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Abstract

The hypoxic and acidic microenvironments in tumors are strongly associated with malignant progression and metastasis,
and have thus become a central issue in tumor physiology and cancer treatment. Despite this, the molecular links between
acidic pH- and hypoxia-mediated cell invasion/metastasis remain mostly unresolved. One of the mechanisms that tumor
cells use for tissue invasion is the generation of invadopodia, which are actin-rich invasive plasma membrane protrusions
that degrade the extracellular matrix. Here, we show that hypoxia stimulates the formation of invadopodia as well as the
invasive ability of cancer cells. Inhibition or shRNA-based depletion of the Na+/H+ exchanger NHE-1, along with intracellular
pH monitoring by live-cell imaging, revealed that invadopodia formation is associated with alterations in cellular pH
homeostasis, an event that involves activation of the Na+/H+ exchange rate by NHE-1. Further characterization indicates that
hypoxia triggered the activation of the p90 ribosomal S6 kinase (p90 RSK), which resulted in invadopodia formation and
site-specific phosphorylation and activation of NHE-1. This study reveals an unsuspected role of p90RSK in tumor cell
invasion and establishes p90RS kinase as a link between hypoxia and the acidic microenvironment of tumors.
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Fonds de la Recherche en Santé du Québec (FRSQ)-funded Centre de Recherche Clinique Étienne-LeBel. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Claire.Dubois@usherbrooke.ca

Introduction

Recent research indicates that important metabolic changes

occur within the tumor microenvironment and that these changes

correlate with tumor progression and metastasis [1]. Hypoxia has

been recognized as an important feature of solid tumors and arises

presumably because of an increased metabolic demand associated

with defective vascularization [2]. Hypoxia plays a critical role in

various cellular events, including cell proliferation and metabo-

lism, as well as tumor invasion and metastasis [3]. In fact, the

hypoxic microenvironment of solid tumors selects for survival of

aggressive, highly invasive cells that have the propensity to

metastasize [4,5]. Hypoxia also triggers an increase in the rate of

glycolysis. This increase has been largely attributed to the

transcriptional upregulation of the glucose transporters GLUT1

and GLUT4, and enzymes of the glycolytic pathway triggered by

the hypoxia-inducible factor HIF-1 [6]. Lactate production during

anaerobic glycolysis generates an excess of protons that are

extruded by ion transporters and pumps resulting in acidosis of

tumor microenvironment [7]. pH measurement in cancer cell lines

and within tumors has revealed that the extracellular pH (pHe) of

malignant tumor microenvironment varies from 6.2 to 6.9,

whereas pHe in healthy tissues is 7.2 to 7.5 [8,9,10,11]. In

contrast, intracellular pH (pHi) of cancer cells is more alkaline than

in normal cells. Analogous to hypoxia, various studies have shown

that alterations in pHe and pHi modify the phenotype of tumor

cells. Acidic conditions, similar to those prevailing in many tumors,

have been shown to increase transcription of VEGF [12], of IL-8

[13,14], and to promote extracellular release/or expression/or

activity of key proteases such as cathepsin B and matrix

metalloproteinases (MMPs) [15]. Acidosis also amplifies in vitro

cell invasion and in vivo metastasis [14,16,17], events inhibited by

the reversal of tumor acidosis by NaHCO3 administration [18].

Despite the physiological and clinical significance of the

relationship between pH- and hypoxia-associated cell invasion

and metastasis, this question remains largely unresolved.

Sodium-proton exchangers (NHEs), sodium-dependent and -

independent HCO3
2/Cl2 exchangers, H+/lactate co-transporters

and V-ATPase are mediators of pH homeostasis in healthy as well

as cancer cells. Mammalian Na+/H+-exchangers (NHEs) are

members of a family of nine related gene products (NHE1-9).

They are integral membrane proteins that share up to 70% amino

acid identity. The plasma membrane-type NHEs (NHE1-5)

primarily catalyze the electroneutral exchange of one extracellular

Na+ for one cytosolic H+. NHE-1 has an ubiquitous tissue

distribution, whereas NHE2-5 have a more restricted distribution.

Among these exchangers, NHE-1 is considered a main regulator

of pHi in cancer cells. NHE-1 activity is regulated by pHi and

oncogenic transformation [19,20]. NHE-1 expression and activity

have been shown to enhance the invasive capability of tumor cells

through increased release and activity of MMPs and cathepsins

[16,17,21], changes in gene expression, and regulation of the actin

cytoskeleton [22,23]. NHE-1, in breast cancer cells stimulated with

EGF, has also been located at invadopodia protrusion sites where
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the exchanger was shown to be involved in acidification of the

extracellular microenvironment, resulting in focal ECM degrada-

tion [24]. In addition to its well-known N-terminal H+ sensor and

ion translocation function, an increasing number of studies have

indicated that the C-terminal cytoplasmic tail of NHE-1 is

implicated in the regulation of various cellular processes [25].

For instance, NHE-1 interacts with actin-binding proteins and that

results in promotion of cytoskeletal reorganization and cell

migration. In addition, phosphorylation of serine residues in the

C-terminal domain, by serine/threonine kinases, may increase

NHE-1 activity or promote downstream signaling events associ-

ated with NHE-1 activation. Several protein kinases have been

proposed to regulate NHE-1 activity, including NIK, p90RSK

and ROCK1. Among these, p90RSK has been reported to

phosphorylate Ser703 in the C-terminal domain of NHE-1,

resulting in an increased rate of Na+/H+ exchange in response

to serum [26]. Whereas the role of p90RSK in the activation of

NHE-1 is beginning to be understood, its implication in cell

migration and invasion need to be further evaluated.

Metastatic tumor cells that actively migrate and invade

surrounding tissues rely on cell membrane protrusions named

invadopodia to degrade the extracellular matrix (ECM) barrier. In

vitro and in vivo studies on breast cancer and melanoma progression

have revealed a correlation between invadopodia formation and

the potential of cell invasiveness [27,28]. The basic molecular

components involved in invadopodia formation and function are

getting better defined. Invadopodia formation depends on a series

of complex interactions between signal transduction molecules

including members of serine/threonine and tyrosine kinase

families, various classes of integrins, which provide attachment

to the substratum, as well as cytoskeleton components and

regulatory proteins such as N-WASP, Arp2/3, Tks5, F-actin and

cortactin. Soluble and membrane-bound proteases, mostly me-

talloproteinases, are enriched at invadopodia sites and that

correlates with the invasive potential of cancer cells [29,30].

Invadopodia formation has been shown to be induced by few

stimuli, including integrin engagement by ECM components, EGF

and LPA [31,32,33]. Therefore, despite intensive research on

invadopodia biology, little is known about specific inducers/

enhancers during tumor progression.

In the present study, we showed that hypoxia stimulated

invadopodia formation and cell invasion in cancer cells. Using the

invasive fibrosarcoma cell line HT-1080, we observed that

invadopodia formation was also associated with variations in

pHi, an observation that was related to activation of NHE-1. We

also present evidence for a hitherto unsuspected role of p90RSK

that is related to its capacity to phosphorylate and activate NHE1

under hypoxic conditions and, consequently, to trigger an increase

in invadopodia formation. Our results provide new insights into

the relationship between hypoxia and the acidic microenviron-

ment during the metastatic process.

Results

Hypoxia increases NHE-1 activity in HT-1080 cells
Cytoplasmic pH (pHi) as well as extracellular pH (pHe) are

tightly regulated, in part through Na+/H+ exchangers, including

NHE-1, which is ubiquitously expressed in eukaryotic cells. A

recent report has indicated that exposure of arterial myocytes to

chronic hypoxia resulted in an alkaline shift in pHi and increased

NHE-1 activity [34]. To establish whether short-term hypoxia

influenced pHi homeostasis and NHE-1 activity in HT-1080 cells,

they were exposed to normoxia or hypoxia (1% O2) for 4 h in a

bicarbonate-free solution, a condition that prevents contributions

from the Cl2/HCO3
2 exchangers [20]. Under these conditions,

steady-state pHi was significantly increased in HT-1080 cells

exposed to 1% O2 for 4 h (7.2160. 03) as compared to cells

cultured under normoxic conditions (6.9360.06) (Figure 1A).

Similar findings were observed for the 8 h time-point (data not

shown). Inhibition of NHE-1 by treating the cells with the NHE-1

inhibitor EIPA or by knocking down NHE-1 using shRNA

strongly reduced the increase in pHi due to hypoxia (Figure 1A). In

addition, NHE-1 activity (determined by the Na+/H+-exchange

rate (dpHi/dt)) was increased 2-fold in HT-1080 cells cultured

under hypoxic conditions when compared to cells exposed to

normoxia (Figure 1B). The increase in NHE-1 activity was further

augmented in cells overexpressing NHE-1 (Figure 1C). In contrast,

knocking down NHE-1 fully blocked the hypoxia-mediated

increase in pHi recovery and Na+/H+ exchange rate (Figure 1D),

an effect that was reversed by rescue experiments involving

reintroduction of NHE-1 into knockdown cells (Figure 1E). We

further investigated whether the findings observed in HT-1080

cells applied to other cancer cell lines. Hypoxia increased NHE-1

activity in human breast cancer cell line MDA-MB-231 and mouse

B16 melanoma cells (Figure S1A–1B). Taken together, these

results indicated that hypoxia altered pHi homeostasis in a variety

of neoplastic cells, a condition that involved the Na+/H+

exchanger NHE-1.

Hypoxia-induced NHE-1 activity occurs in an HIF-1-
independent manner

Chronic exposure of arterial myocytes to hypoxia has been

shown to result in an increased in NHE-1 expression and activity,

which was proposed to be due to HIF-1-dependent-transcriptional

activation of the exchanger [34]. To investigate whether our

observations of an upregulation of NHE-1 activity observed after a

4 h exposure to hypoxia could be explained by a HIF-1-dependent

increase in NHE-1 expression, we quantified NHE-1 mRNA and

protein levels in HT-1080 cells incubated for various periods of

time under hypoxic conditions. Although results showed a

significant increase in NHE-1 mRNA and protein expression

after 16 h exposure to a low oxygen concentration, there were no

significant changes after 4 h and 10 h of exposure (Figure 2A–2B),

which correspond to times where we observed an increase in

NHE-1 activity (Figure 1A–1B and data not shown). These results

suggested a lack of involvement of either HIF-1 and/or variations

in NHE-1 concentrations in the increase in NHE-1 activity in

response to short-term exposure to hypoxia. This interpretation

was further supported by experiments demonstrating that the

increase in the rate of Na+/H+ exchange was not affected in HIF-1

knockdown cells exposed to low oxygen concentrations for 4 h

(Figure 2C). Altogether, these data indicated that the observed

increase in NHE-1 activity was not due to HIF-1-dependent or -

independent modulation of NHE-1 expression.

NHE-1 is required for hypoxia-induced invadopodia
formation and function

To evaluate the functional relevance of the increase in NHE-1

activity under hypoxia, we first examined whether acidic pHe

influenced the capacity of the cells to degrade the extracellular

matrix. HT-1080 cells were seeded onto coverslips coated with

fluorescent gelatin in medium at pH 7.4 or 6.6 and the cells were

allowed to degrade the gelatin matrix under normoxic or hypoxic

conditions for 10 h. Cells were then fixed, stained with Texas Red-

phalloidin (actin) and DAPI (nucleus), and the percentage of

ECM-degrading cells was determined by fluorescence microscopy.

Results showed that the ability of the cells to degrade fluorescent

NHE-1 in Hypoxia-Induced Invadopodia Formation
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Figure 1. Hypoxia increases NHE-1 activity in HT-1080 cells. (A) Control (untransfected) HT-1080 cells incubated in the presence or absence of
the NHE-1 inhibitor, EIPA (25 mM), or cells transfected with scrambled (control) shRNA, or NHE-1 shRNA, were incubated for 4 h under normoxic or
hypoxic conditions. Basal intracellular pH (pHi) was measured using BCECF (n = 300 cells). Immunoblot showing knock down of NHE-1 expression in
NHE-1 shRNA transfected cells. Actin was used as a loading control. (B–D) Representative traces showing pHi recovery after ammonium chloride-
prepulse-induced acidification in HT-1080 cells cultured under normoxic or hypoxic conditions with associated bar graph showing Na+/H+ exchange
rates (n = 300 cells per condition), for (B) untransfected cells, (C) cells transfected with p-NHE-1, or (D) cells transfected with control shRNA or NHE-1
shRNA. (E) Rescue experiments were performed by transfection of NHE-1 shRNA-transfected cells with pNHE-1. Na+/H+ exchange rates were
measured in cells exposed to normoxic or hypoxic conditions. Columns represent the mean 6 SEM indicated by the horizontal bars. The asterisks
correspond to, * p,0.01; ** p,0.001; *** p,0.0001.
doi:10.1371/journal.pone.0028851.g001
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gelatin was increased in HT-1080 cells cultured in an acidic

medium and that this was further augmented by exposure of the

cells to hypoxia (Figure 3A). The presence of actin clusters at the

basal plasma membrane that colocalized with areas of ECM

degradation indicated that such cell degradation process was

induced by invadopodia (Figure 3B). Transient overexpression of

NHE-1 significantly increased the percentage of invadopodia

producing cells incubated under normoxic or hypoxic conditions

(Figure 3C). In contrast, knockdown of NHE-1 abrogated the

capacity of the cells to produce more invadopodia under hypoxic

conditions (Figure 3D). Similar results were obtained when NHE-1

activity was inhibited following cell treatment with the NHE-1-

selective inhibitors EIPA or zoniporide in HT-1080, MDA-MB-

283, and B16 cells (Figures S1C-S1D, S2A). Furthermore,

overexpression of NHE-1 induced an increase in the number of

invadopodia formed per cell, identified by clusters of actin and

cortactin, two bona fide markers of invadopodia [35], as well as an

increase in the areas of ECM degradation per cell (Figures 3E–3F).

In contrast, depletion of NHE-1 by shRNA abolished both

hypoxia-induced invadopodia formation and ECM degradation

(Figures 3G–3H). Taken together, these results indicated that

NHE-1 was required for hypoxia-induced invadopodia formation

and function in cancer cells.

NHE-1 is required for hypoxia-induced cell invasion
We next investigated the contribution of the NHE-1 exchanger

to cell invasion using a 3D cell invasion assay. This assay is known

to measure both the amoeboid- (protease-independent) and

mesenchymal-like (protease-dependent) modes of cell dissemina-

tion [36]. Cells transfected with NHE-1 or control shRNA were

seeded on top of fibrillar type I collagen gels and allowed to

migrate under normoxia and hypoxia for 24 h. Cells were then

stained with calcein-AM and cells that had invaded collagen gels

were imaged and quantitated at each 5 mm layer within the gel

using confocal microscopy. Results showed that knocking down

NHE-1 significantly decreased the capacity of the cells to invade

deeply into the collagen gels and fully blocked their ability to

respond to hypoxia-induced enhanced migration (Figure 4A–4B).

Therefore, as in the case of the invadopodia assays, our results

indicated that NHE-1 was essential for hypoxia-induced cell

invasion through 3D-collagen matrices. They also indicated that,

under normoxia, NHE-1 was not involved in invadopodia

formation but it was required for cell invasion, possibly due to

its role as a plasma membrane anchor for cortical actin filaments

at the leading edge of the lamellipodia [37,38], leading to an

amoeboid mode of cell migration [39].

Activation of p90RSK by hypoxia results in NHE-1
activation and invadopodia generation

Data shown above revealed that the increase in NHE-1 activity

was not due to a HIF-1-dependent or -independent modulation of

NHE-1 expression, suggesting the involvement of post-transla-

tional mechanisms. NHE-1 exchange activity can be regulated by

phosphorylation of its cytoplasmic tail [25]. Among the kinases

known to activate NHE-1, the serine kinase p90RSK has been

shown to increase NHE-1 activity by phosphorylation of a key

serine703 residue located in the cytoplasmic tail of the exchanger

which serves as a docking site for the 14-3-3 adaptor protein [26].

To investigate whether p90RSK was involved in hypoxia-induced

NHE-1 activation, we first examined the state of phosphorylation

of p90RSK in HT-1080 cells under hypoxic conditions. Time-

course studies revealed that p90RSK phosphorylation was sharply

increased 30 min and 45 min following exposure of the cells to

hypoxia, as compared to normoxia (Figure 5A). Hypoxia-induced

phosphorylation was almost completely blocked by PD98059

suggesting the involvement of the MAPK pathway in p90RSK

activation. In a second set of experiments, an antibody directed

against the 14-3-3 binding motif was used to reveal the NHE-1

Ser703 phosphorylation site [40]. The levels of NHE-1 Ser703

phosphorylation coincided with hypoxic activation of p90RSK,

suggesting a role for this kinase in NHE-1 activation (Figure 5A).

To further assess the involvement of p90RSK in hypoxia-induced

Figure 2. Hypoxia-induced NHE-1 activity occurs in a HIF-1-
independent manner. HT-1080 cells were exposed to normoxic or
hypoxic conditions for the indicated times. (A) NHE-1 mRNA expression
measured by RT-PCR (n = 3). (B) Representative immunoblot showing
NHE-1 expression in cell lysates (n = 3). Actin was used as a loading
control. (C) Na+/H+ exchange rate in HT-1080 cells transfected with HIF-
1a shRNA or control (scrambled) shRNA and exposed to 21% O2 or 1%
O2 for 4 h. Immunoblot showing HIF-1a knock down in cell lysates.
Nup62 was used as a loading control. NS: not significant. Columns
represent the mean 6 SEM indicated by the horizontal bars. The
asterisks correspond to, *** p,0.0001.
doi:10.1371/journal.pone.0028851.g002
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NHE-1 activation, HT-1080 cells were incubated in the presence

or the absence of the selective p90RSK inhibitor BI-D1870 or,

were transfected with a dominant negative form of p90RSK [41]

prior to exposure to hypoxic conditions. Results showed that

hypoxia-induced NHE-1 activity was inhibited by 60% and 40%

in cells treated with BI-D1870 or in cells expressing the dominant

negative form of p90RSK, respectively (Figure 5B–5C). The need

for NHE-1 Ser703 phosphorylation in hypoxia-induced NHE-1

activation was investigated in HT-1080 cells transfected with a

non-phophorylatable mutant form (S703A) of NHE-1. Results

Figure 3. Hypoxia-induced NHE-1 activity promotes invadopodia formation. HT-1080 cells exposed to normoxic (empty bars) or hypoxic
(filled bars) conditions were cultured on a layer of Oregon Green-labeled gelatin for 10 h and stained with Texas Red-phalloidin (actin) and DAPI
(nucleus). The percentage of cells that formed invadopodia was determined by fluorescence microscopy. (A) Percentage of invadopodia-forming cells
cultured in medium at pH 7.4 or 6.6 (n = 3). (B) Representative confocal microscopy image showing actin staining at sites of Oregon Green-gelatin
degradation. Boxed area is enlarged in the corresponding lower panel. The merged image also shows a reconstruction of the x-z profile (inset)
through the plane indicated by the solid line within the image. (C–D) Percentage of invadopodia-forming HT-1080 cells (C) transfected with pNHE-1
or an empty vector (pECE) (n = 3) or, (D) transfected with control (scrambled) or NHE-1 shRNA (n = 3–4). Number of invadopodia formed per cell
(actin/cortactin clusters), and corresponding area of degradation per cell, quantified from 20 random fields per experiment, in cells (E–F) transfected
with pNHE-1 or an empty control vector (pECE) (n = 2–3) or, (G–H) transfected with NHE-1 shRNA or control (scrambled) shRNA (n = 2–3). Columns
represent the mean 6 SEM indicated by the horizontal bars. The asterisks correspond to, * p,0.01; ** p,0.001; *** p,0.0001.
doi:10.1371/journal.pone.0028851.g003
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showed that cells harboring the mutant form of NHE-1 responded

poorly to hypoxia, in contrast to control cells harboring wild type

NHE-1 (Figure 5D) despite similar levels of overexpression (data

not shown). Taken together, these results strongly suggested that

phosphorylation of NHE-1 Ser703 by p90RSK was part of the

essential events involved in the activation of NHE-1 under

hypoxia.

To evaluate the role of p90RSK in cell invasion promoted by

hypoxia, we performed invadopodia formation assays in the

presence or absence of inhibitors of p90RSK. Treatment of HT-

1080 cells with BI-D1870 led to a dose-dependent decrease in

invadopodia formation and function (area of degradation per cell)

(Figure 6A–6B). A similar inhibition was observed in HT-1080

cells transfected with the dominant negative form of the kinase

(Figure 6C). In addition, overexpression of the S703A NHE-1

mutant resulted in strong inhibition of HT-1080 ability to enhance

invadopodia production in response to hypoxia as compared to

cells transfected with wild type NHE-1 (Figure 6D). These results

suggested that phosphorylation of NHE-1 by p90RSK was

required, at least in part, for hypoxia-induced invadopodia

formation and functions.

NHE-1 is located at sites of invadopodia formation in
hypoxic cells

We next examined whether NHE-1 was localized at invadopo-

dia sites using antibodies that recognize the C-terminal portion of

human NHE-1. Results showed that increased amounts of NHE-1

were present in numerous discrete puncta of fluorescence at the

ventral surface of hypoxic HT-1080 cells (basal plasma membrane

stained with DiI) that corresponded to typical invadopodia

locations (Figure 7A–7B). Such increases appeared to be

independent of NHE-1 phosphorylation by p90RSK because cells

overexpressing the NHE-1 S703A mutant showed similar

augmentations in NHE-1 localization at the basal plasma

membrane in response to hypoxia compared to cells overexpress-

ing the wild-type gene (Figure 7B). To define whether the observed

areas of NHE-1 fluorescence at the basal plasma membrane

corresponded to invadopodia formation sites, antibodies directed

against cortactin were used. Results showed that ventral NHE-1

puncta co-localized with cortactin clusters under hypoxic condi-

tions, suggesting NHE-1 localization to invadopodia structures in

hypoxic cells (Figure 7C).

Discussion

The tumor hypoxic and acidic microenvironment exerts

profound influence on cancer cell invasion and metastasis and

these characteristics are considered as important targets for the

development of new anti-cancer therapies. Despite numerous

studies in this field, the fundamental relationship between pH- and

hypoxia-induced cell invasion is still poorly understood. Here, we

showed that hypoxia promoted NHE-1 activity and its relocation

to the basal plasma membrane where NHE-1-induced extracel-

lular acidification leads to invadopodia production and cell

invasion. We further provided evidence that hypoxia modulated

NHE-1 activity through the activation of p90RSK.

Hypoxia is a key factor in the initiation of cancer cell invasion in

solid tumors [42]. To avoid cellular acidosis, hypoxia upregulates

genes involved in pHi homeostasis such as CAIX and MCTs [43].

Yang et al. have recently reported that, NHE-1 activity and

expression were increased by hypoxia in HepG2 cells [44]. NHE-1

contains a putative Hypoxia Response Element (HRE) in its

promoter and has therefore been proposed to be a HIF-1-targeted

gene [34]. In this study, we showed that the activity of NHE-1, but

not its expression, was increased under hypoxia at times where we

also observed an enhancement in the generation of invadopodia.

Using shRNA-mediated HIF-1alpha depletion, we also showed

that the increase in NHE-1 activity was independent of the

transcription factor HIF-1. Although HIF-1 has been reported to

be a key effector of hypoxia for cancer cell invasion, recent studies

have provided evidence for the implication of other signaling

pathways. Hypoxia is known to regulate the activity of the kinase

mammalian target of rapamycin (mTOR), to activate the unfolded

protein response (UPR) and transcription factors such as NF-kB

and C/EBPß [45,46,47,48]. Furthermore, HIF-2, which is also

stabilized under hypoxic conditions, can interact with HREs to

upregulate gene expression [49]. Unpublished results from our

laboratory have indicated that in fibrosarcoma cells, hypoxia-

induced increase in invadopodia production occurred in cells

where HIF-1 and HIF-2 have been silenced. These findings

suggest that both HIF isoforms are not necessary for NHE-1

activation and invadopodia production triggered by hypoxia.

NHE-1 activity can be regulated through post-translational

modifications, including phosphorylation of serine residues in the

C-terminal cytoplasmic domain. Many protein kinases regulate

NHE-1 activity, including p160ROCK, NIK and p90RSK [25].

Takahashi et al. have reported that p90RSK phosphorylates

NHE-1 at Ser703 resulting in increased activity of the exchanger in

response to PDGF [26]. Here, inhibition of p90RSK or

transfection with a dominant negative form of the kinase led to

a strong, but incomplete, loss of NHE-1 activity (Figure 5B–5C).

Similar results were observed by overexpression of a NHE-1

S703A mutant (Figure 5D), providing evidence of a direct

modulation of NHE-1 by p90RSK. In addition, our results

indicated an increase in p90RSK-dependent NHE-1 Ser703

Figure 4. NHE-1 is involved in hypoxia-induced cell invasion.
HT-1080 cells transfected with NHE-1 shRNA or control (scrambled)
shRNA were allowed to invade collagen gels for 24 h under normoxia or
hypoxia and stained with calcein-AM. (A) Representative confocal
images showing the relative fluorescence intensity of the cells
according to the depth of migration. (B) Graph represents maximal
depth of invasion (n = 3). Columns represent the mean 6 SEM indicated
by the horizontal bars. The asterisks correspond to, * p,0.01;
** p,0.001; *** p,0.0001.
doi:10.1371/journal.pone.0028851.g004
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phosphorylation following a brief (30 min) exposure of the cells to

hypoxia. This observation was consistent with previous results that

showed that p90RSK was rapidly activated by hypoxia in cardiac

myocytes [50]. Beside p90RSK, several protein kinases can

phosphorylate NHE-1 in its C-terminal tail, including

p160ROCK and NIK [25]. p160ROCK is upregulated in various

cancers and it has been shown to be involved in invadopodia

formation [51]. ROCK is activated in hypoxia through VEGF, in

a HIF-1-independent manner [52]. These data suggest that, in

addition to p90RSK, the possibility exists for further regulations of

NHE-1 activity under hypoxic conditions.

p90RSK has been associated with cell proliferation and cell

survival [53] and recent reports have shown that p90RSK is

overexpressed in human prostate and breast cancers where it is

involved in cell proliferation (breast, prostate) and PSA expression

(prostate) [54,55]. Beside the emerging role of p90 RSK in cancer

[56], few studies have investigated its implication in cell invasion

processes. In this connection, RSK was shown to enhance the

migration of melanoma cells through phosphorylation of the

cytoskeletal protein filamin-A [57]. Here, we found that inhibition

of p90RSK or the use of a dominant negative mutant partially

reduced hypoxia- and NHE-1-induced invadopodia production.

Overexpression of a NHE-1 S703A mutant also partially inhibited

hypoxia-induced invadopodia formation as compared to wild-type

gene. The question of which exact mechanisms regulate p90RSK

activation under hypoxia is currently unknown and will be the

subject of future investigations. Results presented here (Figure 5A)

and from unpublished experiments have indicated that the

EGFR/ERK/MAPK pathway, which is activated under hypoxic

conditions [58,59,60], is possibly involved in p90RSK activation.

Hypoxia induced the relocalization of NHE-1 to the plasma

membrane and its colocalization with the invadopodia marker

cortactin. These results were consistent with a recent study

indicating similar localization of NHE-1 to invadopodia in breast

cancer cells stimulated with EGF where the exchanger was

responsible for extracellular acidification and degradation of the

ECM [24]. Despite repeated observations of NHE-1 at invado-

podia, the trafficking and/or segregation mechanisms involved in

NHE-1 location to these sites remain unknown. It has been

reported that NHE-1 is present in lipid rafts microdomains, where

it interacts with caveolin-1 [61]. Lipid rafts and caveolin-1 are

required for invadopodia formation and ECM degradation by

human breast cancer cells. Src, a non-receptor tyrosine kinase

known to be activated by hypoxia, has been shown to regulate the

localization of caveolin-1 at invadopodia formation sites [62,63].

Therefore, the hypoxic regulation of caveolin-1 in lipid rafts may

represent a potential mechanism for relocalization of NHE-1 to

invadopodia.

The intrinsic ability to propagate to distant sites is the hallmark

of malignant diseases and the leading cause of cancer death.

Alterations in tumor cell metabolism are strongly associated with

metastatic potential, which has become a central issue in cancer

treatment [64]. Because of the central role of NHE-1 in pH

regulation of malignant cells, it is being considered as a potential

Figure 5. RSK-induced NHE-1 phosphorylation increases its activity in hypoxia. (A) HT-1080 cells were cultured for the indicated periods of
time under normoxic or hypoxic conditions or for 30 min under hypoxia with the addition of the MEK1/2 inhibitor PD98059 (50 mM). Representative
immunoblots showing p90RSK Ser380 phosphorylation and NHE-1 Ser703 phosphorylation. NHE-1 phosphorylation was revealed using antibodies
directed against the 14-3-3 binding motif, following NHE-1 immunoprecipitation. Ratios of pRSK to total RSK and pNHE-1 to total NHE-1 are shown
(n = 3). (B-D) Na+/H+ exchange rates were measured in cells exposed to normoxia (empty bars) or hypoxia (filled bars) in (B) the presence or absence
of the p90RSK inhibitor BI-D1870 (10 mM) (n = 3), or (C) cells transfected with a dominant negative p90RSK (n = 3), or (D) cells transfected with WT
NHE-1 or a S703A substitution NHE-1 mutant (n = 3). Columns represent the mean 6 SEM indicated by the horizontal bars. The asterisks correspond
to, ** p,0.001; *** p,0.0001.
doi:10.1371/journal.pone.0028851.g005
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target in anti-cancer therapy. However, recent clinical studies aimed

at inhibiting NHE-1 in the setting of myocardial infarction have

shown disappointing efficacy with severe adverse effects [65].

Understanding the molecular mechanisms that regulate NHE-1

activity under pathological conditions is needed to develop alternative

strategies to counteract the activity of the exchanger. Our findings

identified p90RSK as a molecular link between NHE-1-induced

extracellular acidification and invadopodia formation, providing new

insights into the cooperation between hypoxia and the acidic

microenvironment during cell invasion. Selective inhibition of

p90RSK may be a promising approach to interfere with the

metastatic potential of metabolically transformed cancer cells.

Beside cancer, the development of several hypoxia-associated

diseases including pulmonary artery hypertension, myocardial

infarction and ischemic retinopathies has been linked to NHE-1

activity and cardiac-specific overexpression of a dominant negative

form of RSK has been shown to reduce cardiac ischemia-

reperfusion injury [66,67,68,69,70]. Selective inhibition of molec-

ular mechanisms leading to NHE-1 activation may therefore

represent an alternative approach to attenuate the deleterious

influence of the metabolic microenvironment in various diseases.

Materials and Methods

Antibodies and reagents
Antibodies used for IF microscopy or Western-blotting were

purchased through commercial sources. Antibodies (and theirs

dilutions) were as follows: Rabbit anti-14-3-3 binding motif, anti-

RSK and anti-phosphoRSK (Ser380) (WB: 1/1000) were pur-

chased from Cell Signaling (Danvers, MA). Mouse anti-tubulin

(WB: 1/1000) and rabbit anti-actin (WB : 1/5000) was purchased

from Sigma-Alldrich (St-Louis, MO). Mouse anti-cortactin clone

4F11 (WB: 1/1000, IF: 1/300) was purchase from Millipore

(Billerica, MA). 49,6-diamidino-2-phenylindol dilactate (DAPI),

Texas Red-X phalloı̈din (IF:1/200), Alexa Fluor 647-phalloı̈din

(IF: 1/50), and all Alexa Fluor secondary antibodies (IF: 1/200)

were from Invitrogen (Eugene, OR). Goat anti-NHE1 was

purchased from Santa Cruz Biotechnology (Santa-Cruz, CA).

Mouse anti-NHE1 (WB: 1/500) was obtained from BD Biosci-

ences (San Jose, CA). Anti-human NHE1 antibody N1P1 was a

generous gift of Dr. Josette Noël (University of Montreal,

Montreal, QC). NHE-1 inhibitors, ethyl-iso-propylamiloride

(EIPA) and ConcavalinA were purchased from Sigma-Aldrich.

29,79-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxy-

methyl ester (BCECF, AM) was from Invitrogen. Control shRNA

and shRNA against the 59UTR region of NHE-1 were purchase

from SABiosciences (Frederick, MD). M-Methyl-D-glucamine

chloride (NMDG) was a kind gift of Dr. Eric Rousseau (University

of Sherbrooke, Sherbrooke, QC).

Cell cultures
HT-1080 fibrosarcoma cells (ATCC, Rockville, MD) were

cultured in Minimal Essential Medium (MEM; Gibco BRL,

Figure 6. Hypoxia-induced RSK activation promotes invadopodia formation. HT-1080 cells were cultured under normoxia (empty bars) or
hypoxia (filled bars). (A) Percentage of cells producing invadopodia cultured in presence or absence of BI-D1870 (n = 3). (B) Quantification of
invadopodia-associated matrix degradation was performed (n = 2). (C–D) Percentage of HT-1080 cells producing invadopodia in cells (C) transfected
with DN-RSK (n = 3), or (D) transfected with NHE-1 WT or S703A (n = 3). Columns represent the mean 6 SEM indicated by the horizontal bars. The
asterisks correspond to, * p,0.01; ** p,0.001; *** p,0.0001.
doi:10.1371/journal.pone.0028851.g006
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Burlington, ON) supplemented with 10% fetal bovine serum and

40 mg/mlm gentamycin (Sandoz, Montreal, QC) in a humidified

95% O2 5% CO2 atmosphere at 37uC. In the case of hypoxic

stimulations, cells were incubated at 37uC in an In vivo2 400

hypoxic workstation (Ruskinn, Les Produits Scientifiques ESBE,

Ville St-Laurent, QC) under an atmosphere of 1% O2 and 5%

CO2.

Plasmids and transfections
pECE-NHE1-GFP was a generous gift from Dr. Jacques

Pouyssegur (Institute of Developmental Biology and Cancer

Research, Nice, France). pCMV-NHE1-HA was a kind gift of

Dr. John Orlowski (McGill University, Montreal, Canada). The

plasmids pCMV-NHE1-S703A and pcDNA3.1-DN-RSK were

generously provided by Dr. Bradford Berk (Aab Cardiovascular

Institute, Rochester, NY). shRNA against NHE-1 was purchased

from SABiosciences. Transfections were performed using the

FuGENE 6 according to the manufacturer’s protocol (Roche

Diagnostics, Laval, QC). Stable transfectants were selected and

maintained in puromycin (Cedarlane) supplemented medium.

Measurement of NHE-1 activity
Intracellular pH (pHi) was measured by confocal microscopy

using a fluorescent pH-sensitive probe (BCECF), as described [61].

Briefly, cells were incubated with ‘‘Na+ Ringer’’ solution

containing the BCECF probe (2 mM) for 20 min at 37uC. After

washing, the cells were mounted on an Olympus confocal

microscope and excited at 450 nm and 488 nm. Emitted

fluorescence was collected at 535 nm, at 30 s intervals. NHE-1

activity was determined by measuring the rate of pHi recovery

(dpHi/dt) from an acid load produced by addition of NH4Cl

(20 mM). In the case of experiments performed under hypoxic

conditions, cells were maintained under the confocal microscope

equipped with a chamber containing a gas mixture of 1% O2 and

5% CO2 at 37uC.

RNA isolation and qRT-PCR
Total cellular RNA was isolated using the TRI-Reagent protocol

(Invitrogen, Carlsbad, CA) as described [71]. Quantitative real time

PCR was performed using the QuantiTect SYBR Green PCR kit

(Qiagen) and a Rotor-Gene 3000 instrument (Corbett Research,

San Francisco, CA). Primer sequences were as follows: NHE-1

forward (59-CCAGCTCATTGCCTTCTACC-39), NHE-1 reverse

(59-TGTGTCTGTTGTAGGACCGC-39), RPLPO forward (59-

GATTACACCTTCCCACTTGC-39), RPLPO reverse (59-CCA-

AATCCCATATCCTCGTCCG-39). Each reaction was run in

duplicates and values were normalized against the RPLPO

housekeeping gene.

Immunoprecipitation and Western blotting
Cells were lysed on ice in RIPA buffer. Cell lysates were

centrifuged at 13,000 rpm at 4uC and protein concentration was

determined using the BCA reagent (Biolynx Inc, Brockville, ON).

Immunoblotting was performed as described [72]. In the case of

immunoprecipitation experiments, 350 mg of total proteins were

immunoprecipitated using an anti-NHE-1 antibody (dilution,

1:100). To detect RSK-induced NHE1 phosphorylation on

Ser703, an anti-14-3-3 binding motif antibody, was used as

described [40].

Invadopodia assays
Invadopodia assays were performed as described [32]. Briefly,

cells were plated on Oregon Green- or Alexa Fluor 488-labeled

gelatin and invadopodia were identified by areas of matrix

degradation characterized by a loss of fluorescence. All experiments

were performed at pH 7.4, unless indicated within figure legends.

Three-dimensional invasion assays
Three-dimensional invasion assays were performed as reported

[73].

Immunofluorescence
Cells were fixed with 1% PFA for 30 min at 4uC, permeabilized

with saponin (0.05% in PBS) for 20 min, and blocked in 2% BSA

Figure 7. NHE-1 is localized at invadopodia sites. (A) Represen-
tative confocal microscopy images showing NHE-1 staining at the basal
membrane (labeled with DiI) in HT-1080 cells cultured under normoxic
or hypoxic conditions. (B) Colocalization index of NHE-1 and basal
plasma membrane (BPM) for untransfected cells or cells transfected
with WT NHE-1 or a S703A substitution NHE-1 mutant exposed to
normoxic (empty bars) or hypoxic (solid bars) conditions (n = 3). (C)
Numbers of cortactin/NHE-1 clusters per cell were quantified in HT-1080
cells cultured under normoxia or hypoxia for 4 h (n = 3). N, normoxia; H,
hypoxia. Columns represent the mean 6 SEM indicated by the
horizontal bars. The asterisks correspond to, * p,0.01; ** p,0.001;
*** p,0.0001.
doi:10.1371/journal.pone.0028851.g007
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in PBS for 30 min. Cells were then incubated with the appropriate

primary and secondary antibodies or fluorescent phalloidin, as

indicated in the legends of the figures. Images were taken with a

FV1000 scanning Olympus confocal microscope coupled to an

inverted microscope, using a 636 oil immersion objective. To

quantitate plasma membrane-located NHE-1, the basal cell

surface layer (first layer in contact with matrix) was scanned and

NHE-1 and plasma membrane colocalization index was calculated

according to Manders et al. [74]. Actin/cortactin colocalization

and degradation areas were determined as described [32].

Statistical analysis
Paired or unpaired Student’s t-test or one-way ANOVA test was

used to assess statistical significance, which was set at p,0.05.

Supporting Information

Figure S1 NHE-1 is involved in hypoxia-induced extra-
cellular acidification and invadopodia formation in
MDA-MB 231 and B16 cells. Human MDA-MB-231 breast

cancer cells and mouse B16 melanoma cells were exposed to

normoxic (empty columns) or hypoxic (filled columns) conditions.

Na+/H+ exchange rates were measured in (A) MDA-MB-231 cells

and (B) B16 cells incubated in the presence or absence of the

NHE-1 inhibitor EIPA (25 mM). For invadopodia assays, cells

were incubated in the presence or absence of the NHE-1 inhibitors

EIPA (25 mM) or Zoniporide (100 nM) and the percentage of cells

forming invadopodia was determined by fluorescence microscopy

for (C) MDA-MB-231 cells and (D) B16 cells. Columns represent

the mean 6 SEM indicated by the horizontal bars. The asterisks

correspond to, * p,0.01; ** p,0.001; *** p,0.0001.

(EPS)

Figure S2 Inhibition of NHE-1 activity by EIPA reduces
invadopodia formation. HT-1080 cells exposed to normoxic

(empty columns) or hypoxic (filled columns) conditions were

cultured on Oregon Green gelatin for 10 h and stained with Texas

Red-phalloidin (actin) and DAPI (nucleus). The percentage of cells

that formed invadopodia was determined by fluorescence

microscopy. (A) Percentage of invadopodia forming cells cultured

in presence or absence of two different concentrations of the NHE-

1 activity inhibitor EIPA (n = 3). (B) Number of invadopodia

formed per cell (actin-cortactin clusters) in HT-1080 cells cultured

in the presence or absence of EIPA (25 mM). Columns represent

the mean 6 SEM indicated by the horizontal bars. The asterisks

correspond to, *** P,0.0001.

(EPS)
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