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Abstract

In this article we aim at improving the performance of whole brain functional imaging at very high temporal resolution
(100 ms or less). This is achieved by utilizing a nonlinear regularized parallel image reconstruction scheme, where the
penalty term of the cost function is set to the L1-norm measured in some transform domain. This type of image
reconstruction has gained much attention recently due to its application in compressed sensing and has proven to yield
superior spatial resolution and image quality over e.g. Tikhonov regularized image reconstruction. We demonstrate that by
using nonlinear regularization it is possible to more accurately localize brain activation from highly undersampled k-space
data at the expense of an increase in computation time.
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Introduction

Conventional functional magnetic resonance imaging (fMRI) is

performed using multi-slice EPI with TR of 2–3 s. Recently a

number of new methods [1,2] have been suggested to speed up

data acquisition well below 1 s. One incentive for doing so is the

ability to remove physiological noise from the time series data,

which in combination with the increased number of sampling

points per unit time increases the sensitivity of the fMRI

acquisition dramatically. In the extreme case, Magnetic Reso-

nance Encephalography (MREG) or Inverse Imaging (InI), have

been suggested, which allow extremely fast acquisition by omitting

gradient encoding altogether and acquiring spatial information

from the small sensitive volumes of multi-array coils alone. By

adding some gradient encoding using highly undersampled

acquisition with multi-coil image reconstruction, full-brain datasets

with acquisition times of 100 ms can be acquired [3,4].

The strongly undersampled trajectories used in these studies

lead to very high undersampling factors and prohibit a

conventional non-cartesian image reconstruction using e.g.

SENSE (sensitivity encoding) [5,6] or other parallel imaging

methods. Tikhonov regularization [7,8] was therefore previously

employed to find a sensible solution to the ill-conditioned

reconstruction problem. Another reconstruction approach for

highly undersampled data was taken by Lin et al., where they used

reconstruction techniques usually found in radar and magnetoen-

cephalography literature [9]. Furthermore, they also utilized a

GRAPPA-based k-space reconstruction method [10]. Recently,

Lee et al. have shown that by using interleaved data acquisition, a

single channel coil, density compensated non-uniform Fourier

transformation and UNFOLD [11,12], the temporal resolution of

an fMRI experiment can also be increased. Their approach relies

on temporal filtering of the reconstructed data, which can

potentially affect physiological signal components (BOLD or

otherwise). Rabrait et al. have employed cartesian Echo Volumar

Imaging (EVI) to achieve repetition times for functional imaging of

up to 200 ms [13]. They employ Tikhonov regularization to

stabilize the inverse problem. Nonlinear regularization techniques

have also gained strong attention over the last few years in MRI,

since they have the potential to yield better image quality when

compared to linearly regularized approaches with an equal

amount of k-space data [14,15].

In this work, we try to push the spatial resolution of fast,

undersampled functional imaging at 10 Hz or more by utilizing

nonlinear regularized reconstruction methods and non-cartesian

k-space data sampling to improve the point spread function

compared to standard cartesian sampling.

Methods

Ethics statement
All experiments on human subjects were performed with

approval by the ethics committee of the Albert-Ludwigs university

of Freiburg, Germany and all subjects gave written informed

consent before commencement of the study.

All experiments were performed on a 3T Magnetom Trio

(Siemens, Erlangen, Germany). For signal reception a commercial

32-channel head array was used.
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fMRI paradigms
A checkerboard paradigm was used for stimulation of the visual

system, with an inversion frequency of 4 Hz. It was presented in a

block design with 3 periods that consist of 15 s of activation

followed by 15 s of rest.

The subject also had to fixate a dot in the middle of the

checkerboard during the whole experiment. After 12 s, the dot

changed color for 5 s. During that time the subject was requested

to perform bilateral finger tapping. For each data set, the initial

rest period of 15 s was removed from the data set prior to image

reconstruction to avoid the initial signal transition into the steady

state.

Trajectory
Since an acquisition scheme with a very high undersampling

factor is used here, the choice of the trajectory plays a crucial role

in the ability to accurately localize the activation. Standard

Cartesian undersampling is a poor choice, because it leads to

aliasing artefacts in the reconstructed image. For high under-

sampling factors R, the aliasing cannot be completely removed and

the point spread function (PSF) will have characteristics of a comb

function (when neglecting the finite sampling) with R peaks within

the field of view. As a result, aliasing and therefore BOLD signal

changes will occur all across the image and localizing the

activation becomes very difficult.

Ideally, a more appropriate trajectory for this task is radially

symmetric, since symmetry in the sampling pattern is carried over

to the shape of the corresponding PSF. The expected PSF of such

a trajectory is much more benign. Here we chose a 3D single shot

radial sampling (SSR) strategy, with a very low number of spokes

per TR. Due to the very low number of spokes, the radial

symmetry of this trajectory is strongly reduced and the PSF of such

a trajectory exhibits side lobes that lead to the typical streaking

artefacts of radial sampling, but at a lower distance from the PSF

center compared to full radial sampling.

The actual trajectory with NP = 40 zero crossings can be seen in

fig. 1b. NP = 40 yields an acquisition time of 32 ms which was

chosen as a balance between the number of k-space points and

severity of off-resonance effects during signal acquisition. The

radial k-space lines where arranged according to a homogeneous

sampling pattern on a sphere. First, following [16], NP points were

defined (see fig. 1A) on a hemisphere. These points define the

orientation of the radial spokes. Two neighbouring spokes were

connected using an optimization approach which finds the shortest

gradient wave form within the hardware limits that connects the

two end points of the spokes [17].

Data acquisition
The following measurements comprise a complete session for

one subject:

1. A reference measurement was performed, which consisted of a

multi-slice acquisition of a slab that covered the whole brain of

the subject. The field of view in both directions was set to

256 mm with a resolution of 64664, and 64 slices were

recorded with a slice thickness of 4 mm, yielding isotropic

voxel size. Two echos per TR were acquired, which enables the

determination of a map of the off-resonances due to field

inhomogeneities. The parameters of the sequence were

TR = 25 ms, TE1 = 4.9 ms, TE2 = 7.4 ms and a flip angle of

15u. The data was saved separately for each coil. This reference

data was used to synthesize the coil sensitivities by dividing

each coil image by the adaptive coil combination [18]. An off-

resonance map was computed by determination of the voxel

phase evolution between the images of the two echo times. The

resulting map was additionally smoothed using a Gaussian filter

with a width of 1 voxel to reduce noise in regions of low signal

intensity.

2. For comparison of our methods, the checkerboard stimulation

was performed using multi-slice T2*-weighted EPI as imaging

sequence. 24 slices with an isotropic voxel resolution of 2 mm

were recorded with a repetition time per slab of TR = 2 s. The

flip angle was set to 90u and the echo time was equal to

TE = 30 ms.

3. MREG-fMRI was performed using simultaneous checkerboard

and finger tapping stimulation. The flip angle was set to 15u,
and the gradient scheme that corresponds to the optimized 3D

radial trajectory was played out. The trajectory started 5 ms

after the excitation pulse and had a total duration of 32 ms.

The repetition time was set to TR = 100 ms.

4. Measurement of the trajectory was performed according to the

thin slice method given by Duyn et al. [19].

Image reconstruction
The standard multi-coil signal equation is cast into a linear

system of equations:

Az~b, ð1Þ

here A is the encoding matrix, z is the unknown image and b is the

acquired data of all coils of a single time frame. To clarify the

structure of A, it can be decomposed into the following form:

A~

F 0

P

0 F

0
B@

1
CA

C1

..

.

CNC

0
BB@

1
CCA, ð2Þ

where F is the non-uniform Fourier transformation (in the actual

implementation the fast non-uniform Fourier transformation

(nuFFT) [20] is used), and Ci is a diagonal matrix, with the coil

sensitivity of the coil i on its diagonal. The task of computing the

unknown image z from the measured data b becomes an under-

determined inverse problem. Standard imaging reconstruction

using the pseudo-inverse fails here, since the encoding matrix A in

the forward equation is usually strongly ill-conditioned due to

strong undersampling and the non-optimized coil sensitivity

coverage. The problem therefore needs to be regularized to find

a sensible solution. A relatively simple regularization method is the

Figure 1. Design of the trajectory. End points of the radial sections
of the trajectory (A) and 3D plot of the k-space sampling pattern (B).
doi:10.1371/journal.pone.0028822.g001
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well known Tikhonov-regularization [7,8]. In this case image

reconstruction is defined as the minimum of the cost function:

fTikh(z)~ Az{bk k2
2zl2 zk k2

2 ð3Þ

where l is the regularization parameter. Since the solution to this

optimization problem is a compromise between the two terms in

the cost function, depending on the choice of the regularization

parameter, a certain deviation from an exact solution of equation

(1) has to be accepted at the expense of a z that has a smaller L2-

norm. This generally leads to a preference for smooth images.

Recently the L1-norm as a penalty in the cost function gained

popularity since it has more desirable properties with respect to

image reconstruction from undersampled data than the conven-

tional Tikhonov penalty. As a regularization penalty, it is known to

have edge-preserving properties. Furthermore, in [21] the L1-

norm was shown to yield solutions that have an approximately

sparse representation in the domain in which it is measured. This

can be exploited in the case where the unknown image is known to

have a sparse representation in some transform domain. In

general, a good choice for such a transform is the wavelet

transform, since most images can be approximated with high

precision with only a strongly reduced number of their wavelet

coefficients. Thus the following cost function is used for image

reconstruction:

fCS(z)~ Az{bk k2
2zl Wzk k1 ð4Þ

where W represents a transform and l is the regularization

parameter.

While regularization methods offer the possibility of recon-

structing images in ill-conditioned situations, the main obstacle of

using such a method lies in the fact, that the degree of

regularization that is introduced in the reconstruction must be

specified and there is usually no universal rule to pick the right

amount. For example, in truncated singular value decomposition,

regularization is controlled by the number of singular values that

are retained. Another example is the conjugate gradient method,

which is known to yield a regularized solution if it is stopped before

convergence. Thus, the amount of regularization is controlled by

the number of iterations. In approaches based on cost functions,

like ours, the degree of regularization is determined by the

regularization parameter.

Several methods to automatically determine the regularization

parameter exist for Tikhonov regularization. Here the L-curve

method [22] was used. The successful application of this method

to Tikhonov regularized parallel imaging was demonstrated in

[23]. In the nonlinear case l was chosen empirically, i.e. the time

series was reconstructed for different values of l and the most

reasonable value compared to the EPI activation maps was

chosen. This parameter was reused for subsequent reconstructions.

A nonlinear conjugate gradient [24] procedure was used to find

the minimizing solution of fCS, while the Tikhonov cost function

was minimized using the linear conjugate gradient method [25].

No additional post-processing steps were performed after image

reconstruction of an image time series.

Statistical analysis
General linear model analysis was performed on the resulting

image time series. The GLM-analysis was carried out using SPM8

(Statistical Parametric Mapping, www.fil.ion.ucl.ac.uk/spm). In all

activation maps shown in this article voxels are identified as

activated, when a family wise error rate of 5% for the null

hypothesis (i.e. voxel is not activated) was exceeded.

Off-resonance correction
Additionally, signal degradation during acquisition due to field

inhomogeneities can be incorporated in the reconstruction

process. To accomplish this, the off-resonance map Dv( r!) that

is determined from the reference data is used to model the

additional off-resonance phase factor in the signal equation:

si(t)~

ð
z( r!) ci( r!) eiDv( r!)tei k

!
(t): r!d r! ð5Þ

In this form, it is not possible to apply the nuFFT directly

anymore, since the off-resonance phase factor depends on time

and position. A time segmented approximation [26] is used to

maintain the possibility of using the nuFFT in the conjugate

gradient algorithm:

eiDv( r!)t&
XNs

k~1

ak(t) eiDv( r!)Dt k ð6Þ

In this way, the integration in equation (5) can be performed on

each summation term and the time dependence can be pulled out

of each integration. With this approach, the computation time is

essentially increased by a factor equal to the number of segments

NS . The new modified forward model A0 z~b now has the

following decomposed encoding operator:

A0~
XNS

k~1

Lk 0

P

0 Lk

0
B@

1
CA

F 0

P

0 F

0
B@

1
CA

C1

..

.

CNC

0
BB@

1
CCAPk, ð7Þ

where the Lk are diagonal matrices containing the weighting

functions ak(t) and Pk is another diagonal matrix containing the

phase factor eiDv( r!)Dt k.

Results

Figure 2 shows a comparison between a reference image (A), a

reconstructed time frame of a time series using Tikhonov

regularization (B) and using L1-norm regularization (C). The

reconstructed images have a matrix size of 64664664 with an

isotropic resolution of 4 mm per voxel. Only the central 16 slices

are plotted here. Due to the extreme undersampling, the image

quality is necessarily inferior to the fully sampled case. Blurring

and signal cancellations due to the radial signal acquisition and off-

resonance effects are observed in both undersampled reconstruc-

tions. Images reconstructed with L2-norm appear smoother

compared to L1-norm reconstruction, L1-norm images are sharper

and of better quality. This is expected since the L1-norm has

superior properties with respect to image reconstruction. We will

show that this improved behaviour compared to the Tikhonov

reconstruction also carries over to an improved spatial localization

of activation in functional MRI when extreme undersampling is

used to push the temporal resolution.

The actual spatial resolution can be characterized by the point

spread function (PSF). For a given test image zn which is equal to

one in the voxel of interest n~(nx,ny,nz) and zero everywhere else,

Undersampled fMRI Using Nonlinear Regularization
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the PSF in case of a linear reconstruction is defined as:

psfn~A# A znð Þ ð8Þ

where A#(:) denotes the reconstruction operation. For the

Tikhonov regularization A# has a well known analytic form and

can be expressed as a matrix. In case of a nonlinear cost function a

PSF can not be readily defined, since then the operation A# is

nonlinear as well. The solution thus not only depends on the

position as in Tikhonov regularization, but on the measured data

as well. An image dependent PSF can still be defined by

computing the difference with respect to an underlying image

zref [27]:

psf2n(zref )~A# A zref

� �
{A# A (zref {z2n)

� �
, ð9Þ

where Zn needs to be only a small perturbation to zref . Figure 3

shows a comparison of the PSF at a position in the middle of the

field of view (FOV) for two different trajectories in the Tikhonov

case. Only a transversal slice through the center of the three

dimensional PSF is shown. In fig. 3A the PSF for a 3D rosette

trajectory is shown, which was used in a previous study for fast

functional MRI [4], while in fig. 3B the PSF for the 3D SSR

trajectory is shown. Judging from the PSF, the SSR is a better

choice with respect to the achievable spatial resolution, due to the

higher isotropy of the trajectory. The strong side lobes in the

rosette PSF vanish and only smaller side lobes appear further away

from the center of the PSF. In fig. 3C the PSF given by equation

(9) for the L1-norm regularized reconstruction and the SSR

trajectory is then plotted, where a reference image of a slice of the

brain was used for zref . The width as well as the side lobes are

greatly reduced compared to the Tikhonov reconstructed PSF,

demonstrating the superior image reconstruction properties of the

L1-norm.

Spatial localization has also been assessed by numerical

simulation. For simulation, a static time series data set was

generated using a 64664664 3D reference image of the brain. In

voxels belonging to two 36363 cubic regions separated by 6

voxels, a simulated BOLD response was added. The correspond-

ing k-space data set was generated by applying the forward model

A to each time frame. Noise with a relative intensity of 1% was

then added to the k-space data. Each time frame was

reconstructed using L1- and L2-norm penalties in the cost function.

The reconstructed time series was analyzed using a GLM-analysis,

and thresholded corrected t-values were overlaid on top of the first

reconstructed time frame of the time series. A comparison of the

results is plotted in fig. 4, where (A) corresponds to the L2-norm

reconstruction and (B) corresponds to the L1-norm reconstruction

with W equal to identity. Both figures show 9 slices across the

activated region out of the reconstructed 3D volume.

The simulation demonstrates the improved performance of the

L1-norm reconstruction over the L2-norm reconstruction with

respect to spatially localizing the activation in the two cubic

regions of the brain. The L2-norm reconstruction exhibits much

more pronounced blurring and spread of activation into voxels

outside of the two cubic regions. Blurring is strongly reduced,

when the L1-norm is used. The improved spatial resolution of L1-

norm is also directly observable from the overall image

appearance, with a better definition of the CSF-filled spaces after

L1-norm reconstruction.

In fig. 5 the results of the visual checkerboard stimulation (row

A) and the motor task (row B) are displayed. Column 1

corresponds to the Tikhonov reconstruction, column 2 corre-

sponds to the L1-norm reconstruction with W equal to identity

and column 3 corresponds to the L1-norm reconstruction with W
equal to a wavelet transformation. Again, only relevant slices in

the complete 3D volume are displayed. The measured results

agree with the observations from simulation. L1-norm reconstruc-

tion delivers better spatial localization of the visual and the motor

activation. Using a wavelet transform in the L1-norm penalty does

not lead to an appreciable difference. It can be observed that

differences in t-scores between different reconstruction methods

occur. Firstly, these can be attributed to the different properties of

L1-norm and L2-norm, which will affect the voxel time courses and

thus the t-scores. Secondly, the empirical choice of the

regularization parameter in the L1-norm case will also affect the

t-scores.

In fig. 6 activation maps are plotted for the visual checkerboard

task for L1-norm penalized reconstruction using a wavelet

transform for W . From left to right, increasing regularization

parameters were employed in the cost function. The typical

behaviour of over- and under-regularizing the reconstruction can

be observed here. Choosing a small value for l leads to low SNR-

images and activation is lost in the amplified noise. For l~10{4,

more sensible results are obtained. If l is chosen too large, the

influence of the penalty term over the data fidelity term eventually

becomes too great.

Non-cartesian single-shot trajectories are very sensitive to off-

resonance effects from field inhomogeneities. The acquisition time

Figure 2. Sample reconstructions. Sum of square image of the reference data (A), a sample reconstruction using the Tikhonov regularization (B)
and the sample reconstruction using the l1-norm regularized reconstruction (C).
doi:10.1371/journal.pone.0028822.g002
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for the 3D-SSR trajectory is 32 ms, during which significant

magnetization dephasing due to off-resonance effects will take

place. This will lead to inconsistencies especially at and around the

crossing points of the trajectory. As a consequence, the signal will

be degraded and image quality is expected to be affected

substantially. Taking off-resonance effects into account using the

modified forward model (7) in the image reconstruction procedure

is therefore expected to improve image quality.

Off-resonance correction was performed by setting the number

of time segments in equation (6) to 10. The results for one subject

are shown in fig. 7. The figure shows a comparison of a L1-norm

penalized reconstruction versus one with the additional incorpo-

ration of an off-resonance map in the forward model. The

comparison of uncorrected (A) versus corrected sample recon-

struction (B) demonstrates that the correction is able to recover

signal voids that appear in the uncorrected sample image.

The activation map derived from the off-resonance corrected

time series (D) exhibits more pronounced features compared to the

uncorrected version (C). The agreement with the activation map

from a conventional EPI experiment (F) is greatly improved by the

additional off-resonance correction. The identified brain regions

are virtually identical when compared to EPI. The blurring of the

activation in the t-maps is also significantly reduced. Furthermore,

the activation map is more symmetric, as expected when using a

simple checkerboard paradigm. The asymmetry in the uncorrect-

ed activation map reflects the asymmetric k-space attenuation due

to off-resonance effects and the order in which the radial sections

of the sampling scheme are acquired. It would be interesting to

directly compare the activation maps using EPI and the SSR

statistically, unfortunately this rather difficult due to the fact that

the two data acquisition schemes lead to very different artefacts.

While EPI typically leads to distortions, the SSR tends to introduce

blurring.

A typical time course picked from the visual cortex for the

Tikhonov (black) and the L1-norm penalized case (red) can be

seen in figure 8. Time courses have been normalized by dividing

by their mean. Time courses exhibit excellent agreement. Periodic

modulations correspond to the breathing component.

Discussion

Our study demonstrates the feasibility of functional MRI using

highly undersampled k-space trajectories to increase the achiev-

able sampling speed. The key to being able to still properly localize

the activation even with extreme reduction factors is a suitable

image reconstruction scheme in combination with suitable receive

coil arrays. While simpler reconstruction methods for non-

cartesian k-space data, e.g. gridding, are fast and robust in the

conventional imaging regime where Nyquist-conform sampling is

employed, these techniques fail to deliver usable results when

moved to the strongly undersampled regime. The ill-conditioning

of the parallel imaging reconstruction problem due to under-

sampling and the geometry of the receive array makes regularizing

the solution a necessity. In previous work, Tikhonov regularization

Figure 3. Point spread functions. A PSF for the 3D rosette trajectory (A) and for the 3D SSR (B) in the Tikhonov regularized case in comparison to
a local PSF of the 3D SSR trajectory using the L1-norm regularized reconstruction (C).
doi:10.1371/journal.pone.0028822.g003

Figure 4. Simulation of brain activation. Results of the simulation: Tikhonov reconstructed time series (A) and L1-norm regularized
reconstruction (B).
doi:10.1371/journal.pone.0028822.g004
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Figure 5. Comparison of activated brain areas for different reconstructions. Penalty terms: Tikhonov (column 1), l1-norm (column 2) and l1-
norm in the wavelet domain (column 3) for visual checkerboard stimulation (row A) and bilateral finger tapping (row B).
doi:10.1371/journal.pone.0028822.g005

Figure 6. Activation map dependence on the regularization parameter. Image reconstruction was performed using the l1-norm penalty and
the following regularization parameters: l~10{5 (A), l~10{4 (B) and l~5:10{4(C).
doi:10.1371/journal.pone.0028822.g006
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was used to deal with the inverse problem, here nonlinear

regularization was able to further improve the spatial localization

of the activation. It was found that a L1-norm penalty in the cost

function is better suited to the reconstruction problem and yields

better results than the simpler L2-norm penalty, due to the edge-

preserving properties of the L1-norm. Furthermore, we found that

an additional wavelet transform to measure the L1-norm in a

sparser domain does not lead to an improvement in the

reconstruction performance, although, for the sparsification or

compressibility of a brain image, a wavelet transform is in general

a superior choice to using no transformation (i.e. identity).

Nevertheless, similar results were obtained with both transforms.

This can be explained by the lack of a random sampling pattern, a

crucial missing prerequisite for the application of compressed

Figure 7. Comparison with additional off-resonance correction. Sample L1-norm-penalized reconstruction without (A) and with additional
off-resonance correction (B).Activation map without (C) and with (D) off-resonance correction. A spatial map of the off-resonances in Hz (E) and the
activation map of an EPI experiment (F).
doi:10.1371/journal.pone.0028822.g007
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sensing. Only then do pseudo-random noise artefacts appear due

to random sampling, and a sparse transform domain can help to

remove them.

Here, we only considered the application of a single L1-norm

penalty term in the cost function. Penalty terms that are better

suited to the task of activation localization might exist and lead to

further improvements. Furthermore, the combination of more

than one penalty term has also been shown to be potentially

beneficial to image quality [14].

One disadvantage of dealing with the non-cartesian SENSE

equation is the necessary estimation of the coil sensitivities. K-

space-based methods are much more flexible in this respect. Also,

it was reported that a more sensitive detection of BOLD activation

can be achieved using a GRAPPA-based reconstruction approach

[10]. Recently, a technique abbreviated L1-SPIRiT [28] was

introduced, that allows regularization methods to be applied to

GRAPPA-based image reconstruction. This might be well-suited

to our purpose, since movement related issues with stationary coil

sensitivities during SENSE based reconstruction will be greatly

reduced.

The results also demonstrate significant improvements by

incorporating the field inhomogeneity correction. Although field

inhomogeneity dependent frequency variations are rather small

across the visual cortex (610 Hz in fig. 7E), activation maps are

improved.

The use of a nonlinear cost function necessitates replacement of

the standard conjugate gradient with a nonlinear conjugate

gradient algorithm. This leads to an increase in the computation

time, since the directions of the descending steps lose their

conjugacy. Even with periodic restarts, this greatly increases the

number of steps it takes to reach convergence. Additionally, a time

consuming line search is necessary in each step. In our experience,

roughly an order of magnitude more time is necessary to

reconstruct a time frame with the L1-norm penalty compared to

the L2-norm penalty. With a temporal resolution of 100 ms or less

and fMRI experiments that last typically for several minutes,

reconstructing a complete time series is a time consuming task.

Compared to only a few seconds with a standard FFT plus sum-of-

squares reconstruction in the fully sampled case, reconstructing a

single timeframe using the nonlinear regularized reconstruction

takes about 5 min (100 NLCG-iterations). Grid computing and

GPU-accelerated algorithms can tremendously alleviate this issue.

Additional off-resonance correction further increases the recon-

struction time essentially by the number of time segments that are

used.

It has to be noted that SPM8 was used to perform the GLM

analysis on each voxel of the reconstructed time series. Although

SPM8 is a tool that is designed to analyze functional MRI data, it

uses two underlying assumptions that are not necessarily valid

anymore for our kind of data. One is the assumption that the

temporal resolution of the time series is rather low. This is

indirectly assumed by setting the autoregressive model (of order

one) coefficient to a fixed value that corresponds to a rather low

temporal resolution [29], which can deviate from the real value

when going to very high temporal resolution. As a result t-values

can be overestimated because the order of the respective Student t-

distribution is estimated to be too large. The second problem is

related to the underlying theory of random Gaussian fields to

correct the probability of getting a false positive voxel in the whole

volume due to spatial correlations between neighbouring points.

The assumption that the spatial correlations between points can be

accurately described by a Gaussian distribution [30] is not true

anymore, since spatial correlations are now introduced by more

complicated point spread functions due to the form of the

trajectory. A proper statistical analysis of functional data

reconstructed from non-cartesian k-space data with high temporal

resolution certainly needs more attention.

For Tikhonov regularization the regularization parameter could

be detected automatically using the L-curve method. The method

has been chosen due to its robustness and the fact that the

encoding matrix is not needed explicitly as in other methods. The

task of automatically determining the regularization parameter is

more challenging in case of the nonlinear regularization. Methods

that work well in the Tikhonov case do not necessarily apply to the

nonlinear case. Although there is no apparent reason why the L-

curve should be problematic when used in combination with

nonlinear cost functions, in our experience the corner of the L-

curve can be much less pronounced and the corresponding

parameter can yield unsuitable solutions. This problem is

exacerbated by a lack of an analytic form for the L-curve, which

means that in a practical implementation the corner needs to be

estimated from a few precomputed points on the curve.

The most prominent physiological signal components (ECG,

respiration) introduce significant additional variance in voxel time

courses of functional MRI data. In contrast to conventional EPI

experiments with volume coverage, where physiological signal

changes appear as pseudo-noise in the signal time course, these

signal modulations can be adequately resolved with a temporal

resolution of 100 ms. Physiological ‘‘noise’’ correction could

therefore be performed by modelling ECG and respiration signal

Figure 8. Comparison of time courses. Time course of a voxel in the visual cortex for Tikhonov (black) and l1-norm regularized reconstruction
(red). The sections with the light blue background correspond to the times when the checkerboard was switched on.
doi:10.1371/journal.pone.0028822.g008

Undersampled fMRI Using Nonlinear Regularization

PLoS ONE | www.plosone.org 8 December 2011 | Volume 6 | Issue 12 | e28822



changes in the design matrix. This correction method is feasible

only because the temporal resolution achieved here prevents noise

from being aliased into lower frequencies. In the future, we will

investigate further the possibilities for physiological noise removal

when dealing with high temporal sampling rates.
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Dynamic magnetic resonance inverse imaging of human brain function. Magn

Reson Med 56: 787–802.

3. Grotz T, Zahneisen B, Ella A, Zaitsev M, Hennig J (2009) Fast Functional Brain
Imaging Using Constrained Reconstruction Based on Regularization using

arbitrary projections. Magn Reson Med 62: 394–405.
4. Zahneisen B, Grotz T, Ohlendorf S, Lee KJ, Zaitsev M, et al. (2011) 3D MR-

Encephalopgraphy: Fast Volumetric Brain Imaging Using Rosette Trajectories.
Magnetic Resonance in Medicine 5: 1260–1268.

5. Pruessmann KP, Weiger M, Börnert P, Boesiger P (2001) Advances in Sensitivity

Encoding With Arbitrary k-Space Trajectories. Magn Reson Med 46: 638–651.
6. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE:

sensitivity encoding for fast MRI. Magn Reson Med 42: 952–962.
7. Phillips DL (1962) A technique for the numerical solution of certain integral

equations of the first kind. J Assoc Comput Mach 9: 84–97.

8. Tikhonov AN (1963) Solution of incorrectly formulated problems and the
regularization method. Sov Math Dokl 4: 1035–1038.

9. Lin FH, Witzel T, Zeffiro TA, Belliveau JW (2008) Linear constraint minimum
variance beamformer functional magnetic resonance inverse imaging. Neuro-

image 43: 297–311.
10. Lin FH, Witzel T, Chang WT, Wen-Kai Tsai K, Wang YH, et al. (2009) K-

space reconstruction of magnetic resonance inverse imaging (K-InI) of human

visuomotor systems. NeuroImage 49: 3086–3098.
11. Lee GR, Griswold MA, Tkach JA (2010) Rapid 3D Radial Multi-echo

Functional Magnetic Resonance Imaging. NeuroImage 4: 1428–1443.
12. Madore B, Glover GH, Pelc NJ (1999) Unaliasing by Fourier-Encoding the

overlaps using temporal dimension (UNFOLD), applied to cardiac imaging and

fMRI. Magn Reson Med 42: 813–828.
13. Rabrait C, Ciuciu P, Ribes A, Poupon C, Le Roux P, et al. (2008) High

temporal resolution functional MRI using parallel echo volumar imaging.
Journal of Magnetic Resonance Imaging 27: 744–753.

14. Block KT, Uecker M, Frahm J (2007) Undersampled radial MRI with multiple
coils. Iterative image reconstruction using a total variation constraint. Magnetic

Resonance in Medicine 57: 1086–1098.

15. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: The application of
compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine

58: 1182–1195.

16. Wong STS, Roos MS (1994) A strategy for sampling on a sphere applied to 3D

selective RF pulse design. Magnetic Resonance in Medicine 32: 778–784.
17. Hargreaves BA, Nishimura DG, Conolly SM (2004) Time-optimal multidimen-

sional gradient waveform design for rapid imaging. Magnetic resonance in
medicine 51: 81–92.

18. Walsh DO, Gmitro AF, Marcellin MW (2000) Adaptive reconstruction of

phased array MR imagery. Magn Reson Med 43: 682–690.
19. Duyn JH, Yang Y, Frank JA, van der Veen JW (1998) Simple Correction

Method for k-Space Trajectory Deviations in MRI. Journal of Magnetic
Resonance 132: 150–153.

20. Fessler JA, Sutton BP (2003) Nonuniform fast Fourier transforms using min-max
interpolation. IEEE Transactions on Signal Processing 51: 560–574.

21. Donoho DL (2006) For most large underdetermined systems of linear equations

the minimal L1-norm solution is also the sparsest solution. Communications on
pure and applied mathematics 59: 797–829.

22. Hansen PC (1992) Analysis of discrete ill-posed problems by means of the L-
curve. SIAM Review 34: 561–580.

23. Lin F-H, Kwong KK, Belliveau JW, Wald LL (2004) Parallel imaging

reconstruction using automatic regularization. Magnetic Resonance in Medicine
51: 559–567.

24. Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients.
The computer journal 7: 149–154.

25. Hestenes MR, Stiefel E (1952) Methods of Conjugate Gradients for Solving
Linear Systems. Journal of Research of the National Bureau of Standards 49:

409–436.

26. Sutton BP, Noll DC, Fessler JA (2003) Fast, iterative image reconstruction for
MRI in the presence of field inhomogeneities. IEEE Transactions on Medical

Imaging 22: 178–188.
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