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Abstract

There is growing evidence that vascular endothelial growth factor-A (VEGF-A), a ligand of the receptor tyrosine kinases
VEGFR1 and VEGFR2, promotes lymphangiogenesis. However, the underlying mechanisms by which VEGF-A induces the
growth of lymphatic vessels remain poorly defined. Here we report that VEGFR2, not VEGFR1, is the primary receptor
regulating VEGF-A-induced lymphangiogenesis. We show that specific inhibition of VEGF-A/VEGFR2 signaling with the fully
human monoclonal antibody r84 significantly inhibits lymphangiogenesis in MDA-MB-231 tumors. In vitro experiments with
primary human dermal lymphatic endothelial cells (LECs) demonstrate that blocking VEGF-A activation of VEGFR2, not
VEGFR1, significantly inhibits VEGF-A-induced proliferation and migration of LECs. We show that VEGF-A stimulation of LECs
leads to the phosphorylation of VEGFR2 (Tyr 951, 1054, 1059, 1175, and 1214) which subsequently triggers PKC dependent
phosphorylation of ERK1/2 and PI3-K dependent phosphorylation of Akt. Additionally, we demonstrate that inhibitors that
suppress the phosphorylation of ERK1/2 and Akt significantly block VEGF-A- induced proliferation and migration of LECs.
Together, these results shed light on the mechanisms regulating VEGF-A-induced proliferation and migration of LECs, reveal
that VEGFR2 is the primary signaling VEGF-A receptor on lymphatic endothelium, and suggest that therapeutic agents
targeting the VEGF-A/VEGFR2 axis could be useful in blocking the pathological formation of lymphatic vessels.
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Introduction

Lymphatic vessels are required for the absorption of intestinal

lipids, transport of immune cells, and return of tissue fluid and

macromolecules to the blood vascular system [1]. Impaired function

of the lymphatic system or an insufficient number of lymphatic

vessels can cause the accumulation of fluid and protein in tissues and

result in the debilitating disorder lymphedema [2]. Conversely, new

lymphatic vessels form in many pathological settings and participate

in the progression of several human diseases [2]. These observations

have fueled intense research efforts to identify the molecular

mechanisms regulating lymphangiogenesis so that therapies can be

developed to promote or inhibit this process.

The study of lymphangiogenesis gained momentum following the

discovery of the first lymphatic growth factor, vascular endothelial

growth factor (VEGF)-C. VEGF-C is indispensable for the proper

development of the lymphatic system in several animal models and

induces inflammatory and tumor lymphangiogenesis [3,4,5,6,7,8].

Although VEGF-C is a robust lymphatic growth factor, it does not

act alone. Other members of the VEGF family were recently shown

to stimulate the growth of lymphatics [7]. The most prominent

member of this family is VEGF-A, a ligand of the receptor tyrosine

kinases VEGFR1 and VEGFR2 [9].

VEGF-A is a crucial regulator of embryonic and pathological

hemangiogenesis. Inactivation of a single allele of VEGF-A in mice

leads to lethality around embryonic day 11.5 because of severe

defects in blood vessel development [10,11]. VEGF-A is also a

major regulator of pathological hemangiogenesis that occurs in

inflammatory diseases, diabetic retinopathy, and tumors [9].

VEGFR2 is the primary receptor controlling VEGF-A stimulated

growth of blood vessels. Mechanistically, VEGF-A/VEGFR2

signaling induces hemangiogenesis by promoting blood endothe-

lial cell (BEC) proliferation, survival, and migration in part

through the activation of the mitogen-activated protein kinase/

extracellular-signal-regulated kinase-1/2 (ERK1/2) and phospha-

tidylinositol 3-kinase (PI3-K)/Akt signal transduction pathways

[9]. Other additional pathways regulating these cellular processes

have been extensively studied and defined in BECs. In contrast,

the mechanisms underlying VEGF-A-induced lymphangiogenesis

remain poorly defined and controversial.

Interestingly, the in vivo response to VEGF-A is strikingly different

for lymphatic and blood vessels. Adenoviral mediated delivery of
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VEGF-A to the ear skin of mice leads to the dramatic enlargement

of lymphatic vessels and impairment in lymphatic vessel function

[12,13]. Transgenic overexpression of VEGF-A in the skin of mice

also causes lymphatic vessels to preferentially increase in caliber

rather than number during settings of inflammation [14,15].

Conversely, VEGF-A expression in the skin of mice induces

sprouting hemangiogenesis resulting in an increase in density of

blood vessels [13]. This contrasting effect of VEGF-A on lymphatic

and blood vessels raises the possibility that the mechanisms

underlying VEGF-A-induced lymphangiogenesis are different than

those underlying VEGF-A-induced hemangiogenesis.

It has recently been reported that VEGF-A directly promotes

the proliferation and migration of lymphatic endothelial cells

(LECs) [16,17,18,19,20,21]. Additionally, VEGF-A stimulates the

phosphorylation of PLC-c, Akt and ERK1/2 in LECs [22,23,24].

However, the extent to which VEGFR1 and VEGFR2, both of

which are expressed by LECs [12,13,21,25,26,27], contribute to

these events has not been fully delineated. Furthermore,

experiments with LECs have not included inhibitors of these

molecules/pathways to define the functional significance they

serve in promoting VEGF-A-induced processes.

The present study explores the function of VEGF-A/VEGFR2

signaling in promoting the proliferation and migration of LECs.

To accomplish this, the novel anti-VEGF-A antibody r84 was

used. r84 is a fully human monoclonal antibody that specifically

binds VEGF-A and prevents it from activating VEGFR2, but not

VEGFR1, in a dose-dependent manner [28]. Here we show for

the first time that VEGF-A activation of VEGFR2 directly

stimulates LEC proliferation and migration through the PI3-K

and ERK1/2 signaling pathways. These experiments shed light on

the mechanisms underlying VEGF-A-induced proliferation and

migration of LECs and reveal that the circuitry of VEGF-A/

VEGFR2 signaling is conserved between LECs and BECs.

Results

Blocking VEGF-A activation of VEGFR2 is sufficient to
suppress lymphangiogenesis

We previously reported that r84 significantly inhibits heman-

giogenesis in MDA-MB-231 tumors [29]. However, we did not

examine lymphangiogenesis in this study. To evaluate the effect of

r84 on lymphangiogenesis, MDA-MB-231 tumors from our

previous study were stained with an antibody against LYVE-1.

LYVE-1 positive area was significantly lower in tumors from r84

treated mice (2.2360.986; n = 5) than in tumors from control IgG

treated mice (7.0361.013; n = 6)(Fig. 1A–C). These data reveal

that specifically blocking VEGF-A activation of VEGFR2 with r84

is sufficient to suppress lymphangiogenesis in vivo.

In vitro experiments were then performed with primary human

LECs to evaluate the effect of r84 on VEGF-A-induced cellular

processes required for lymphangiogenesis. Immunofluorescence

staining for the lymphatic marker PROX1 demonstrated that our

cultures consisted of a highly pure population of lymphatic

endothelium (Fig. 2A–C). Additionally, reverse-transcription PCR

confirmed LEC expression of VEGFR1 and VEGFR2 (data not

shown).

The Cell Titer Blue assay revealed that VEGF-A significantly

induced the proliferation of LECs (P,0.05; Fig. 2D). VEGF-A-

induced proliferation was not inhibited by a functional blocking

antibody against VEGFR1 or by a non-specific control IgG

(Fig. 2D). Conversely, blockade of VEGF-A activation of

VEGFR2 with r84 significantly (P,0.05) inhibited VEGF-A-

induced proliferation of LECs (Fig. 2D).

We next examined the effect of r84 on LEC migration.

Transwell migration assays demonstrated that VEGF-A signifi-

cantly induced the migration of LECs (P,0.05; Fig. 2E). VEGF-

A-induced migration was resistant to a functional blocking

antibody against VEGFR1 and to a non-specific control IgG,

but was completely blocked by r84 (P,0.05; Fig. 2E). These data

indicate that VEGF-A activation of VEGFR2, not VEGFR1,

directly drives LEC proliferation and migration.

VEGFR2 is the primary signaling VEGF-A receptor in LECs
To achieve a better understanding of how the VEGF-A/

VEGFR2 axis promotes LEC proliferation and migration, we

analyzed VEGF-A-induced signaling in LECs. VEGF-A triggers

the auto-phosphorylation of VEGFR2 on several tyrosine residues

that regulate its kinase activity and serve as docking sites for

adapter proteins that promote specific signal transduction cascades

(Fig. 3A). The phospho-tyrosine profile of VEGFR2 has not been

examined previously for VEGF-A-stimulated LECs. Failure in the

Figure 1. Specific blockade of VEGF-A activation of VEGFR2 suppresses tumor lymphangiogenesis, lymphatic endothelial cell
proliferation/viability and migration. A: Intratumoral lymphatics were identified by immunofluorescence staining of frozen sections of control
IgG and r84 treated MDA-MB-231 tumors for the lymphatic marker LYVE-1 (red). Scale bars = 100 mm. B: The entire area of each LYVE-1 stained tumor
section was examined at low magnification and the percent of LYVE-1 positive area was determined for each field using NIS-Elements imaging
software. Ten fields with the highest LYVE-1 positive percent area were averaged together to yield a final score for each tumor and group means were
tested for significance by an unpaired student’s t-test. The percent of LYVE-1 positive area of control tumors (7.0361.013) was significantly greater
than r84 treated tumors (2.2360.986). Asterisk = P = 0.0042.
doi:10.1371/journal.pone.0028947.g001

VEGF-A/VEGFR2-Induced Lymphangiogenesis
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phosphorylation of one of these key tyrosine residues could

dramatically impact kinase activity or downstream signaling in

LECs. VEGF-A stimulation of LECs resulted in the phosphory-

lation of Tyr 951, 1054, 1059, 1175, and 1214 (Fig. 3B). These

results indicate that the phospho-tyrosine profile of VEGFR2 is

similar between VEGF-A stimulated LECs and BECs.

VEGF-A stimulation of BECs leads to the activation of signaling

molecules that serve crucial functions in hemangiogenesis such as

PLC-c, ERK1/2, and Akt. In LECs, VEGF-A stimulated the

phosphorylation of PLCc, ERK1/2, and Akt within 10 minutes

(Fig. 3C). Western blot analysis (Fig. 3D) and subsequent

quantitation of bands by densitometery revealed that r84 inhibited

VEGF-A-induced phosphorylation of VEGFR2, PLCc, ERK1/2,

and Akt by 95%, 64%, 94%, and 67%, respectively.

VEGF-A promotes PKC dependent phosphorylation of
ERK1/2 in LECs

Rapid activation of ERK1/2 in VEGF-A-stimulated BECs is

controlled primarily by Protein Kinase C (PKC) rather than Ras

[30]. To determine whether this circuitry was conserved in

lymphatics, primary LECs were stimulated with VEGF-A in the

presence of the PKC inhibitor GF109203X (GFX). Western blot

analysis showed that ERK1/2 activation was completely blocked

by PKC inhibition whereas Akt activation was unaffected (Fig. 4).

These data indicate that the topology of the network driving early

ERK1/2 activation in BECs and LECs are similar to one another.

Furthermore, PKC is not required for Akt phosphorylation.

Phosphorylation of ERK1/2 and Akt is required for VEGF-
A-mediated LEC proliferation and migration

To determine the function ERK1/2 and Akt phosphorylation

serves in VEGF-A-induced processes, LECs were stimulated with

VEGF-A in the presence of either PD098059 or LY294002,

inhibitors that selectively block MEK1 and PI3-K, respectively.

Treatment of LECs with PD098059 (5 mM) completely blocked

VEGF-A-mediated activation of ERK1/2 without affecting the

phosphorylation of proteins upstream of MEK (Fig. 5A). Likewise,

LY294002 (10 mM) specifically inhibited VEGF-A-induced phos-

phorylation of Akt but not ERK1/2 (Fig. 5B). The effect of

PD098059 and LY294002 on VEGF-A-induced proliferation of

Figure 2. Specific blockade of VEGF-A activation of VEGFR2 suppresses lymphatic endothelial cell proliferation/viability and
migration. A–C: PROX1 (A) is localized in the nucleus (B) in primary human LECs (C). D: Cell viability/proliferation was measured with Cell Titer Blue
reagent after culturing LECs for 48 hours in EGM-2MV media (positive control), reduced-serum media (negative control), or with VEGF-A (100 ng/ml)
in the presence or absence of r84 (500 molar excess), a functional blocking antibody against VEGFR1 (500 molar excess), or control IgG (500 molar
excess). r84 blocked VEGF-A-induced proliferation/viability of LECs whereas the other antibodies had no effect. E: LECs were seeded in the upper
chamber of a transwell insert and allowed to migrate overnight toward EGM-2MV (positive control), reduced-serum media (negative control), or
VEGF-A (100 ng/ml) in the presence or absence of r84 (500 molar excess), a functional blocking antibody against VEGFR1 (500 molar excess), or
control IgG (500 molar excess). The number of LECs that migrated to the lower chamber was counted and normalized to the positive control. r84
blocked VEGF-A-induced migration whereas the other antibodies had no effect. For panels C and D, significance tested by ANOVA. Asterisk P,0.05
compared to VEGF-A. ns = not significant compared to VEGF-A.
doi:10.1371/journal.pone.0028947.g002
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LECs was then evaluated by the Cell Titer Blue assay. VEGF-A

significantly induced LEC proliferation compared to the negative

control (P,0.05) and was not affected by the addition of DMSO

(vehicle for both PD098059 and LY294002) to the media

(Fig. 5C,D). PD098059 (5 mM) and LY294002 (10 mM) signifi-

cantly inhibited VEGF-A-induced proliferation of LECs

(Fig. 5C,D). Transwell migration assays were then performed to

determine the effect of PD098059 and LY294002 on VEGF-A-

induced migration. VEGF-A significantly stimulated LEC migra-

tion (P,0.05) and was not affected by the presence of DMSO in

the media. However, VEGF-A-induced migration was suppressed

by PD098059 (5 mM) and LY294002 (10 mM, Fig. 5E,F).

Discussion

Exhaustive investigation of the effect of VEGF-A on BECs has

helped elucidate the signaling pathways regulating VEGF-A-

induced hemangiogenesis. In contrast, the mechanisms underlying

VEGF-A-induced lymphangiogenesis have not been widely

examined and are poorly defined. The present study demonstrates

for the first time that VEGF-A activation of VEGFR2 directly

stimulates ERK1/2 and PI3-K/Akt mediated proliferation and

migration of LECs. We propose that these cellular processes

function together to drive VEGF-A-induced lymphangiogenesis.

To determine the role VEGF-A activation of VEGFR2 serves in

lymphangiogenesis we used the monoclonal anti-VEGF-A anti-

body r84 which specifically blocks mouse and human VEGF-A

activation of VEGFR2, but not VEGFR1. r84 significantly

suppressed lymphangiogenesis in vivo, suggesting that blockade of

VEGF-A activation of VEGFR2 is sufficient to inhibit lymphan-

giogenesis. However, it is unclear whether r84 directly inhibits

lymphangiogenesis in vivo by preventing VEGF-A from activating

VEGFR2 on LECs or indirectly suppresses lymphangiogenesis by

affecting other cell types in the tumor microenvironment.

Macrophages are reported to promote lymphangiogenesis and

their recruitment to the tumor microenvironment is suppressed by

r84 [29]. Additionally, fluid lost by leaky blood vessels in the tumor

microenvironment may stimulate lymphangiogenesis. Anti-VEGF-

A therapy reduces the permeability of blood vessels thereby

silencing this potential trigger of lymphangiogenesis. Unfortunate-

ly, uncoupling VEGF-A’s effect on multiple cell types is technically

vexing. Future experiments using Cre/lox technology to specifi-

cally ablate Vegfr2 in LECs may help elucidate the extent to which

this receptor directly promotes VEGF-A-induced lymphangiogen-

esis.

Although VEGF-A was reported to stimulate LEC proliferation

and migration, it was previously unclear whether both VEGFR1

and VEGFR2 regulated these processes. We show that specific

blockade of VEGF-A’s interaction with VEGFR2 inhibits LEC

proliferation and migration. Conversely, inhibition of VEGFR1

does not affect VEGF-A-induced proliferation or migration of

LECs. To our knowledge, this is the first time the function of

VEGFR1 has been examined in cultured LECs. These data reveal

that VEGF-A activation of VEGFR2, not VEGFR1, directly

promotes cellular processes required for lymphangiogenesis.

To identify the mechanisms by which VEGF-A activation of

VEGFR2 stimulated LEC proliferation and migration, we

analyzed VEGF-A-induced signaling pathways in LECs. We first

focused on VEGF-A-induced auto-phosphorylation of VEGFR2.

Tyrosines 951, 1054, 1059, 1175, and 1214 of VEGFR2 are

phosphorylated following VEGF-A stimulation of BECs. We show

for the first time that the same tyrosine residues become

phosphorylated after treating LECs with VEGF-A. Of these

tyrosines, Tyr 1175 may be the most important. Tyr 1175 is

essential for proper VEGFR2 signaling in BECs. Knock-in mice in

which Tyr 1173 (equivalent to Tyr 1175 in human VEGFR2) has

been substituted to phenylalanine exhibit vascular defects similar

toVegfr2 null mice [31]. Surprisingly, replacement of Tyr 1212

(equivalent to Tyr 1214 in human VEGFR2) with phenylalanine

does not affect vascular development in mice [31]. Phosphoryla-

tion of Tyr 1175 leads to the recruitment and activation of PLCc
in BECs [32]. Subsequently PLCc stimulates ERK1/2 activation

via PKC [30]. The adaptor molecule Shb also binds to Tyr 1175

and is required for VEGF-A-induced activation of PI3-K signaling

in BECs [33]. We show that VEGF-A/VEGFR2 activation in

LECs stimulates PKC dependent phosphorylation of ERK1/2 and

PI3-K dependent phosphorylation of Akt. These signaling events

may be due to signaling initiated from Tyr 1175 of VEGFR2 in

LECs.

The mutant phenotypes of several lines of genetically modified

mice have recently implicated ERK1/2 as being an important

signaling molecule in lymphangiogenesis. Mice expressing a

Figure 3. VEGFR2, not VEGFR1, regulates VEGF-A-induced activation of PLC-c, ERK1/2, and Akt in LECs. A: Diagram adapted from [43]
depicting phosphorylation sites of the intracellular domain of VEGFR2. B,C: Lysates of primary human dermal LECs were made after stimulating LECs
with recombinant human VEGF-A (100 ng/ml) for 2, 5, or 10 minutes. The activation of VEGFR2, PLC-c, ERK1/2 and Akt was detected by Western
blotting using phospho-specific antibodies. D: Lysates were generated of LECs stimulated with VEGF-A (100 ng/ml, 10 minutes) in the presence or
absence of r84 (500 molar excess) or control IgG (500 molar excess). The activation of VEGFR2, PLCc, ERK1/2 and Akt was detected by Western
blotting. r84 suppressed phosphorylation of PLC-c, ERK1/2, and Akt in LECs.
doi:10.1371/journal.pone.0028947.g003

Figure 4. Protein kinase C (PKC) regulates VEGF-A-induced
activation of ERK1/2 but not Akt. LECs were maintained in
starvation media or treated with DMSO (Veh) or the PKC inhibitor
GF10203X (GFX) for one hour prior to stimulation with VEGF-A (100 ng/
ml, 10 minutes). Akt and ERK1/2 activation was detected by Western
blotting.
doi:10.1371/journal.pone.0028947.g004
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constitutively active form of Hras exhibit lymphatic hyperplasia

which is thought to be due to sustained activation of ERK1/2

[23]. Additionally, Spred1/2 double-knockout mice display

hyperplastic lymphatics most likely because of dysregulation of

ERK1/2 signaling [34]. Although these data suggest that ERK1/2

has a crucial function in the development of the lymphatic system,

the precise role ERK1/2 serves in LECs was not previously

defined. The phosphorylation of ERK1/2 is required for growth

factor-induced proliferation of several cell types. We show that

ERK1/2 phosphorylation is required for VEGF-A-induced

proliferation of LECs. ERK1/2 can also influence cell migration

by phosphorylating myosin light chain kinase [35]. We show that

blockade of ERK1/2 phosphorylation inhibits VEGF-A-induced

migration of LECs. Interestingly, inhibition of ERK1/2 activation

does not block VEGF-A-induced migration of BECs [36]. This

discrepancy may reflect an underlying difference between BECs

and LECs.

PI3-K/Akt signaling is thought to be important in lymphangio-

genesis. VEGFR3 promotes the survival of LECs by phosphory-

lating of Akt in a PI3-K dependent fashion [37]. Furthermore,

Akt1 mutant mice exhibit a hypoplastic network of lymphatic

vessels [24]. We show that the phosphorylation of Akt is required

for promoting VEGF-A/VEGFR2-induced viability and migra-

tion of LECs. This is most likely due to the activation of pro-

survival pathways and endothelial nitric oxide synthase (eNOS) in

LECs. In BECs, eNOS promotes VEGF-A-induced migration in a

PI3-K/Akt dependent manner [38,39]. PI3-K/Akt signaling also

stimulates the phosphorylation of eNOS in LECs [38,40].

Interestingly, guanylyl cyclase (GC), the only known NO receptor,

is required for LEC migration [41]. These observations suggest a

mechanism by which PI3-K/Akt signaling could regulate VEGF-

A-induced migration of LECs.

In conclusion, we show for the first time that VEGF-A

activation of VEGFR2, not VEGFR1, directly drives LEC

proliferation and migration via the PI3-K and ERK1/2 signaling

pathways. These data reveal that overlapping signaling pathways

drive VEGF-A-induced cellular processes in BECs and LECs.

Therefore, therapeutic agents targeting the VEGF-A/VEGFR2

axis could be useful to prevent the pathological formation of blood

and lymphatic vessels.

Materials and Methods

Antibodies and reagents
The following commercially available antibodies were used:

rabbit anti-phospho-ERK1/2 (Thr 202/Tyr 204, Cell Signaling

#9101L); rabbit anti-ERK1/2 (Cell Signaling #9102); rabbit

anti-phospho-PLC-c (Tyr 783, Cell Signaling #2821S); rabbit

anti-PLC-c (Cell Signaling #2822); rabbit anti-phospho-VEGFR2

(Tyr 951, Cell Signaling #4991S; Tyr 1054 Upstate 04-894; Tyr

1059, Upstate 36-019; Tyr 1175, Cell Signaling #2478S; Tyr

1214, Upstate 07-374); rabbit anti-VEGFR2 (Cell Signaling

#2479); rabbit anti-phospho-Akt (Ser 473, Cell Signaling

#9271S); rabbit anti-Akt (Cell Signaling #9272); rabbit anti-

LYVE-1 (abcam ab14917); and rabbit anti-Prox1 (abcam

ab38692). r84 and XTL (control IgG) was received from Peregrine

Pharmaceuticals Inc. Aurexis (control IgG) was generous gift from

Dr. Phil Thorpe (UT Southwestern Medical Center). The

VEGFR1 functional blocking antibody (6.12) was from ImClone.

Rat anti-Flk2 was purified in our lab as previously describe [42]

and used for immunofluorescence staining. PD098059 was

purchased from Sigma-Aldrich (P215-5MG) whereas LY294002

was purchased from Calbiochem (440204). GF10203X was kindly

provided by Dr. Alaksandra Basu (University of North Texas).

Animal Experiments
Experiments performed with mice were performed in accor-

dance with a protocol (APN 0974-07-05-1) approved by the

IACUC of the University of Texas Southwestern Medical Center.

Cell culture
Primary adult human dermal lymphatic endothelial cells (LECs)

were purchased from LONZA (CC-2810). The certificate analysis

sheet supplied by LONZA for each vial of cells indicated that

greater than 95% of the cells were LECs (CD31 and podoplanin

double-positive). This was determined by FACS. Cells were

cultured on rat-tail collagen 1 (50 mg/ml) or 1% gelatin coated

plastic ware in EGM-2MV media (LONZA CC-3125). Cells were

not used past passage 6.

Immunofluorescence staining of frozen sections
Frozen sections were fixed in acetone at 220uC and then briefly

air-dried. PBS was used to dissolve OCT and then samples were

blocked with 20% Aquablock (East Coast Biologics, PP82-P0691)

in TBST. Primary antibody diluted in TBST+5% BSA was added

and allowed to incubate overnight at 4uC. Slides were then washed

with PBS+0.05% Tween20 and incubated for one hour with the

appropriate secondary antibody (Jackson ImmunoResearch)

diluted in TBST+5% BSA. Following another round of washes

with PBS+0.05% Tween20, coverslips were mounted with

ProLong Gold with DAPI (Invitrogen, P36931). Slides were

analyzed using a Nikon Eclipse E600 microscope and images

captured using NIS-Elements imaging software.

Immunocytochemistry
LECs were cultured in 4-well chamber slides. Cells were then

fixed with methanol, washed with PBS, permeabilized with

PBS+0.1% TX-100, and then blocked with TBST+20% Aqua-

block. Anitbodies diluted TBST+5% BSA were added and allowed

to incubate overnight at 4uC. Cells were then washed with PBS

and incubated overnight with the appropriate secondary antibod-

ies. Following another round of washes with PBS, coverslips were

mounted with ProLong Gold with DAPI.

Figure 5. ERK1/2 and Akt regulate VEGF-A-induced proliferation and migration of LECs. A,B: Lysates were generated of LECs1)
maintained in starvation media, 2) treated with VEGF-A (100 ng/ml, 10 minutes), 3) pretreated with DMSO (Veh) in starvation media for one-hour
then stimulated with VEGF-A (100 ng/ml, 10 minutes), or 4) pretreated with the MEK inhibitor PD098059 (PD) or PI3-K inhibitor LY294002 (LY) for one-
hour then with stimulated with VEGF-A (100 ng/ml, 10 minutes). PLC-c, ERK1/2, and Akt activation was detected by Western blotting. C,D: Cell
viability/proliferation was measured with Cell Titer Blue reagent after culturing LECs for 48 hours in EGM-2MV media (positive control), reduced-
serum media (negative control), or with VEGF-A (100 ng/ml) in the presence of DMSO (Veh), PD, or LY. PD and LY blocked VEGF-A-induced
proliferation/viability of LECs. E,F: LECs were seeded in the upper chamber of a transwell insert and allowed to migrate overnight toward EGM-2MV
(positive control), reduced-serum media (negative control), or VEGF-A (100 ng/ml) in the presence or absence of DMSO (Veh), PD, or LY. DMSO, PD,
and LY were also included in the upper chamber of the transwell insert. The number of LECs that migrated to the lower chamber were counted and
normalized to the positive control. PD and LY inhibited LEC migration toward VEGF-A. For panels B,C, E, and F, significance was tested by ANOVA.
Asterisk P,0.05 compared to VEGF-A. ns = not significant compared to VEGF-A.
doi:10.1371/journal.pone.0028947.g005
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Proliferation/Viability assays
LEC proliferation/viability was evaluated by the Cell Titer Blue

assay (Promega G8081). This assay is based on the ability of living

cells to convert the non-fluorescent compound resazurin to the

fluorescent compound resorufin. LECs (3,000 cells per well) in

EGM-2MV were seeded into the wells of a Falcon Optilux Black/

Clear bottom 96-well plate. The next day, cells were serum-

starved for 4 hours with OptiMEM reduced-serum media

(Invitrogen 11058-021). During this time, recombinant human

VEGF-A165 (R & D Systems 293-VE) was pre-incubated with r84,

control IgG, or anti-VEGFR1 antibody for one hour. For the

inhibitor experiments, LECs were treated with PD098059,

LY294002, or DMSO while being serum starved. Next, EGM-

2MV (positive control), OptiMEM (negative control), or recom-

binant human VEGF-A165 in the presence or absence of r84, anti-

VEGFR1, control IgG, DMSO, PD098059 or LY294002 was

added to the appropriate wells. After culturing cells for 48 hours at

37uC, 20 ml of Cell Titer Blue reagent was added to the wells and

one hour later fluorescence was measured with a plate reader. The

assay was run with 6 replicates for each experimental condition

and performed at least twice.

Migration assays
A modified Boyden chamber assay was performed to assess

LEC migration. Cell culture inserts (8.0 mm pore size) were placed

over wells of a 24-well tissue culture plate containing 500 ml of

either EGM-2MV (positive control), OptiMEM (negative control),

or recombinant human VEGF-A165 in the presence or absence of

r84, control IgG, or anti-VEGFR1 antibody. Next, 200 ml of

LECs (150,000 cells/ml) in OptiMEM reduced-serum media were

seeded in the upper chamber of each insert and allowed to migrate

overnight. For the inhibitor experiments, the indicated amounts of

PD098059 and LY294002 were added to the upper and lower

chambers. Cells that didn’t migrate were removed from the upper

chamber with a cotton swab. The membrane was then fixed and

stained with the Diff-Quik stain kit (Dade Behring B4132-1A). The

number of migrated cells was counted for 4 areas and values were

normalized to the positive control. The assay was performed in

triplicate and repeated twice.

Western blot analysis
LECs were cultured on 6-well plates until near confluence,

serum-starved overnight with OptiMEM reduced-serum, and then

stimulated with recombinant human VEGF-A165 in the presence

or absence of r84, control IgG, DMSO, PD098059 or LY294002.

LEC were pre-treated with DMSO, PD098059, or LY294002 for

one hour prior to stimulation. Following stimulation, cells were

scraped in lysis buffer [mPER (Thermoscientific #78501)

+Protease Inhibitor (Thermoscientific #78425) +Phosphatase

Inhibitors I and II (Sigma-Aldrich P2850 and P5726)], spun for

10 minutes at 4uC, and then supernatants were transferred to new

tubes. Equal amounts of total protein were separated by SDS-

PAGE then transferred to PVDF membranes. Membranes were

blocked for 30 minutes at room temperature with either

TBST+5% BSA or TBST+5% non-fat milk, incubated overnight

at 4uC with phospho-specific primary antibodies, washed with

TBST, and then incubated for one hour at room temperature with

the appropriate HRP-conjugated secondary antibodies. Bound

antibodies were detected with the SuperSignal West Dura

Extended Duration Substrate detection system (Thermoscientific

#34076). Membranes were stripped then reprobed with antibod-

ies to detect total levels of proteins.

Statistical analysis
Data were analyzed using GraphPad Prism statistical analysis

software (Version 5.0). All results are expressed as mean6SEM.

Significance tested by unpaired student’s T-test or ANOVA as

indicated in the figure legends. Data were considered significant at

P,0.05.

Ethics Statement
Experiments performed with mice were performed in accor-

dance with a protocol (APN 0974-07-05-1) approved by the

IACUC of the University of Texas Southwestern Medical Center.

Mice were housed in isolation cages located in a pathogen free

facility in the NG building on the north campus of UT

Southwestern. UT Southwestern has a letter of assurance on file

with the Public Health Service, is registered as a research facility

with the USDA, and is certified by the AAALAC. Our laboratory

participates in voluntary inspections by IACUC and ARC staff at

least twice per year. Mice were euthanized at the end of the

proposed research or if they were deemed to be suffering. The

method of euthanasia consisted of an inhalant overdose of carbon

dioxide or isoflurane followed by cervical dislocation. These

methods are consistent with the recommendations of the

American Veterinary Medical Association (AVMA) Guidelines

on Euthanasia.
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