 hydroxylase CYP27. It is therefore tempting to speculate that

the decrease of ABCA1 and ABCG1 gene expression is due to a

decreased delivery of cholesterol to mitochondria. Alternatively,

the decrease of cholesterol efflux mediated by ABCA1 and

ABCG1 could be the consequence of a reduction of the pool of FC

at the plasma membrane since it is a preferential site to collect FC

coming from the endolysosomal compartment.

The role of dynamin in endolysosomal sorting remains poorly

documented. We show here that dynasore treatment affects not

only cholesterol trafficking but also the intracellular distribution of

the M6PR. A recent work has shown that dynamin 2 controlled

the exit of the EGFR from late endosomes through its association

with CIN85 [42]. Altogether these data demonstrate that dynamin

controls trafficking events within the endolysosomal system

presumably through the scission of vesicular buds originating

from early and/or late endosomes and affects several cargos that

use this pathway.

In conclusion, we have shown that the pharmacological

inhibition of the dynamin GTPase activity by dynasore leads

rapidly to the abnormal endosomal sequestration of FC and LDL,

resulting in defective sterol-sensitive genes regulation and

cholesterol efflux in HMDM. These results demonstrate that

dynasore can be used to block the egress of FC from the

endolysosomal network. Dynasore therefore represents an inter-

esting alternative to U18666A and will be useful to better

understand the complexity of cholesterol trafficking and homeo-

stasis at the late endosomal interface.
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Figure 12. U18666A impairs cellular cholesterol efflux from HMDM. Cells were incubated with 100 mg/ml AcLDL for 6 h and treated with
3 mg/ml U18666A or without (control). The cellular cholesterol efflux to 10 mg/ml apoA-I or 15 mg/ml HDL-PL before (A) and after (B) stimulation of
ABCA1 and ABCG1 expression by the LXR/RXR agonists was quantified. Results are expressed as the percentage of the quantity of released cellular
cholesterol into the medium to the total quantity of cholesterol in cells and medium. Each value is the mean of triplicate experiments. (C) Relative
quantification of ABCA1 and ABCG1 transporter genes levels expressed as fold-variation over control (DMSO/LPDS) after normalization. All CT
determinations were made in triplicate. (D) Passive cholesterol efflux to 1 mg/ml MâCD was quantified as above.
doi:10.1371/journal.pone.0029042.g012
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